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A SCATTERING PROBLEM IN A
NONHOMOGENEOUS MEDIUM

I. ETHEM ANAR

ABSTRACT. In this article, a scattering problem in a nonhomoge-
neous medium is formulated as an integral equation which contains
boundary and volume integrals. The integral equation is solved for
suffciently small ||1 — p||, |k? — k2|| and ||Vp|| where k, k; and p the
wave numbers and the density respectively.

1. Introduction

The reduced wave equation related to the time harmonic acoustic
waves has been investigated by many authors (see e.g., [3], [4], [5], [8],
[9], [10], {11}). The main results have been given by Werner [10-11] for
the reduced wave equation in a non-homogeneous medium. Colton and
Wendland [4] have considered the exterior Neumann problem for the
reduced wave equation connected with the scattering of acoustic waves
in a spherically symmetric medium. They have used the constructive
methods to prove the existence of the solution.

The mathematical problem we are about to consider is the scattering
of waves in a nonhomogeneous medium. We will assume that, the wave
number k;(x) and the density p;(z) are comlex valued functions in the
domain B;. In R"\Bi, the wave number k£ and the density pg will be
comlex numbers. If we consider scattering of an acoustic wave, the
wave number and the density will be real parameters.

In this paper, we consider a scattering problem in a nonhomogeneous
medium. The problem is formulated as an integral equation which con-
tains boundary and volume integrals. Also, the compactness of the
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integral operators is investigated. The integral equation in solved di-
rectly as Neumann series and the convergence of the Neumann series is
proven for suffciently small ||1 — p||, ||kZ — k2| and ||vp]|.

2. Statement of the problem

Let S be a closed, simply connected, strictly convex Lyapunov sur-
face in R™ satisfying the two-sided cone condition at each pont. Let B,
and B; be the exterior and interior domains of S respectively. We also
assume that the wave number k and the density pg are constant in B.,.
However, the wave number, k; and the density p; will be assumed to
be functions at position in B;;

k; = k’l(l'), x € B;
pi =pi(x), TEB;

such that k; € C(B;) and p; € C*(B;).

The problem we consider is that of finding the total field u(z) =
u*(z) + u®(z) in R™ when an incident field u* is given. The solution of
the scattering problem is to find a function v € C2(R™\S)NC*(S) such
that

(2.1) u(z) = u'(z) + u’(2),
(2.2) (V2 +E)u’(z) =0 ze€ B,
23) [V 4K @)]ulz) = ﬁv,oi(x) .Yu(z) z€ B
9 ] 1.8 —(n-1)/2
(2.4) e (z) —iku®(z) = 0(r )
uniformly in all directions,
ut(z) = u (x)
(2.5) zes 1out@ _ 1 du(x)
po Ov T pi(z) Ov
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under the conditions;

I.(k)>0
(2.6) Lo (kpk?) >0
Im(kp) 2 0
where,
pi(z)’ & Oz}

u’ is a given function, the space part of the incident wave, satisfying
(2.8) (V2 +E2ui(z) =0, zeR"

and u® is the space part of the scattered wave.

u(@): = zeBhglmesu(w)
- D= li .
u (CL‘) xGB,'II—iIJ:GSu(m)

+ - . o e . . .
—aa“—y and % will have similar interpretations for the exterior normal

derivatives; r = |z| and §/0r indicates the derivative in the outward
radial direction. Note that B; may be the union of more than one
disjoint domains.

The scattering problem defined by equations (2.1) - (2.5) has a
unique solution (see Anar and Celebi [2]) under the conditions (2.6)

3. Integral representation

THEOREM 3.1. Let

i k 232 L .
1 T,y k)= —-( ——— H, (klz —yl),n > 2
61 Guwy b =—g(gm—y) T H ke —y)n >
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be the unmodzﬁed free sapce Green’s function for (V2 + k*)u = 0 in
R™ where H 2) /2 is the Hankel function of the first kind of order
(n—2)/2.

If u is the solution of the scattering problem (2.1) - (2.5) then u has

the integral representation for x € R"™;
(3.2)

u(z) =u'(z) + /{[1 — p(@)]ulz) — 1 — p(y)]u( y)}___.w
S

Uy

ds(y)
+ / - p(y)]u(y)z,%{cn(w, 4,0) = G, y, k))ds(y)

/ () — ¥10(y)Cn(z, v, Ku(y)

+ Vp(y) : VyGn(ZC, Y, k)u(y)}dy
where

I'(n2) 1
(2 —n)27n/2 |z — y|n—2

(3.3) Gn(z,y,0) =

Proof. We know in [2]

an(a:) = — lim / ;;G’n(z7 Y, O)dS(y),
Y

€—0
8B, (z)NB.
(3.4) -1, if z€B.
= ~%, if ze 8
0, if z¢B;

where B (z) = {y : | — y| < €}, and 8B.(z) is the boundary of B,(z).
In [2] we have the integral relation for the problem (2.1) - (2.5) is
that

(3.5)
- T u+
(e +an(eute) = [ [ur )X T 6, o 0 P asy)

S
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Since on Su™ = v~ and %“,—; = p%‘i} the equation (3.5) takes the form:

W)+ an(au) = [11- sl )2 D)

v [ o) w2 B 6o 2 D)
S

(3.6)

Now, apply Green’s theorem to B; and using the relations

60t [ e 22 asy) = 1+ an@)le(au(z)
9B, () Y
and
(38) tim [ p)Ga(e v k) oL ) = 0
8B, (z) Y

we obtain
(3.9) i

/ p(y) [U“ (y)g%i’:}’—@ - Gn(z,y, k)aiguiy—)]dsw)

S

= [1 + an(z)]p()u(z)

+ / {3 (y) — K’lp(v)Gn(z, y, k) + Vp(y) - VyGnlz,y, k) }u(y)dy.

Substitute (3.9) in (3.6) we have
u'(2) + an(z)u(z)
/[1— ) 2Dy
(3.10)
+ [1 + an(z)]p( {HOE Gn(z,y, k)
o
+ Vp(y) - VyGnlz,y, k) bu(y)dy
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Since
(3.11) / %on@ 5.0 o) =1+ an(e)
Oy

S

the integral equation (3.10) takes the form:

(3.12)
o) = o)+ [l - p@lute) - 1 - put) 222D
N

+ / 1- p(y)}u(y)a%[cnm, 4,0) — Gnl(z, y, k))ds(y)
S

- / {[k2(v) = k*1o()Gn (2, y, k) + Voly) - V,Gn(z, y, k) Yu(y)dy

4. The integral operators

We introduce the following integral operators;

%) ~ o) 3 0Gy(z,y,0)
) (L) / {1 p(a)u(e) - 1 p(y)]u(y)}———ayy ds(y)
) (L)@ / 1~ )W) 7 [Ga(@,4, 0 ~ G, 3, E)ds(y)

(43) (Lau)(z) := / k2 — K2(4)]p(y) G (2, 9, K)u(y)dy,

B;

(4.4) (Law)(z) = - / Vo(y) - VyGn(z, g, K)uly)dy.

B;

Hence, if u is the solution of the problem (2.1) - (2.5), then u has the
operator equation representation

(4.5) u=1u'+ L,
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where
(4.6) Ly= L1+ Lo+ Lz + Ly)u.
We will use the following direct method to solve the equation
(I - L)u = '

This will lead to the Neumann series

O

Z L™y,

m=0

For this it is suffcient to prove that

L,
IIL|| := sup ILu <1
C(B;) [l
where the norm defined by,
[lu]l := sup |u(z)|.
B;

We now collect some basic results for the operator L defined by (4.6).

(a) The Operator L,; We first examine the continuity,
(4.7)
[(Lru)(z) ~ (Lau)(z1)]

o
= 1 — p()ju(z) -1 — u —{Gn(z,y,0) — Gn(z1,¥,0
IS/[{[ (@) = 1~ P} 5 ~(Gn(2,9,0) = Gn(a1,11,0)

{01 = p@u(z) ~ (1 ple)Juten)) 5 G, 1,0)| (o)
< [ {1 = p@))u@) - 11 = o) u)}] 5 (G (z,,0) ~ G, 1,01 ds(v)
5 v

+ 11 = p(@)u(z) = [1 - p(x1)]u(z1)|[1 + an(z1)]

We decompose S into a protion lying within a ball of radius § and
center z,

D@ ={yeS:|z—yl <o

é
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and the remainder S\ ) ;(z). So that

|(Law)(z) = (Lyw)(z1)]

8 L L+ - p(@)ule) - [ - plen)ulen)|[L + an(zy)]
where
L= / 11— p(@)]u(z) — [1 — p(y)]u(w)|
(4‘9) Zé(w)a
X 8—yy[Gn(x,y,O)] — Gn(z1,9,0)]|ds(y)
and
I = / 11— p(@)]u(z) — [1 — p(v)]uy)]
(4.10) S\ 25‘;)
[y (G (2,9.0) = Guler,1,0)]|ds)
L< swp |- p@u) - (1 - o))
YEY 5(X)
(4.11)

X/ [G T, Y, ) Gn(mlayvo)]\ds(y)
(%) 3”y

Since ) () is a portion of the Lyapunov segment or any finite combi-
nation of such segment then (see Mikhlin [7] and, Ahner and Kleinman
[1]) there exists a constant C; such that,

(4.12) L <G Esgp( ) 11 = p(@)]u(z) — [1 - p(y)]u(y)|.

It is clear that (since u and p are continuous on S) there is some constant
C5 such that

(4.13) I < Cg/ 8 —[Gn(z,y,0) — Gpn(z1,y,0)]|ds(y)
S\ sy TPy
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Since y € S\ ) ; then |z —y| > 4. With the additional restriction
that for any 6; < § such that |z — z1| < §; < § the following expansion
(Lebedev [6]) is valid for all z; € 3"4(z) and y € S\ 3_4()

f-nf L 5-c Gz
414 ( )
(4.14) m 3 Z Tz =y O\ T2 Ty al

where P; are the Legendre polynomials. The series (4.14) is uniformly
and absolutely convergent. It follows form (4.14) that

o2l -z Y-z
4.15 ( )
(4.15) |1 —yl Im—yl Z o -y N\ 2y —z| |y -2

Now consider the integrant in the inequality (4.13),

l.a%y[an(x, ¥,0) — Gn(z1,9, 0)]|

e 9
=|(——W8V (]m—1|n 2 —lyI"*Q)‘

We can write
(4.16)
1

1 1 1 1 1
—m o = (e - ) P (= )
|z — y] lz1 — y| e~y =z -y |z —y|’ |z — y]

where

n-3
(417)  Fullz—yl e -y =D e -y e -y
=0
Hence
LN S——
Oy \|z —y["=2 |z —y|*2
2.z -z ™
(4.18) = Fo(lz —y|™ 21 — 9™ Z ——-—lm—ﬂfm(w,xl,y)

[ ] e

Y
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where (see Ahner and Kleinman [1])
(4.19)
fm(@,21,y) = = (m + 1)Dy (2 — y) P (1)

+ [0y (@ — 1) = (7 — )@ — 21) (T = 9)] P (1)

and

Ti—2 y-—zx
4.20 _ . _
(420) 4 e —al Tyl
So

1 1
’E;(yxl -y |z —yl"—z)'
X I

(4.21) < |Fau(le =y |2y -yt Z' (SmQI | fom]

+ ] Z Ix(;nilllm (ﬂ)H'aTyFn(lw-—yl“l’ o1 —yI™)].

We have that estimates,

(4.22) |Fo(lz =y o -y 7Yl < @Tng—ljz,;—g
o 1 )(n—3
(4.23) ’8—1/;Fn(|w YTz -yl 1)' =76 _55‘)?2)

Hence we have,

By lw—lw n e
5, )

(4.24) <Go 51)n 3 Z |‘”5mﬁ12’ | fonl
3 T —z|™
+ ((6 51nn 2) Z | 5m+1‘ | P (1)
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Assuming |z — z1| < 1. Then for 0 < a < 1 and z # z; choosing

§= |z — 2|33 > |z — aq

then
(4.25) de——m?zl—— = |z —z1|%z - x1|(m—x)(a+2)/3
and
(426 Bl o[l — o 285,
Hence the inequality (2.24) takes the form;

o (5 —3))|

Oy \|Jz —y[*~2  |z1 —y|"—2

n -2 b a (m—1)(a+2)/3

(427) = @ o) 2 Z |z — z1|%|x — x4 | fm

T ((5—5(n”23_) D fr =l Fle - | R )

Finally we have inequality,

(4.28)
— (r—1)(ax+2)/3
12303{(n—2)|$—$1|°‘ / Zlfm = $61| s ds
S\ Y 5= y "
_ (2m—14+am)/3
+(n—2)(n ~ 3)|x — z[*/3 / Z me(ﬂ)||1 ?(;l._él)n—z ds}
S\ 3 s(z) ™

Since |z —x1| < 1, the integrals of the power series in (4.28) are bounded
and hence there are some constants C4 and Cs such that

(4.29) I < Cale — z1[* + Cslz — z,|*/3.
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Utilizing the results (4.12) and (4.29) in (4.8) it follows that

[(L1u)(2) = (Liu)(2z1)] S C1 sup |1 - p()]ulz) — [1 - P(W)]u(y)|
UGZ5 (=)

+ Calz — 1|* + Cs |z — ,|*/3

+[L = p(@)u(z) ~ [1 - p(z1)]u(z1)[[1 + an(z1)].
The right-hand side may be made arbitrarily small by making |z — z; l,
small enough, provided u and p are continuous at z.

(4.30)

The above analysis yields the following theroem.
'THEOREM 4.1. If § is a piecewise Lyapunov surface then
(4.31) Ly:C(8)— C(9)

where C(S) is the space of continuous functions on S.
Moreover, if u, p, € C(S) then

(4.32) 1 = p()]u(z) = [1 - p(y)]u(y)]
is continuous for y € S. Vx,y € S we have
(4.33) I[1 = p(@)u(@) — [1 = p(w)]u)| < 2|1 - p|||lul.
Hence
u = pllllu ———aGn(x’ ¥,0) s(y).
@39) (L)) <201 - plful S/ |2 sty
Also,
0Gn(z,y,0) I'(3) 1
[t tan =& [ oo
S S
(2 1
(4.35) < 2753/)2 / T;WdS(y)
2 (x)
<1

where 3 (z) is the sphere radius a and center z which contains S. So
that

(4.36) [(L1u)(z) < 2|11 - pl||lu]|

and we have the lemma :
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LEMMA 4.1. Let S be a closed, simply connected, strictly convex

Lyapunov surface, then
(4.37) [ Laull < 2|1 = pl|||u].
(b) The Operator L, :

(4.38)

Now examine the operator Lo in defined by

(L2)(z) := / [1- p(y)]U(y)Ea;Gn(x, y,0)ds(y)

Y

S
- [ put) - G, B)ds(a).
)

Y

So,

(Law)(@) <1 - plul / [ 3-Goe .0 as)

(4.39)

I =l [ |56, ] asto)

Also we have in [2] this estimate

(4.40) ‘B%Gn(m,y, k)’ < B——amx £y
Hence we obtain
(4.41) -
(rae < =l | - el )
+ 111~ ol / o)
(4.42)

(%) 1
<||1—pnuu||{2n/2 | eormtwee [ s (y)}

a(z) a{z)

<11 = Allllli(1 + Cwn),
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where "
w — Ir'(3)
" wan/2
Hence we have the lemma.
LEMMA 4.2.
(4.43) [ L2ull <11 = plflull(1 + Cwn,).

It is obvious that Ly is weakly singular then Lo is a compact operator
on C(S) (see Colton and Kress [3]).
(c) The Operators L3 and Ly :
Anar and Celebi (2] have proved Ls and L4 are compact operators
on C(B;) that is
L3,L4 : C(Bz) - C(B,)

It is easy to see that estimates ;

|(Lau)(z ' / — K} (W)]p(y)Gn(z, y, k)u(y)dy
< k2 = k2{| ol ] / FE=t
(4.44)
< (K2 — K[l / / Mdsl(f)2dlx—yl
0 3. (z)

M
< ||k? - kzllllﬂllllUH;Gan
where M is some constant. Also

(La)(@) = |~ [ 90) - 9, Gl Byu)dy

B;

< v plljul / 19, Gz, y, K)ldy.
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Since [2]

C2
4.45 VyGn(z,y, k)| < iy
( ) ' Yy ( )I ]CL‘ . yln_l
then we have
(4.46) [(Lau)(@)| < (| VpllllullawnCs.

Hence we have the lenma :

LEMMA 4.3.
I Lsull < Cu1llkZ — K2||[|pll | ul]

and
| Lau|| < Cs||Ap]||lul|

Hence we have the estimate,

(4.47) IZull < [C1llk = K2[llell + C2lL — pl + Cs]| vl ull-

Hence, for any 8o > 0 it is always possible to choose [|k2 —k2||,||1—p|
and ||Vp|| small enough

1} é )

2 2 0 0 0
.q.,||kf — —_— 1 — — —_—

(0.9. I = Bl < g 1~ ol < 52 and |9p]) < 5%)

so that

(4.48) | Ll < dollul-

Choosing 6¢ < 1, we have

(4.49) ILI = sup

This conclusion permit us to establish the main result.

THEOREM 4.2. If S is Lyapunov (not piecewise Lyapunov) the ||L||
< 1 for sufficiently small ||1 — p||, |k — k?|| and ||vp].
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