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SOME GEOMETRIC SOLVABILITY THEOREMS
IN TOPOLOGICAL VECTOR SPACES

H. BEN-EL-MECHAIEKH, G. ISAC

1. Introduction

The aim of this paper is to present theorems on the existence of ze-
ros for mappings defined on convex subsets of topological vector spaces
with values in a vector space. In addition to natural assumptions of
continuity, convexity, and compactness, the mappings are subject to
some geometric conditions. In the first theorem, the mapping satisfies
a “Darboux-type” property expressed in terms of an auxiliary numer-
ical function. Typically, this function is, in this case, related to an
order structure on the target space. We derive an existence theorem
for “obtuse” quasiconvex mappings with values in an ordered vector
space. In the second theorem, we prove the existence of a “common
zero” for an arbitrary (not necessarily countable) family of mappings
satisfying a general “inwardness” condition again expressed in terms of
numerical functions (these numerical functions could be duality pair-
ings (more generally, bilinear forms)). Our inwardness condition en-
compasses classical inwardness conditions of Leray-Schauder, Altman,
or Bergman-Halpern types.

All topological spaces are assumed to be Hausdorff and vector spaces
are real.
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2. Obtuse Mappings

To start, let D be a set and let F be a topological vector space
ordered by a closed cone K (assume that K N (—K) = {0}) with dual
cone K'. Assume that K’ # 0; this happens e.g. when K is proper
and has nonempty interior (this follows from a theorem of Krein and
Rutman, see for instance Corollary 1.6.3 in Jameson [4]). Let s €
K’ be a bounded positive functional and define a real function B -
F x F — R by putting B(v,u) = k(v)k(u), (u.v) € F x F. Let
¢: D — K U(—K) be a mapping and assume that the disjoint sets
Dy ={z € D;¢(x) e K\{0}} and D_ = {z ¢ D; ¢(x) € —K\{0}} are
both non-empty. Then, any given point z € D is either a zero for ¢, or
1t satisfies the inequality:

(1) there exists y € D with B(¢(y), #(x)) < 0

Furthermore, assuming that D has a topological structure and that
Vv € ¢(D), the real function z —— B(v, ¢(z)) is upper semicontinuous
on D, then both sets D, and D_ are open in D. Under these conditions,
it is obvious that ¢ has a zero provided D is connected.

What happens for a general mapping B that is not necessarily related
to an order structure?

In the framework of topological vector spaces, an answer is based on
convexity and on the next definition motivated by the above discussion.

DEFINITION 2.1. Let D be a set, F a vector space, and B a real
function on F x F. A mapping ¢ : D — F is said to be B—obtuse at a
given point x € D if and only if the inequality (1) is satisfied whenever
#(x) # 0. The map ¢ is said to be B—obtuse on D if it is so at every
point of D.

EXAMPLE 2.2. Let D = [—1,1] and F = R. Consider the mapping
Y : R)|z,z € R0 € (0, 7), whose graph consists of the half-lines
forming the angle a = 7 — 20 ¢ (5,7).

Let

B(z,y) := cos((z,%(2)), (v, ¥(y)), 2,y € R.
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Note that B(z,z) > 0 for any ¢ € R. Let ¢ : D —— R be any mapping
such that ¢(z,) < 0 and ¢(z*) > 0 for some z,,z* € D. It is readily
seen that ¢ is B—obtuse on D.

THEOREM 2.3. Let X be a convex subset in a topological vector
space E,D be a line segment in X, F' be a vector space, B a real
function on F x F with B(u,u) > 0 forallu € F, and let ¢ : E — F
be a mapping satisfying the following hypotheses:

(i) for any v € ¢(D), z — B(v, ¢d(x)) is upper semicontinuous on
D;

(ii) Given any three points z,y1,y2 € D with B(¢(y:), ¢(z)) < 0,i =
1,2, we have:

B(g(ty + (1 — t)y2), ¢(z)) < 0,Vt & (0,1).
Then ¢ has a zero in D, i.e. a point z* € D with ¢(x*) = 0, if and
only if the restriction of ¢ to D is B—obtuse.

Proof. The necessity readily follows from Definition 2.1. We only
prove the sufficiency. Note first that D is compact and define a multi-
function ® : D — 2P by putting:

®(z) :=={y € D: B(¢(y), ¢(z)) <0}, z€ D.

Since ¢ is B--obtuse on D, it suffices to show the existence of * € D

with ®(z*) = 0 to conclude that ¢(z*) = 0.

Assume for a contradiction that ®(z) # @ for any ¢ € D, and de-

compose the set M := ®(D) as M = M; U M5 where
M = Uzep{®(z) : ®(z) is convex: and
My := Uzep{®(x) : ®(x) is not convex}.

We claim that the set M, is nonempty. Indeed, if Ms were empty,
then M = M, i.e. ® is convex-valued on D.

Moreover, the continuity assumption (i) implies that ®~!(y) is an
open subset of D for any y € D. By the Browder-Fan fixed point the-
orem (cf for instance [1]), it would have a fixed point z. € D, i.e.,
B(¢(zy), ¢(x.)) < 0 which contradicts the positivity of B. Hence, there
exists & € D such that ®(&) is nonconvex, i.e., there exist y1,y2 € ®(%)
and t € (0,1) with ty; + (1 — t)y2 ¢ ®(&). This contradicts assumption
(ii) and ends the proof. J
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REMARK. (1) Condition (i) is obviously verified when ¢ is contin-
uous and B is separately continuous. Condition (ii) is automatically
satisfied when for any u € ¢(D), the real function y — B(¢(y),u) is
quasiconvex.

(2) Clearly, one could very well replace the segment D by the whole
set X provided X is either compact or the additional following weaker
compactness condition holds:

there exist a compact subset K of X and a compact convex subset
C of X such that:

for any z € X \ K, there exists y € C' with
B(4(y), #(x)) <0 provided ¢(z) # 0.
(3) This theorem extends to multivalued ¢ in an obvious manner.

As an immediate consequence of Theorem 2.3, we obtain a solvability
theorem for a quasiconvex mapping with values in an ordered space. Let
us recall (see Jeyakumar et al. [5]) that given a convex subset X of a
vector space and a vector space F partially ordered by a cone K, a
mapping ¢ : X — F is said to be guasiconver on X if and only if:

for any y;,y2 € X and v € F,

dys) —v € —K,i=1,2= ¢(ty1 + (1 —t)y2) —v € —K, for t€[0,1].

Recall (see Martelloti and Salvadori [6]) that given a topological
space X and an order complete topological Riesz space F' with proper
cone K having nonempty interior int(K), a mapping ¢ : X — F is
said to be lower semicontinuous at xg € X if

for any € € int(K), there exists a neighborhcod Ug, of xg
with (¢(z) — ¢(zo) +€) € int(K) for all z € Uy,.

The mapping ¢ is said to be lower semicontinuous in X if it is so at

every point of X.

COROLLARY 2.4. Let X be a convex subset of a topological vector
space, F' be an order complete topological Riesz space F' with proper
cone K having nonempty interior,and let ¢ : X — F be a lower semi-
continuous quasiconvex mapping satisfying:

(i) for each x € X with ¢(z) # 0, there exists y € X such that
¢(z) — o(y) € K\{0}.

Assume that any one of the following conditions holds:
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(a) X is a line segment;

(b) X is compact;

(c) there exist a compact subset D of X and a compact convex C of
X such that:

for each x € X\D, there exists y € C with ¢(z) — ¢(y) € K \ {0}.

Then there exists z* € X such that ¢(z*) = 0.

Proof. Apply Theorem 2.3 (with Remark 2) with the function B(v,u) =
k(v—u),(v,u) € FxF, where kK € K is a bounded positive linear func-
tional, and note that the quasiconvexity of ¢ implies that of the real
function k¢ and that the lower semicontinuity of ¢ implies that of the
real function k¢ ((Proposition 2.7 in [6]). O

Another interesting consequence of Theorem 2.3 is the

COROLLARY 2.5. Let E be a topological vector space and B : E x
E — R be a mapping that is odd with respect to one argument and
satisfies B(u,u) > 0 foru € E\ {0}. Let X be a compact convex subset
of E and let f : X — X be a continuous mapping. Assume that f is
periodic on X (i.e. f%(x) = z) and that for any u € E, the function
x +— B(f(x) — z,u) is quasiconvex on X. Then f has a fixed point.

Proof. Note that the field ¢(z) = f(z) — = is B—obtuse on X and
apply Theorem 2.3. O

3. Inward mappings

A modification in Definition 2.1 leads to the following concept of
“inwardness”.

DEFINITION 3.1. Let X be a subset of a vector space E, F' a vector
space, B a real function on F' x E. A mapping ¢ : X — F'is said to
be B—inward at a point € X if and only if:

(2) there exists y € X with B(¢(z),z —y) < 0 whenever ¢(z) # 0.
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The mapping ¢ is said to be B— inward on X if it is so at every
point of X.

This concept is more general than the classical concept of ”weak
inwardness” of Bergman and Halpern [2]. The reader is refereed to
Park [7] for fixed point theorems for a large class of multifunctions
satisfying classical inwardness conditions.

PROPOSITION 3.2. Assume that E = F is a normed space (with
norm |.|), and that B(.,.) is a symmetric bilinear form which is contin-
uous and coercive. If ¢ is weakly inward at a point z € X, (i.e. ¢(x)
belongs to the contingent cone of Bouligand Tx(z) := {y € E : there
exist t, — 07 and v, — y such that for all n, z + t,v, € X} to X at
x), then ¢ is B—inward at z.

The converse is false.

Proof. Indeed, assume that ¢(z) € Tx(z), ¢(z) # 0, and that 0 <
ey/c/a < |¢(z)|, (where C > 0 is a constant with |B(u,v)| < Clu||v|
for all u,v € E, and a > 0 is a constant with B(w,u) > alu|? for all
u € E). Let N be a positive integer such that:

|p(x) — vy | < min{e,ev/c/a},vy € E;zny =2 +tyuy € X.
Clearly, 2B(¢(z),x — zn) = —2tnyB(¢(z),vn). By the choice of ¢,

we have:
Valg(z)|(Valp(z)] - eve) > 0,

hence,
Ce® < Ce® + alg(x)[* — veaelp(z)| < (Vald(z)| - Vee)? + alo(z) .
On the other hand, (v/a|¢(z)| — v/c€)? < ajvy|?, thus:
Ce® < af|¢p(@)® + |vn]?,
which implies that:
tn[Ce? — a(jp(z)” + [un[?)] < 0.
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Moreover,

all¢(@)® + [un[?] - 2B(¢(z), un) < B($(z), ¢(z)) + Blun, un)
— 2B(¢(z), un)
= B(¢(z) — un, p(z) — un)
< Clo(z) - un?
< Cé?

which implies that:
—2tn B(¢(z),vn) < tn[Ce® — a(|¢(2)* + o |*)] < 0.

Therefore, B(¢(z),z — xn) < 0 and (2) is thus satisfied with y = zy.
To see that the converse is not true, let X be the closed unit disk in

R? with boundary 8X and let 4 be the z — azis in R2. Let ¢ : X —

A C R? be a continuous function which values on 8X are given by:

—1 4 cos@, if 0<6<3n/4;

—4+46/m —sinf, if 3r/4 <6 <

4 —40/7 4 sin 8, if m<80<57/4;

~1+ cos 8, if bn/4 <0 < 2m.

¢(cos b, sinf) :=

We claim that ¢ is B—inward but not weakly inward on X (here
B(z,y) = (z,y) is the inner product in R2). Indeed, since X is
convex, for any x € 0X, the Bouligand cone coincides with the tan-
gent cone | J,.,1(X — z). Observe now that the tangent line to 8X
at the point (—v/2/2,v2/2) = (cos(3m/4),sin(37/4)) intersects A at
the point (—v/2,0) and that ¢(cos(37/4),sin(37/4)) = —1 — V2/2 lies
to the left of that tangent line. Thus ¢(37/4) ¢ Tx ((—v2/2,v/2/2))
(note that ¢ fails to be weakly inward on two symmetric arcs of 6X).
We claim however that ¢ is B—inward on 8X. To see this, first note
that for zo = (~1,0), ¢(xo) = ¢(m) = 0. Now observe that ¢p(8X) =
([-1-+v/2/2,0])x {0}. Hence, for any = € 8X with z # o and () # 0,
the angle between ¢(x) and (z — ) lies in the interval (7/2, 37/2) thus
(¢(x), x — z9) < 0 and (2) is satisfied. O
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REMARK. In view of this proposition, when E = F and since T (x) =
FE for every interior point = of X, it suffices to assume the condition of
B—inwardness only at boundary points of X.

This remark motivates the next proposition.

PROPOSITION 3.3. Assume that E = F, that B(.,.) = {.,.) is an
inner product on E, and that X is a closed disk with center at the
origin and radius R > 0 in E. If a mapping f : X — E satisifies any
one of the following boundary conditions:

(by) (Browder) for any x € 8X with | f(z)] > R, there exists z €
Ix(z) =z + U, 50 (X — ) such that |z — f(z)| < |z — f(z)|.

(b2) (Leray-Schauder) for any z € X with |f(z)| > R and any
A€ (0,1), z # Af(x).

(bs) |z — f(x)| # |f(z)| — R for each z € X with |f(x)| > R.

(bs) (Altman) for any x € 8X with | f(z)| > R, there exists a €
(1, 00) such that |f(z)|* — R* < |z — f(z)]*.

Then the field ¢ = f — i (where ¢ is the inclusion X — E) is
B—inward on X.

Proof. To see this, let x € 0X with |f(x)] > R be arbitrarily fixed
and assume that (by) is satisfied with z = x + a(y -- =) for some a > 0
and some y € X. Note that since z cannot coincide with z, then a # 0
and y # z. It follows that:

|z = f(z)| < |z— f(z)]
& laly—z) - é(@)] < |¢(z)]
= laly—z) - ¢@)* < |o(z)f?
< aly —z[* < 2(¢(z),y — )
= (p{z),z —y) < 0.

Assume now that (bs) holds.

If (¢(z),z) = 0, then (¢(x),z — Ré(z)/|#(z)|) = —R|¢(x)| < 0. If
(¢p(x),z) < 0 then y = 0 satisfies (2). If (¢(z),z) > 0, it follows from
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(be) that ¢(z) = f(z) — z # ax for any a € R. Hence,

(¢(z),z = R(z + ¢(z))/|z + ¢(2)])

[1/lz + ¢(z)|[{d(2), (lz + ¢(z)| — R)z - Ro(x))

[1/1z + ¢(@)|[-Rl¢(@)]* + (|z + ¢()] - R)(¢(), z)]
[1/1z + ¢(@)|[-Rl¢(x)]* + (Iz] + 1¢(z) — R)l(z)l=l]

= [R/|z + ¢(@)[][~|¢(x)* + |¢(x)[*]
= 0,

N

where the strict inequality above follows from the triangle strict in-
equality |z + ¢(z)| < |z| + |¢(x)| because = and ¢(x) are not colinear.
Condition (2) is thus satisfied with y = R(z + ¢(x))/|z + ¢(x)|.

If (bs) is satisfied then it holds:

(b3)’ |[f(z) —z| > |f(z)]— R for any z € 90X with |f(z)|> R.
A quick calculation shows that (2) holds with y = R(z + ¢())/|z +

¢(2)|.
If (bs) holds, since R/|f(z)| € (0,1), then:

f@) - ol @I = R

@rF 2 @R
R . R . (f@I-RP
@ > e T e
Consequently, (bz)’ is satisfied. O

We formulate now the second main theorem of this note. Its proof
is based on a generalization of the Browder-Fan fixed point theorem
to arbitrary families of multifunctions (Theorem 5.1 in [3]). Let I be
an arbitrary (possibly uncountable) set. Let {F;};c; and {F;}ic; be
two families of topological vector spaces. For each ¢ € I, let X; be
a nonempty subset of E;, let X := [[,c; Xy, lev m : [[;c; B0 — E;
be the ith-projection, and let B; : F; x B, — R,¢; : X — F; be
mappings. In this context, we will say that ¢; is B;—inward on X if
and only if:
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(3) for any x € 90X, there exists y; € X; such that
Bi(¢i(x), mi(z) — y;) < 0 whenever ¢;(z) # 0 in F.

THEOREM 3.4. Assume that for each i € I, the set X; is convex and
the mappings B; and ¢; satisfy the following properties:

(i) Bi(vi,0) > 0 for any v; € ¢;(X);

(ii) ¢; is B;—inward on X;

(i) for each y; € X;, the function x — B;(¢y(x), mi(x) — y;) is
upper semicontinuous on X;

(iv) for each v; € ¢;(X), the function B;(v;,.) is quasiconvex on X;:

Assume in addition that any one of the following compactness con-
ditions is satisfied.

(a) For each i € I, X; is compact.

(b) There is a compact subset K of X, for each i € I there is a
compact subset C; of X; such that: for each ¢ € X \ K, there exist
1 € I and Yi € C; with Bi(qS,-(:z:),m(z) — yz-) < 0.

Then, there exists x* € X such that ¢;(z*) =0 1n F; for alli € I.

Proof. Clearly, (a) = (b) with C; = X; and K =: (). Define a family
of multifunctions ®; : X — 2%: i € I, by putting:

Q;(z) = {yi € Xi: Bi(¢i(z), mi(z) — y3) < 0}z € X.

Note that in order to prove this theorem, it suffices to show, in view
of (ii) and (3), the existence of a common “maximal element” for the
family {®;}ic;, i.e. a point 2* € X with ®;(z*) = for all ¢ € I.

Now, conditions (iii) and (iv) imply that the multifunctions ®; have
open fibers and convex values. Moreover, hypothesis (i) implies that
forz € X and i € I,7;(z) ¢ ®;(x). All hypotheses of Theorem 5.1 in
(3] are thus satisfied. This implies the existence of & common maximal
element for the family {®,}ic;. O

REMARK. Assume for simplicity that I reduces to a singleton. Since
B—inwardness is equivalent to the non-solvability of an inequality, it

follows that the preceding theorem can be formulated as a nonlinear
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alternative between the solvability of an equation or the solvability of a
variational-type inequality. More precisely, under the above hypotheses,
one of the following statement holds:
(1) there exists z* € X with ¢(z*) =0, or
(2) there exists £ € X such that ¢(Z) # 0 and B(¢(z),Z—y) >0
for all y € X.

As a result, one may immediately derive (for suitable choices of the
mapping B) classical theorems on variational inequalities.

COROLLARY 3.5. Assume that E is a Banach space, and that B :
E x E — R is a symmetric continuous and coercive bilinear form.
Assume that X is a nonempty closed convex subset of E and that
¢ : X — FE is a weakly inward mapping on X.

If any one of the following conditions is satisfied:

(a) X is compact and ¢ is B—demicontinuous on X, i.e.:
Tn —x T = B(¢(xn),y) — B(é(z),y) for any y € E);
(b) ¢ is strongly continuous on X, i.e.:

T —x T = 8(zn) — $(z)),

and imsup,|_, o0 ze x B(6(2),z — yo) < 0 for some yo € X.
Then ¢ has a zero in X.

REMARK. Weak inwardness in the preceding corollary could be re-
placed by any one of the tangency conditions (b;)-(bs) of Example 8.

We end this note with a common fixed point theorem for families of
real functions. Let I be an arbitrary set. For each i € I, let [a;, b;] be
an interval in R, and let [a,b] = [];<,[ai, b;] be equipped with the order
relations:

T = (x;)ier < (< resp.) y = (Yi)ier © 2; < (< resp.) y; foralli e I.
Denote by ; the ith—projection of [a,b] onto [a;, b;].
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COROLLARY 3.6. Let f = (fi)ic; be a mapping from [a,b] into R/
satisfying the following conditions:

(i) for each i € I and y; € [a;,b;], the function z — (fi(z) —
7i(z))(m;i(x) — y;) is upper semicontinuous on [a, b];

(ii) a < f(a) and f(b) <b.

Then f has a fixed point.

Proof. We apply Theorem 3.4 with E; = R, X; = [a;,b;], X = [a, ],
¢i = fi—m, and Bi(i(x), mi(x) —yi) = ¢i(z)(mi(z) — i), € [a,b],y: €
lai, bs],¢ € I. By assumption (i), for each ¢ € I and y; € [a;, b;], the
function z +— B;(¢:(x), mi(x) — y:) is upper semicontinuous on [a, b].
By definition, for any x € [a, b], the function y; — B;(¢i(z), m:(z) —y;)
is linear hence quasiconvex on [a;, b;].

To see that condition (ii) of Theorem 3.4 is satisfied, for any given
i€ I, let x € [a,b] be such that f;(z) # m;(z). If z = a, assumption (ii)
implies that a; < f;(a). Choose any y; € (a;, min{f;(a),b;}), so that
(fi(a) —a:)(a; —y:) < 0. Similarily, if = b then f;{(b) < b;. Choose any
yi € (max{f;(b),a:},b:), so that (fi(b) —b;)(b; — y;) < 0. Finally, if a <
z < b, then choose any y; € (max{f;(z),a;},m(z)) provided f;(z) <
m;(x), or choose any y; € (m;(z), min{ f;(z),b;}) provided f;(z) > m;(z).
In both cases (f;(z) — m(z))(mi(z) — y;) < 0. This ends the proof. [

4. Concluding Remarks

The results presented above extend in a natural way to the mul-
tivalued case. Also, one could very well formulate similar theorems
based on classical fixed point theorems for multifunctions other than the
Browder-Fan fixed point theorem (e.g. the Fan-Glicksberg-Kakutani
fixed point theorem) or other classical coincidence properties.
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