THE ROLE OF T(X) IN THE IDEAL THEORY OF BCI-ALGEBRAS

XIAOHONG ZHANG AND YOUNG BAE JUN*

1. Introduction

To develope the theory of BCI-algebrs, the ideal theory plays an important role. The first author [4] introduced the notion of T-ideal in BCI-algebras. In this paper, we first construct a special set, called T-part, in a BCI-algebra X. We show that the T-part of X is a subalgebra of X. We give equivalent conditions that the T-part of X is an ideal. By using T-part, we provide an equivalent condition that every ideal is a T-ideal.

We review some definitions and properties that will be useful in our results.

By a BCI-algebra we mean an algebra (X, *, 0) of type (2,0) satisfying the following conditions:

- (I) ((x*y)*(x*z))*(z*y) = 0,
- (II) (x * (x * y)) * y = 0,
- (III) x * x = 0,
- (IV) x * y = 0 and y * x = 0 imply x = y.

A BCI-algebra X satisfying $0 \le x$ for all $x \in X$ is called a BCK-algebra. In any BCI-algebra X one can define a partial order \le by putting $x \le y$ if and only if x * y = 0.

A BCI-algebra X has the following properties for any $x, y, z \in X$:

- $(1) \ x * 0 = x,$
- (2) (x * y) * z = (x * z) * y,

Received October 2, 1996.

1991 Mathematics Subject Classification: 03G25, 06F35.

Key words and phrases: T-part, T-ideal.

^{*}Supported by the LG Yonam Foundation (1995).

- (3) $x \le y$ implies that $x * z \le y * z$ and $z * y \le z * x$,
- (4) $(x*z)*(y*z) \leq x*y$,
- (5) x*(x*(x*y)) = x*y,
- (6) 0 * (x * y) = (0 * x) * (0 * y).

A nonempty subset I of X is called an *ideal* of X if it satisfies

- (i) $0 \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

Any ideal I has the property: $y \in I$ and $x \leq y$ imply $x \in I$.

In general, an ideal I of X need not be a subalgebra. If I is also a subalgebra of X, we say that I is a *closed ideal*, equivalently, an ideal I is closed if and only if $0 * x \in I$ whenever $x \in I$.

J. Meng and X. L. Xin [3] systematically investigated the theory of atoms and branches of BCI-algebras. An element a of X is called an atom if, for all $x \in X$, x*a = 0 implies x = a, that is, a is a minimal element of (X, \leq) . Obviously, 0 is an atom of X. The sets $X_+ := \{x \in X | 0 \leq x\}$ and $L(X) := \{a \in X | a \text{ is an atom of } X\}$ are called BCK-part and p-semisimple part of X, respectively. We know that $(X_+, *, 0)$ is a BCK-algebra, and (L(X), *, 0) is a p-semisimple BCI-algebra. For any $a \in L(X)$, the set $V(a) := \{x \in X | a \leq x\}$ is called a branch of X. It is clear that $V(0) = X_+$.

2. T-parts and T-ideals

We begin with the following definition.

MAIN DEFINITION. Let X be a BCI-algebra. The set

$$T(X) := \{y \in X | y = (0*x)*x \text{ for some } x \in X\}$$

is called the T-part of X.

Clearly, $0 \in T(X)$.

THEOREM 2.1. Let X be a BCI-algebra. Then T(X) is a subalgebra of X.

The role of T(X) in the ideal theory of BCI-algebras

Proof. Let $a, b \in T(X)$. Then a = (0 * x) * x and b = (0 * y) * y for some $x, y \in X$. Thus

$$a * b = ((0 * x) * x) * ((0 * y) * y)$$

$$= ((0 * ((0 * y) * y)) * x) * x$$
 [by (2)]
$$= (((0 * (0 * y)) * (0 * y)) * x) * x$$
 [by (6)]
$$= (((0 * x) * (0 * y)) * (0 * y)) * x$$
 [by (2)]
$$= ((0 * (x * y)) * (0 * y)) * x$$
 [by (6)]
$$= ((0 * (0 * y)) * x) * (x * y)$$
 [by (2)]
$$= ((0 * x) * (0 * y)) * (x * y)$$
 [by (2)]
$$= (0 * (x * y)) * (x * y)$$
 [by (6)]

Hence $a * b \in T(X)$, which completes the proof.

LEMMA 2.2 (MENG AND XIN [3]). Let X be a BCI-algebra. If $a \in L(X)$, then $a * x \in L(X)$ for all $x \in X$.

THEOREM 2.3. If X is a BCI-algebra, then $T(X) \subseteq L(X)$.

Proof. Let $a \in T(X)$. Then a = (0*x)*x for some $x \in X$. It follows from (2), (5), (6) and Lemma 2.2 that

$$a = (0 * x) * x$$

$$= (0 * (0 * (0 * x))) * x$$

$$= (0 * x) * (0 * (0 * x))$$

$$= 0 * (x * (0 * x)) \in L(X).$$

Hence
$$T(X) \subseteq L(X)$$
.

Since L(X) is a p-semisimple BCI-algebra, by Theorems 2.1 and 2.3 and [1, Theorem 6] we have

COROLLARY 2.4. The T-part T(X) of X is an ideal of L(X).

In general, the T-part T(X) of a BCI-algebra X may not be an ideal of X as shown in the following example.

EXAMPLE 2.5. Consider a BCI-algebra $X := \{0, 1, 2, 3, 4, 5\}$ with Cayley table (Table 1) and Hasse diagram (Figure 1) as follows (see [2]):

*	0	1	2	3	4	5
0	0	0	3	2	3	3
1	1	0	3	2	3	3
2	2	2	0	3	0	0
3	3	3	2	0	2	2
4	4	2	1	3	0	1
5	5	2	1	3	1	0

Table 1

Figure 1

Then $T(X) = \{0, 2, 3\}$ (= L(X)) is not an ideal of X, since $4 * 3 = 3 \in T(X)$, but $4 \notin T(X)$.

Now we give equivalent conditions that T(X) is an ideal of a BCI-algebra X.

THEOREM 2.6. Let X be a BCI-algebra. The following are equivalent:

- (i) T(X) is an ideal of X.
- (ii) x * a = y * a implies x = y for all $x, y \in X_+$ and $a \in T(X)$.
- (iii) x * a = 0 * a implies x = 0 for all $x \in X_+$ and $a \in T(X)$.

Proof. (i) \Rightarrow (ii) Let T(X) be an ideal of X and assume x*a = y*a for all $x, y \in X_+$ and $a \in T(X)$. Then

$$(x*y)*a = (x*a)*y$$
 [by (2)]
= $(y*a)*y$ [by assumption]
= $(y*y)*a$ [by (2)]
= $0*a \in T(X)$. [by (III) and Theorem 2.1]

Since T(X) is an ideal of X, it follows that $x * y \in T(X)$. On the other hand, note that $x * y \in X_+$ and $X_+ \cap T(X) \subseteq X_+ \cap L(X) = \{0\}$. Thus we have x * y = 0 or $x \le y$. Similarly we get $y \le x$, and therefore x = y.

- (ii) \Rightarrow (iii) Since $0 \in X_+$, it is straightforward.
- (iii) \Rightarrow (i) Assume that (iii) holds. Let $s*t \in T(X)$ and $t \in T(X)$ for all $s,t \in X$. Denote u=0*(0*s). Then $u \in L(X)$. Since $u=0*(0*s) \leq s$, it follows from (3) that $u*t \leq s*t$, i.e., $s*t \in V(u*t)$, so that s*t=u*t, since $s*t \in T(X) \subseteq L(X)$. Hence

$$(s*u)*t = (s*t)*u$$

= $(u*t)*u$
= $(u*u)*t$
= $0*t$.

which implies from (iii) that s*(0*(0*s)) = s*u = 0, since $s*u \in X_+$. Therefore $s = 0*(0*s) \in L(X)$. As T(X) is an ideal of L(X), we get $s \in T(X)$, and T(X) is an ideal of X. This completes the proof. \square

X. H. Zhang [4] introduced the notion of T-ideals in BCI-algebras.

DEFINITION 2.7 (ZHANG [4]). A non-empty subset A of a BCI-algebra X is called a T-ideal of X if it satisfies:

- (i) $0 \in A$,
- (ii) $x * (y * z) \in A$ and $y \in A$ imply $x * z \in A$ for all $x, y, z \in X$.

Every T-ideal of a BCI-algebra is an ideal (see [4, Theorem 1]), but not converse. In fact, consider the BCI-algebra $X := \{0, 1, 2, 3, 4, 5\}$ as in Example 2.5. The set $A := \{0, 1\}$ is an ideal of X, but not a T-ideal of X, since $4 * (0 * 3) = 1 \in A$, but $4 * 3 = 3 \notin A$.

LEMMA 2.8 (Zhang [4]). If A is a T-ideal of a BCI-algebra X, then $(0*x)*x \in A$ for all $x \in A$.

By using the T-part of a BCI-algebra, we give an equivalent condition that every ideal is a T-ideal.

THEOREM 2.9. Let A be an ideal of a BCI-algebra X. Then A is a T-ideal if and only if $T(X) \subseteq A$.

Proof. Necessity follows from Lemma 2.8. Suppose $T(X) \subseteq A$. Let $x * (y * z) \in A$ and $y \in A$ for all $x, y, z \in X$. Since

$$\begin{aligned} &((x*z)*(x*(y*z)))*y\\ &\leq ((y*z)*z)*y & \text{[by (I) and (3)]}\\ &= ((y*y)*z)*z & \text{[by (2)]}\\ &= (0*z)*z \in T(X) \subseteq A, \end{aligned}$$

it follows that $x*z \in A$. Hence A is a T-ideal of X, ending the proof. \Box

COROLLARY 2.10. (Extension property for T-ideal) Let A and B be ideals of a BCI-algebra X. If $A \subseteq B$ and A is a T-ideal of X, then B is also a T-ideal of X.

References

- T. D. Lei and C. C. Xi, p-radical in BCI-algebras, Math. Japon. 30 (1985), 511-517.
- [2] J. Meng, Y. B. Jun and E. H. Roh, BCI-algebras of order 6, to appear in Math. Japon.
- [3] J. Meng and X. L. Xin, Characterizations of atoms in BCI-algebras, Math. Japon. 37 (1992), 359-361.
- [4] X. H. Zhang, T-ideal of a BCI-algebra, J. Hunan Educational Institute 12 (1994), 26-28.
- [5] X. H. Zhang and Z. Y. Zhang, T-type BCI-algebras, J. Xuzhou Teachers College 7 (1989), 16-21.

XIAOHONG ZHANG

DEPARTMENT OF MATHEMATICS, HANZHONG TEACHERS COLLEGE, HANZHONG, SHAANXI PROVINCE, P. R. CHINA

YOUNG BAE JUN

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail: ybjun@nongae.gsnu.ac.kr