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GAUSS SUMS FOR G(q)

IN-SOoKk LEE* AND KYUNG-HWAN PARkK*

1. Introduction

Let A be a nontrivial additive character of the finite field F, to C*
and let x be a multiplicative character of Fy to C*. For a reductive
group (or a finite group of Lie type) G defined over F, (see [1] and [2])
and its finite dimensional linear representation ¢ over Fy, we define the
Gauss sum G(G, ¢, A, x) as follows;

G(G, 6,0 x) = > _ x(det(d(g)) - Mtr(¢(9))-

geG

When G are various finite classical groups and ¢ are the natural
representations, the explicit expression for the above sum has been ob-
tained ([3]-[7]). In these cases, the above sum turned out to be polyno-
mials in ¢ with coefficients involving certain classical exponential sums
such as the Gauss sums, the Kloosterman sums and the hyperklooster-
man sums (See §.2 for the definitions.)

The main purpose of this paper is to find the explicit expression for
the above sum when G = Gz(g) is a simple group of exceptional type
and ¢ is its 7-dimensional faithful representation over F,.

THEOREM A. If ¢ is the 7-dimensional faithful representation of
G2(q) over Fy, then G(G2(q), ¢, A, x) is equal to

AMEMNG® + ¢ (¢ — D{A-1)(g+ 1) (@® +2) + A(-2)(¢° + g + 1)},
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where 11 1
EA) = — 4+ -+ ).
(A) Z /\(u+v+uv+u+v—+—uv)
u,vE]F;(
Comparing with the results for the finite classical groups, the sum
£()) appeared in the above theorem might be considered as an ezcep-
tional exponential sum. We can find an upperbound for £ (A) using the

Weil’s well-known result on the upperbound of the Kloosterman sum.

ProprosiTiON B. We have

EM=2/a(g—2)+q— 1.

In addition, we provide, in §.4, a very simple way to compute G (G, ¢,
X, A) for GLy(q) and SLy(q) with respect to their natural representa-
tions. (See [3] for the computation using the maximal parabolic sub-

groups.)

2. Notations and preliminaries

Let x and A be as before. The (classical) Gauss sum is denoted by

GO6A) = Y x(u)A(w),

ueFy

and the hyperklobsterman sum is denoted by

’CT(A;alw--?ar;b): Z A(alul‘*""'*'a"r'ur"i”bul—l""u‘;l),

x
up,...urEFG

for a;,...,a,,b€ Fy.

Let G be a reductive group (or a finite group of Lie type) defined over
the finite field F; with ¢ elements. We shall use the following notations:
® is the root system of G with a fixed positive(negative) system &+ (®7)
(resp.); H is a (split) maximal torus; B = B(®+) = HU is a Borel
subgroup with the unipotent radical U = (z.(t) | r € &%, t € F,);
W = N/H is the Weyl group; U, = (z.(t) | r € &+, w(r) € &, t €
Fg). (See [1] and [2] for the details.)

The results in this paper are based on the following well-known fact.
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Gauss sums for Gz(q)
LEMMA 1. (Bruhat decomposition) Every element x of G is written

uniquely in the form z = hun,v, where h € H, u € U, v € U,, and
Ny € N maps tow € W under the canonical map N — W.

The following elementary observations are also useful in the sequel.

LEMMA 2. We have

GG o 0N = 3 Ul 3 x(det(d(bn.))) - Atr(é(bna))).

weWw beB

Proof. This follows from Lemma 1 and the facts that det{¢(bn.,v))
det(@(vbny)), tr(@(bny,v)) = tr(¢(vbny)) and v € B, where b € B, w
W, v e U,.

Om il

LEMMA 3. For any a,b € Fy, b # 0, we have Ztqu Aa + bt) =
2_teF, A(t) = 0.

Proof. This is obvious. (Recall that X is nontrivial.) a

3. Gauss sums for Gs(q)

Let o and G be the simple roots of the root system ® of type Gg,
where 3 is a long root. Thus ®* = {a, 3, a+8, 2a+3, 3a+83, 3a+
26}.

The faithful 7-dimensional representation of Gz(g) over F, to be used
in this paper is slightly modified from that of {8, pp.399-400]. We shall
briefly describe our 7-dimensional representation.

We consider the Lie algebra g2(C) as a subalgebra of the orthogonal
Lie algebra b3(C) defined as in [1, 11.2.4]. Then the following vectors
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in b3(C) form a Chevalley basis of go(C):

€a = 2€p1 — €13 + €27 — €45
€3 = —e€32 + €s6
€a+3 = 2e51 — €12 — €37 + €4
€2a-+3 = 2e41 — €17 — €53 + €g2
€3a+8 = €43 — €67

€30+23 = €42 — €57

e_o = —2e31 + €16 — €54 + €72
€_3 = —€a3 + €g5
€—a-p3 = —2€21 + €15 + €64 — €73
€_2a-8 = —2e71 + €14 + €26 — €35

€_3a-8 = €34 — €76
€_3a0—-28 = €24 — €75
ho = [eaa e——a]
hs = les, -],
where {e;; | 1 < 4,5 < n} denotes the standard basis of gl,,(F,). For

r € ® and t € Fy, set z,(t) = exp(t - ade,). After renumbering the
indices (by the permutation (14)(5263) € S7), we obtain

To(t) = I+ t(2e34 — 45 + €67 — €12) — t2ess
za(t) = I +t(—ese + e23)

Tarp(t) = I+ t(2e24 + €13 — €46 — €57) — t2egq
Toa+8(t) = I +t(2e14 — €25 + €36 — e47) — t2e17
Z304+8(t) = I +t(e1s — e37)

Z3ar28(t) = I +t{e1s — e27)
T_o(t) =1+ t(—2e54 + €43 + €76 — €31) — tes3
z_p(t) =I+t(—ees + e32)

T_oq-p(t) =1 +t(—2e6q + €42 + €31 — €75) — t2€q2

308



Gauss sums for G2(q)

w_ga_g(t) =1+ t(—2e74 + e41 — €52 + 663) — t2e71
T_34-5(t) = I +t(es1 — er3)
(I}_3a_25(t) =171 -+ t(eel - 872)

Since the root system of type Go has trivial fundamental group,
G = (z.(t) | r € ®,t € Fy) is isomorphic to Gz(g) (see (2, p.26]). Hence
we obtained a faithful 7-dimensional representation ¢ : Go(q) — G.
Since we can identify Go(q) with G, we write ¢(g9) = g if g € G2(q),
for the simplicity.

As usual, we put

() = 2, () (—t V)2 (t),

ny = np(1)

and

wherer€e ® and t € ]F;‘.
Thus, we have

) 1 1 1
ha(t) = dlag(ta z,tz, ]-a t_2'$t; I)’
1 1
hﬁ(t) = dlag(l,t, Z, 1,t, ;, 1)

fort e Fy.
The Weyl group W = N/H of Gz(q) is the dihedral group Dg and

thus
3 .4 .5

2 2
W = {1, w,, w3, wy, w,, W, Wa, WaWsy, WaW

3 4 5
5 S Wally, Waly, Wawy},

where ny = nong and wq, wg, wy is the image of n,, ng, n, under

the canonical projection N — W, respectively.
We note that every element of U can be written uniquely as

To(t1)2p(t2)Tarp(t3)T2a+5(t4)T30+8(ts ) T3a+25(t6),
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for some ty,...,ts € Fq (see [1, Theorem 5.3.3]). Since Go(q) is a simply
connected group, we also note that every element of H is uniquely
expressed as

) v u? v u 1
ha(u)hg(v) —-d1ag(u,z,—v— L, -5 o E)’

for some u,v € FY. Thus every element of B = HU can be written
uniquely as

(*)  ha(u)hs(v)za(ti)zs(t2)Tats(t3)T20+5(t4) T30~ 5(ts) 230 +25(t6),

for some t1,...,t6 € Fg and u,v € ]F;‘.
We now prove Theorem A. We first observe that the generators z,.(t)
are unipotent matrices and hence have determinant 1. By Lemma 2, it

is enough to compute
=3 Atr(bna))
beB

for w € W, to prove Theorem A. We note that |U,| = ¢/, where
£(w) is the length of w € W.

Since U consists of upper-triangular unipotent matrices, tr(hu) =
tr(h) for all h € H and u € U. Therefore, we have

Gy =|U1 D Atr(hu))
he HuelU
= U] Y Atr(R))
heH
=q¢® ) /\(1+u+1+3+3+£+1)
o v v u v u?

= EA(DEN).

We next compute G(wo). Note that (ws) = 1. If we compute
tr(bn,) using (), then
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Therefore, by Lemma 3, we have

Glwa) = g 3 Altr(bw,)

beB
t tiv tsv
=¢-¢® Y M-1-—-——+25)
t,€F,
u,v€Fy
t 2
=¢®(q— 1)2A(=1)+¢® D A(=1+4=+( +—5)v)
t,u,veFy
=¢%(g — 1)?A(-1)
t
+¢% ) AM-1+= +( ZA1+ L
tuEFX t,u€Fy

UGIFq
=¢°(¢ — 1)’A(-1)
+q{Z M=1+s+(s+s*)w) - Z A—1+s)}

t,s€Fy t,s€Fy
'uequ

=¢%(g — 1)*X(-1)

+q(q—1{2/\ —1+4+s+(1+s)sv)- Z)\ -1+ s)}

s€FX seFy
'vequ

=¢%(g — 1)°A(—1) + ¢"(g — DA(=2) + ¢°(g — DA(-1).

Similarly, we have

1 tou  tou?
—g.g° o 2% 2%
Glwawy) =q-¢° Y A1 Smut o)
t2€F,
u,vEIF;<

=q"(g— DA(-1),
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g(waw,y)—q ¢ Z /\(1——( + — )ts+ -—+—)
te€F,
u,vEFX

= qg(q - 1)/\(—1)7

ts t2 tau?
Glwawi) =¢-¢* 3~ A-1-2 BY_ fsu

U v v
i3 E]Fq
‘Ll,,'UE]F:

= ¢*(g — 1)A(~=2) + (q7( — 1%+ 4" (- 1))A(-

tu tqv
2 4 4
Glwaws) =¢*-q tZEF A= v )
4
u,v€EFY

=0°(@~ DAM=2) + (¢*(g = 1)2 + ¢%(g — 1)A(-1),

1 v ()]
_ 4 — s 2. v
g(wawﬂ,) @ q Z 1+(u+u2)t +'u+u)
t5€lFy
u,vG]F;

=¢%(g - 1)A(-1)

G =e’-g 30 a-14 0 Ll

tg,t4€]F
u vG]FX

=¢°(g - 1)2\(-1).

We also have

2
Guw)= 3 a1ty av)

2
u (72
t1,t3,t4€F,
u,veF Y
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Gauss sums for G2{q)
and similarly we have
Gw?) = G(wt) = G(u) = 0.

Adding up the above 12 terms, we complete the proof of Theorem A.
Next, we prove Proposition B. First, we note that

1 1 1
E(N) = Z /\(u+v+uv+a+;+a)
u,'uE]F;(
k 1 u 1
= Y Mut=+k+—+7+7)
u,kE]F;(
= Z A(k+1)-,\((1+l)u+(1+k)il-)
k k "
u,ke€F]
1 1
=(@-DA-2)+ > Ak +2) KiXi 1+ 751+ k).

keFy —{—1}
For a,b € F}, it is well-known (the Weil’s theorem) that

IK1(A; a;0)| £ 24/9.

Thus,
€N S 2vq(g—2)+g—1

This proves Proposition B.

4. Gauss sums for GL,(q) and SL,(q)

In this section, let G = GL,(q) or SL,(q) and let ¢ be the natural
n-dimensional representation over F.

In this case, we may assume the followings: H is the set of diagonal
matrices in G; B is the set of upper-triangular matrices in G; U is
the set of unipotent matrices in B; W is isomorphic to the symmetric
group S, and generated by the matrices w;; = I — e;; — ej; + €5 — €54,
where 7 < j.
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LEMMA 4. Let b = (bj;) € B and 1 # w € W. Then some =+by,,
with k < I, appears on the diagonal fo bw.

Proof. Note that bw;;, with i < j is obtained by permuting (up to
signs) the i-th and the j-th column of b. Therefore, after a non-trivial
permutation (up to signs) of columns of b, we clearly have some by,
with k < [, on the diagonal. O

LEMMA 5. If1 # w, then

3" x(det(bw)) - (A(tr(bw)) = 0.

beB

Proof. Since det(W) = 1, the above sum equals

Y Obua) - x(ban)) - (Alenr) -+~ Alean)),

b=(b;;)EB

where bw = (ci;). But ¢;; = +by for some i and & < [ by Lemma 4.
Therefore, the above sum is equal to the product of Zbkzequ A(bx;) and
some other term, and hence equal to zero by Lemma 3.

Thus, we have

> x(det(g)) - Atr(g))

9EGLy(q)

= E x(det(d)) - A(tr(b)) (by Lemma 2 and Lemma 5)
be B

= Z x (det(hu)) - A(tr(hu))

heH,uelU
= U] Y x(det(h)) - Atr(R)) (det(u) = 1, tr(hu) = tr(h))

heH

=01 Y Odw) - x(un)) - (Awn) -+~ Aun))

X
Wy, :unqu

= q(;‘) -Gl A)"
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and, by the same arguement, we have O

Y Ate(g)

9€SL.(q)

= U] 3 Attz(n))
he H
=0l Y M) AMun—)A@p - upl)

X
Uy, yun—lqu

= g(;) . Kn—l()\; 1, Tty 1; 1)‘

This proves the following theorem.

THEOREM C. (See [3].) if ¢ is the natural n-dimensional represen-
tation, then

G(GL.(q), ¢ x, ) = ¢(3) - G(x, A)"

and .
G(SLn(q), $,x: A) = ¢(3) - Ky (N1, -+, 151).
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