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EXISTENCE THEOREMS OF AN OPERATOR-VALUED
FEYNMAN INTEGRAL AS AN £(L,,C;) THEORY

JAE MoOON AHN, KUN S00 CHANG,
JEONG GYo0 KM, JuNnG WON Ko AND KUN SIk Ryu

1. Introduction and Preliminaries

The existence of an operator-valued function space integral as an
operator on L,(R) (1 < p < 2) was established for certain functionals
which involved the Lebesgue measure [1,2,6,7]. Johnson and Lapidus
showed the existence of the integral as an operator on Lo(R) for certain
functionals which involved any Borel measures [5]. J. S. Chang and
Johnson proved the existence of the integral as an operator from L, (R)
to Co(R) for certain functionals involving some Borel measures [3]. K.
S. Chang and K. S. Ryu showed the existence of the integral as an
operator from L,(R) to L, (R) for certain functionals involving some
Borel measures [4].

In this paper, we prove the existence theorem for the integral as an
operator from L;(R) to Cp(R) for the functionals G(z) = exp( f(O,t)
6(s,z(s)))dn(s) and we express the integral as a simple generalized
Dyson series. Also we establish the generalized Dyson series for a func-
tional which involves a sequence of Borel measures and potentials.

Let R,C,C" and C* denote the set of all real numbers, all complex
numbers, all complex numbers with positive real part and all nonzero
complex numbers with nonnegative real part, respectively. Cp(R) will
denote the space of C-valued continuous functions on R which vanish
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at oo with the supremum norm. L, (R) is the space of Borel measur-
able, C-valued functions % on R such that |1| is integrable with respect
to the Lebesgue measure m on R with the norm |[¢|, = [ |¢|dm.
L(L1(R), Co(R)) will denote the space of bounded linear operators from
L1(R) to Co(R). Let M(0,t) denote the space of complex Borel mea-

sures 7 on the interval (0,¢) which satisfy the following conditions;
(1) If u is the continuous part of 7, the Radon-Nikodym derivative

%r—’:ll exists and is essentially bounded,where m is the Lebesgue
measure on (0, t).

(2) n= Z w;dr, + p, where p is the continuous part of 7 and és,
j=1
is the Dirac measure at 7; € (0,¢),0< 7 < --- < 7% < t and
w; €Cforj=1,2,--- k.
Let r € (2,00] and n € M(0,t). Let Ly,,([0,¢] x R) = Lir.y be the
space of all Borel measurable C-valued functions ¢ on [0,t] x R such
that

(L.1) 16 = { [neso dlnl(S)}%

,t

is finite. If § is in L,,., and 7 = p+ v is the Lebesgue decomposition, it
is not difficult to show that 6 € Li,.,, N Lq,.,.. Let n € M(0,t). A Borel
measurable C-valued function 6 on [0,] x R is said to belong to Loo1.s
if

(12 Bllct = [ 1605, Yoo (s}

0,

is finite. For A € Ct,y € L;(R) and a positive real number s, let

_Mu-—¢)?

(13)  (Caut)(6) = / pw exp (-2 ),

27rs

Then Cy /s is in L(L1(R), Co(R)) and ||Cy/,]| < (|A|/27s)? [7). And as
a function of X, Cy/, is analytic in C* and is weakly continuous in Cct
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Existence of operator-valued Feynman integral

[7]. Let € be in L, (R) and let My be the operator of multiplication from
Co(R) to L1 (R) given by Myyp = . Then My is in L{Co(R), L1(R))
and ||Mpg| < ||0ll1 [3]. It will be convenient to let 6(s) denote My, )
for 0 in Ly,.,. Let 0 <k <lbegivenand nin N. For 0 < s; <--- <
sn < t, we can easily check that

(1.4)
AtAsn"'LSQ (s1(s2 —-31)-'-(t—sn))—k dsy - dsy,

B tn-(n+1)k[r(1 _ k)]n—+—1
T T((n+1D)(1-k)

where I' is the gamma function.
As we continue, we will need to write

[wle(Tl’m(Tl)) i o wme(Tma w(Tm)) + 0(3’ x(s))]n
as a product of monomials. However, we will need more refined break-
down of the sum. It will be convenient to introduce a prime nota-
tion on sum like Zlq0+q1+"'+(hn—-k:n : this sum is to be over integers

90,4915 " sy Qm—k, where qo > O,QI > la yQm—k > 1 and g + -+
¢m—k = n. Using this notation, we have the following equality [3].

(1.5)
|

Z Z Z i
= / _
Got+ @1t tgm-k=n
o " qolaqr! - gm!

k=0 1<z1< - <zm_r<m

[wzx 0(T21’ x(’rzl))]ql o '[wzm—ka(sz—k ’ x(sz—k))!qm_k [0(3’ x(s))]% .

w;B(rs,2(73)) + 05, m(s))]

* 1

2. A simple Generalized Dyson Series

Let C[0,t] be the space of continuous functions on [0,¢] and the
Wiener space, Cg[0, t], will consist of those z in C[0, t] such that 2(0) =
0. Integration over Cy|0,t] will always be with respect to the Wiener
measure M.,.
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DEFINITION 1. Let F be a functional from C[0,¢] to C. Given
A>0,¥ € L1(R) and £ € R, let

@21)  (LFW)E) = / FO 32+ p(\ Fa(t) + €) dma (2).

Co[0,¢]

If I(F)¢ is in Co(R) as a function of ¢ and if the correspondence
Y — I\(F)y gives an element of £ = L(L;(R), Co(R)), we say that
the operator-valued function space integral I (F') exists. Next suppose
that there exists Ag(0 < Ao < 00) such that Iy(F) exists for all A
in (0, o) and further suppose that there exists an L-valued function
which is analytic in C}_ = {X € C|ReA > 0,|A| < Ao} and agree with
I\(F) on (0, Ag). Then this £-valued function is denoted by I$"(F) and
is called the operator-valued analytic Wiener integral of F' associated
with A. Finally, let ¢ be in R with 0 < |g| < XAg. Suppose there exists
an operator Jg™(F) in £ such that for every ¢ in L;(R), J2"(F)v is
the weak limit of I{"(F)y as A — —iq through (Cfo. Then JJ"(F) is
called the operator-valued Feynman integral of F associated with q.

LEMMA 1. Let € M(0,t) and 6 € Ly,.,,. Let

(2.2) F(y) = / 0l 4(9) dn(s)

’

for any y € C[0,t] for which the integral exists. Then, for every
A>0,F(A" %z +¢) is defined for m.,, x m-a.e. (,£) in Co[0,t] x R.

Proof. We first show that for every A > 0 and 1, x m - a.e. (z,§&),
(s, \"2x(s) + £) is defined. Let H, : (0,t) x Cp[0,2] x R — (0,) x R
be defined by Hy(s,,£) = (s, A\"2z(s) + £). Then 6 o Hj is certainly
Borel measurable. Let

N :={(s,v) € (0,t) x R|8(s,v) fails to be defined}

Since 6 € Ly, N is |n| x m-null by Fubini theorem. Let A > 0 be
given. Then it suffices to show that H;'(N) is |n| x m, X m-null.
Accordingly, we consider a (s, £)-section [Hy ' (N)]'):

(23)  [H'(I))@O = {z € Co[0,4]|(s, A Fz(s) +€) € N}
= {z € Col0,t]|z(s) € AF[N) — €]},
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where N := {u € R|(s,u) € N}. Now, since N is |n| x m-null, it
follows that the set A2 [N®) — ¢] is m-null (and so for |5| x m-a.e. it is

m-null). Hence, by the Fubini theorem, H; '(N) is || x m,, x m-null.
And so, for every A > 0 and m,, x m-a.e.(z, &),

(2.4)

/( N (/ e )+ &)k (a) ) d (e

< /(O,t)(rfm)%”“s’ Yadin(s)

Q(g}r){ /M s H16(s, )l s)+;r"5|w]|ue<fg, )||1}
( )%{ueuw

il (=)
Ot)

k 1
+ ZT;i lw;|10(7;, )||} < 00.

Step (1) results from (1.3). Since 7 € M(0,t) we obtain step (2). We
deduce step (3) directly from the Hélder’s inequality. Hence, by the
Fubini Theorem and (2.3), we have

es [ N ( /( I X Ha(a) ) dlnl(5)> dr(z)

< oo for nin M(0,t).

Thus, for m,, - a.e.z in Cy[0,t] and for all £ in R,

(26) [ I xEa() + 9l dinl(o)
(0,¢)

exists. Hence, for m,, x m-a.e.(z,€) in Cy[0,¢] x R,

F(A"%m +¢) = / (s, “%x(s) + &) dn(s)

(0,t)
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is defined. The lemma is proved. O

Througtout this section, let n € M (0,t) and 0 € Ly,.yy. Set
(2.7)

Fo(z) := < H(S,x(s))dn(s)> ,z€Cl0,t], n=0,1,2,---
0,8
Here, if n = 0, from the definition, we have I (Fp) = Cy/;.

THEOREM 1. (Finitely supported) Let n = Z w;é,, +p where d,, is
j=1
the Dirac measure at 7; € (0,t),0 <7 < --- <7y, <t and w; € C for
j =1,2,---,m. Suppose that 6(7;,-),j = 1,2,--- ,m, are essentially
bounded. Then the operators I$™(F,) and J3™(F,) exist for all A € C*
and all real q¢ # 0, respectively. Further for A € C*, ¢ € Li(R) and
£ eR,

(2.8)
(I3 (F)¥)(€)
dm—k

nlwdl ---wzr”y
—Z Z ZIQO'HIH- tIm—k=n Q- 1

21 < L 2m_ <M Im—k-

[ Z / e ((LooLyo--

J1+ Im—k+1=90 A;(l):jlw"'»jm—wrl
qo
o L)@ d % s,
q=
where
(2.9)
Z1, ®m—k
9031, Im—k+1
={(s1, " +5g5) €E (0, )]0 < 87 <+ < 55, <73y

< Sji+1 < < Sjittimek < Tzm-k
< Sjittimoktl < 77 < Sqo < t}
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and for (s1,- - ,8q,) € A;;’J'hz":]"’: ey anda € {0,1,--- ,m -k}
(2.10)
Lo = 9("—201)(;(Ol © C)\/(Sj1+..»+ja +1—Tzo) © B(Sjl'f'""f'ja'f‘l) ©

o g(sj1+"'+ja+1) ° C/\/(Tza+1 =5yt tiat)”

(It is convenient to let 8(7)? denote the operator of multiplication by
[0(7,-)]9, that is, 8(T)? = Mg(;.)e. We use the conventions 1o =
0, Tm+1 =t and 6(7p)% =1, where 1 is the inclusion map.)

For all real q # 0, (J3"(Fn)¥)(€) is given by the right hand side of
(2.8) with A = —iq. Finally we have for A € Ct,

(2.11) 5 (F)ll < Ba(N)
where
(2.12)
B.(A)
— () v () g -
raa - D) =ra - 5 b]wuw%|uvwmwu

v ij( o 1>‘——) (‘;l)u v

where l is a positive integer such that T'(1(1— %)) 1s the mim'mum value

of {I'(i(1 — ——))|z € N}, T is the Gamma function. 1 + % =1, and the
notation a V b means the maximum value of a and b. The inequality
(2.11) also holds for J3™(F,) with |A| replaced by |q]-

dlul r "
_ 5) ,

Proof. The proof of (2.8) is essentially same as that of Theorem 2.1
n [3]. Thus we will only show (2.12). Let A be in C* and ¢ € L;(R).
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Then
IR (F)loo

(1) i

n'lw IwZ"‘ x
= Z Z’%-Hh-l— “tm—r=n

k=0 1<z;< - <zm_x<m g1l mk!

O

. " Azl""*zm-—k
it +Iim—k+1=q0 90301 Ime—k 41

x

m—

490

[ne e Moo V 167, ||1] JHno sl

(t = sqo)) )2 d X |ul(s:)

"'qu‘| quzak
<||¢||1 Z > D laotart ot gmo=n Tt

k=0 1<z;< - <2zm_ r<m q "Gm- k
A #
(&) IT [1e e v ot | | 24
I e i % () [ > ..
Aggi—1 F1+FIm—k+1=90 A‘IO;jl""rjm—k+l

1
@ v
[81"'(7-21 _Sjl)(3j1+1 —Tzl)“'(t——s%) 7d > m(sz)jl

(3) |wd -'Iwg"‘”:
<||¢|lln'z > D laotarttampen =

k=0 1<2)1< <2y <M q

(%) fotmsat nﬁk [”9('%" Moo V [18(7s,, .)Hl]q,'

j=1
(o ) o1, | S

m—k (i . ' \14 L
[ Z H+1 (Tzz _7-21_1)]1 Grt1) [F(l B 7)]]l+1:| -
j =1

1+ Jm—k+1=q0 F[(Jl + 1)(1 - 7/‘]
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!
<||¢||1 nl)= Z > > lgotartotomoi=n q—,—.n“'*‘“‘“‘;

k=0 1<z <-<zm_r<m 0" Qm—k*

I)‘l —tm—zk 1 ___#.tl m—k+1 N
(&) wa-prEF L
J=

=

d ki1 mk
R | (LR I

| f iy 1-—) (W) e[ 2" - 577]"

st WK?’J) V(L/:D ][1?}2",” (1 ~ 0]
w5 - 51 (o0 4) (2)’

1
»

10l17: Tm

) ”+§|sz<||e(rj,-)||wv ||e(r,-,->||1)] .

Step (1) is obtained by (1.3). By the Hoélder’s inequality and “simplex
trick” [5], we obtain step (2). Step (3) follows from (1.4). Since 0 <
1—% <1,0< F(l(1—~—)) < 1, we obtain step (4). From equality (1.5),
we have step (5). The rest of the proof follows the proof of Theorem
2.1 [3]. Therefore, the theorem is proved. O

From Theorem 1 and dominated convergence theorem, we obtain the
following theorem. The function given in (2.13) is in a very important
class of functions in Quantum Mechanics.

THEOREM 2. (A simple generalized Dyson series)
m

Letn= Z w;0r; + p, where 6., is the Dirac measure at 7; € (0,t),0 <

i=1
m<- - <Tp <tandw; € Cforj=12---,m Suppose that
6(t;,-),7 = 1,2,--- ,m, are essentially bounded. Let G be defined on
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C[0,t] by
(2.13) G(z) = exp{/(0 ) 8(s,z(s)) dn(s) }

Then the operators I3"(G) and J3"(G) exist for all A € C* and all
non-zero real q, respectively. Further for A € Ct,

(2.14)
(IX*(G)¥)(E)
o m wl - wiph
n=0k=0 1<z1<--<zpm_r<m w =k
s ({notyo
. . Azl".“’z"‘.'k
J1+ - +im—k+1=90 9071+ Im—k+1

0 Lni)9)(€)d X w(s:)]

Finally, we have the following inequality ; for all A\ ¢ Ct

(2.15)
I3 (G

<[ (2) v () 0 i, - o=

n=0

PU-5)" 0= |3 sl 16005,) eV 107 )

j=1

mtl N7 /A 2
+<Z(Tj_Tj—l)1_T) (2_7r> ”0”17":“

=1

dlu|

dm

1
v 7"1 n
ra-—yl .
(1 2)}

(&.9)

For all non-zero real g, (J3"(G)v)(&) is given by the right hand side of
(2.14) with A = —iq. The inequality (2.15) also holds for J¢™(G) with
|A| replaced by |q|.
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3. The Generalized Dyson Series

Let 7, be in M (0,t) and n,, = py, + vy, be the compositions of 7, into

continuous part and discrete part for v = 1,2,--- ,m. We will write
h

Uy = pr;uérpm. Let 0, be in Ly,.,, such that ,(7p.., ) is essentially
p=1
bounded for p =1,2,--- ,h. Let

31)  Fy) = H/o ) dnu(s) for y in C[0,].

Let A consist of all functionals F(y) in (3.1) as well as F(z) = 1. Note
that for every A > 0, F(A~2z +¢) is defined for m,, x m - a.e. (z,£) in
Co[0,t] x R by Lemma 1.

Given k between 0 and m, [k : m] will denote the collection of all

subsets of size k of the set of integers {1,2,--- ,m}. If {a1, - ,ak} is
in [k : m], we shall always write
{ak+17"' ’am} = {1’27' v ,m} - {aiiv"' ;ak}'
Then
(3.2)
F(y)
m h
SII| [ eomton o)+ 3 s 7))
w=1 (0,¢) p=1

YT H[ G (5052 it ()

k=0{a1, ,ar}€lk:m] Pk+1, " ,Pm=1 u=1 (©.t)

[ H wpu:aueau(’rpu:auJy(Tpu:('u))]

m h m
= Z Z z L H wpu:aueau(Tpu:au ) y('rpu:au))]

k=0 {ay, o }E[k:m] Prt1, Pm=1u=k+1
k
|:/ H 0au(8u, y(su)) d X Ha (Su)]
0.6

327



J. M. Ahn, K. S. Chang, J. G. Kim, J. W. Ko and K. S. Ryu

We want to calculate the Wiener integral defining I (F). For this
purpose, we will need to order the time variables. We begin by ordering
the 7’'s that appear within a given term of the series in (3.3). For fixed
k,{ai, -+ ,ax} in [k : m] and px+1, - ,Pm, let o be a permutation of
{k+1,---,m} such that

(3.3) <

TPo(k+1) % (k+1) < TPo(k42): Aoty = " < TPo(m):®o(m)

(If the 7’s involved in (3.3) are distinct, the permutation ¢ is unique).

THEOREM 3. Let F' be defined by (3.1). Then operators I$™(F) and
J™(F) exist for X in C3, . = {A € C: ReX > 0,21t < |A|] < oo}.
Moreover, for all A in CJ, ¥ € L1(R) and £ € R,

27t 001

(3.4)
(I (F))(E)
h

DS

k=0 {ay,- ,ax}e[k:m] Pk+1, " Pm=1

> % (I )

PESK jit - tIim—k+1=k “u=k+1
0<i1, sdmrt1<k
k
<_/A ((Lk °re Lm)w)(f) d u>=<1 uaﬁ(u) (SP(U))> 3
where p ranges through the group Sy of the permutations of
{1,2,“' ,k} and

kijp,e :jm—k+1(p)

Bkijy,os jm—ntr (P)

= {(s1, - ,8%) € (0,)°]0 < $51) < *** < 5p(51) < Towiassri@ochsn)
<Spii+1) <0t < Sp(itiz) < Tpoeta)@othia)
< Spgitiz+1) < < Sp(ittim—i) < TPo(m) i (m)
L Sp(rtetimont1) < o0 < Spk) << t}.
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Also for (51, ,8k) € Akijy e jm_sy.(p) and n=k,--- ;m

(3.6)
L'n

=6

Qg (n) (Tpam)iaa(n)) ° CA/(Spm A ikt T TP (n) O (n))

© 90‘9(;‘; EREEE o A 3 (Sp(j1+-~+jn_k+1))
0 Ch/(s

Pl t Hin— g +2) " Spliy+ iy _p+1))

° 00‘p(1’1+~-+jn_k+2) (Sp(j1+"'+jn——k+2)) T
° C)‘/(sp(jl-!---'+jn_k+1)_39(11+"'+jn—k+1_1))
e 9%(1‘1+»--+jn_k+1> (Sp(jl+“'+jn—k+1))

o .
C)‘/(Tpa(n+1)=ﬂg(n+1) -39(11+"'+Jn_k+1))

Here, o is a permutation of {k+1,k+2,--- ,m} as defined in (3.3). In
addition, we adopt the conventions T, :au; = 0y Tpo(mi1):@o(misy =
and G(Tpa(k);aa(k)) = 1, the inclusion map on Cy(R). Further, we take
jo = 0; then, when n = k, it is reasonable to interpret jy+- -+ jn—x+1
as 1 and we also get jn_x = jo = 0. The s’ between two equal 7's are
omitted in (3.5). The series in (3.4) converges in the operator norm.

Further, for all A in C,, .
(3.7) ™ () < bn (),

where

k=0 {ay, - ,or}€kim] Pr+1, ,Pm=1

IT (wpuianllifba. (Tpuans lin)

u=k+1
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k

dlllf’ul ’,.lf |l, “
| JENEE = N [V NS SR |
u=1 et Jit+etim —kp1=k u=k+1

0<g1,+ Jm—k+15k

e

— T \jutl ,
[ P(l 2 ’ ™ (Tpu:au - Tpu—l:au—l)ju_(ju+l)%] }
F[(]u + 1)(1 - ?)]

For all real q with |g| > 2mt, (J3™(F)¥)(£) is given by the right hand
side of (3.6) with A = —iq and the inequality of (3.7) also holds for
J™(F') with |A| replaced by |q|.

Proof. Once we have the norm estimates, the rest of the proof pro-
ceeds similarly to the proof of Theorem 2.1 in [3].
For A € (C'{,,t,oo,zp € Li(R),

5™ (F)¢lloo

(1) & h A

oy yox (2

k:O{al,...,ak}e[k:m]pk+1,...,pmzlpeSk j1+"'+jm——k+1:k
0<1, v jm-k+15k

m k
/ ( H |'wp,,(u):a4,(u) l) H ”Hap(u) (sp(u)’ )“1
Dkijy dmps1(P)

u=k+1 u=1

m+1
2

—1
[Sp(l)(sp(2) _sp(l)) e (Tpa(k+1)10a(k+1) _Sp(jl)) o (t_sﬂ(m))] 2
m

k
H ||00a<u)(TPo<u)=aa(u>’ ')“1“"/’H1du>=<1 |N0p(u)|(3p(u))
u=k+1

™m h mt
@ AN 2
=15 SN0 SHND SR (<)
k=0 {o1,,ar}[kim] Prt1, - sPm=1

H (pra(u):aa(u) ,Hgaa(u) (Tpa(u):aa(u)’ .)”1)
u=k+1
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Existence of operator-valued Feynman integral

(/0 H 18c,, (Su, s duil Iuaul(su)>%

A% a1

[k! / [s1(s2 — 81)---
J1+- +.7m k+1=k Ak,

m—k+1
0<d1, -\ Jm—k+15k

1
.k o
(Tpa(k+1):aa(k+1) —55,) - (t— $m)] 72 du)=<1 |Nau|(3u))]

m h g%f_l_
w3 )9 (%)

k=0 {al,--- ak}e[km] Pk+1, Pm=1

H ([wpy:au 10y (Tpyiaus 1) H 0. h1ripsa, (k')_lr

u=k-+1
/ (51052 — 1)
A .

[Jl‘l" Fim—kt1=k ¥ ORI Ime kg

0<.71$ e ,]m k+1<k

ok 7
S O I BN N [Ch]

ey ¥ 5 (5)

k=0{a;, - ,ar}e[k:m] Prt1, Pm=1

m+tl
2

1T (wpeaullba, (Tpuaus )
u=k+1
k d| l 1 m
ll‘au —
(ueauum,,au o )(kl)—r{. > 11
u=1 o0 Jit - tim—k+1=k u=k+1

OSjl"" v.',""m—k-{—lsk

( —_. )ju_(ju""l)%,' "
pa(u) Qg (u) Po(u—-1)"AXr(u-1) °

[ r(— __)Ju+1
F[(]u+1)(1 ]

. b 2 .
For Ain C3.,, |Cr/sy 45, | < (ErTs‘TLs_z)) (%81) (2“2) , we obtain
step (1). Step (2) follows from the Holder’s inequality and “simple
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trick” [3]. Step (3) is obtained by (1.1) and step (4) is obtained by
(1.4). 0
From Theorem 3, directly we have the following Theorem 4.

THEOREM 4. (Generalized Dyson Series) Let {F,,} be a sequence of
functionals such that

(38) Faw) =[] /( , O (5,9()) (9

for y in C[0, t] where 1, o, is in M(0,t) and 4, , is in L1y, . (Note that
if m,, = 0, we take F,, = 1.) For a discrete point T of 1, ,,, we assume
that 6, ,(7,-) are essentially bounded for all u and n. Let Ag > 2mt.

Suppose that Y by(|A]) < oo for X in C_, , . Then for A € (2mt, \o)
27t, Ao

n=0

and £ € R, Z Fn(/\_%x + &) converges absolutely for a.e. x € Cyp0,t].

n=0
Let
(3.9) F(y)=Y_ Fa(y).
n=0

Then the operators I$™(F) and J;"(F) exist for all A € (C;rt’ a, and all
real q with 2wt < |q| < A, respectively. Further for X € C;rt)\o

(3.10) IMF) =Y I8 (F)
n=0

and

(3.11) JEUE) = I (F),
n=0



Existence of operator-valued Feynman integral

where F,, is the functional defined in (3.8). Moreover, for X in C;’,rt, Ao?
the series in (3.10) and (3.11) satisfy

(3.12) I (P < D ba(1A)
n=0

and

(3.13) Ig(F) <Y ballgl)
n=0

and both of them converge in the operator norm.

(1]
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