A SCATTERING PROBLEM IN A NONHOMOGENEOUS MEDIUM

I. ETHEM ANAR

ABSTRACT. In this article, a scattering problem in a nonhomogeneous medium is formulated as an integral equation which contains boundary and volume integrals. The integral equation is solved for sufficiently small $\|1-\rho\|, \|k_i^2-k^2\|$ and $\|\nabla\rho\|$ where k,k_i and ρ the wave numbers and the density respectively.

1. Introduction

The reduced wave equation related to the time harmonic acoustic waves has been investigated by many authors (see e.g., [3], [4], [5], [8], [9], [10], [11]). The main results have been given by Werner [10-11] for the reduced wave equation in a non-homogeneous medium. Colton and Wendland [4] have considered the exterior Neumann problem for the reduced wave equation connected with the scattering of acoustic waves in a spherically symmetric medium. They have used the constructive methods to prove the existence of the solution.

The mathematical problem we are about to consider is the scattering of waves in a nonhomogeneous medium. We will assume that, the wave number $k_i(x)$ and the density $\rho_i(x)$ are comlex valued functions in the domain B_i . In $\mathbb{R}^n \setminus \bar{B}_i$, the wave number k and the density ρ_0 will be comlex numbers. If we consider scattering of an acoustic wave, the wave number and the density will be real parameters.

In this paper, we consider a scattering problem in a nonhomogeneous medium. The problem is formulated as an integral equation which contains boundary and volume integrals. Also, the compactness of the

Received November 21, 1994.

¹⁹⁹¹ Mathematics Subject Classification: 35R30, 35J05, 35P25, 76Q05.

Key words and phrases: Scattering problem, acoustic waves, integral equation.

I. Ethem ANAR

integral operators is investigated. The integral equation in solved directly as Neumann series and the convergence of the Neumann series is proven for suffciently small $||1 - \rho||$, $||k_i^2 - k^2||$ and $||\nabla \rho||$.

2. Statement of the problem

Let S be a closed, simply connected, strictly convex Lyapunov surface in \mathbb{R}^n satisfying the two-sided cone condition at each pont. Let B_e and B_i be the exterior and interior domains of S respectively. We also assume that the wave number k and the density ρ_0 are constant in B_e . However, the wave number, k_i and the density ρ_i will be assumed to be functions at position in B_i ;

$$k_i = k_i(x),$$
 $x \in B_i$
 $\rho_i = \rho_i(x),$ $x \in B_i$

such that $k_i \in C(\bar{B}_i)$ and $\rho_i \in C^1(\bar{B}_i)$.

The problem we consider is that of finding the total field $u(x) = u^i(x) + u^s(x)$ in \mathbb{R}^n when an incident field u^i is given. The solution of the scattering problem is to find a function $u \in C^2(\mathbb{R}^n \setminus S) \cap C^1(S)$ such that

(2.1)
$$u(x) = u^{i}(x) + u^{s}(x),$$

(2.2)
$$(\nabla^2 + k_i^2)u^s(x) = 0 \quad x \in B_e$$

$$(2.3) [\nabla^2 + k_i^2(x)]u(x) = \frac{1}{\rho_i(x)} \nabla \rho_i(x) \cdot \nabla u(x) \quad x \in B_i$$

(2.4)
$$\frac{\partial}{\partial r}u^{s}(x) - iku^{s}(x) = 0(r^{-(n-1)/2})$$

uniformly in all directions,

(2.5)
$$x \in S \begin{cases} u^{+}(x) = u^{-}(x) \\ \frac{1}{\rho_{0}} \frac{\partial u^{+}(x)}{\partial \nu} = \frac{1}{\rho_{i}(x)} \frac{\partial u^{-}(x)}{\partial \nu} \end{cases}$$

under the conditions:

(2.6)
$$I_m(k) \ge 0$$

$$I_m(\bar{k}\rho k_i^2) \ge 0$$

$$I_m(k\bar{\rho}) \ge 0$$

where,

(2.7)
$$\rho(x) = \frac{\rho_0}{\rho_i(x)}, \quad \nabla^2 u = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}.$$

 u^i is a given function, the space part of the incident wave, satisfying

(2.8)
$$(\nabla^2 + k^2)u^i(x) = 0, \quad x \in \mathbb{R}^n$$

and u^s is the space part of the scattered wave.

$$u^+(x) := \lim_{x \in B_e \to x \in S} u(x)$$

 $u^-(x) := \lim_{x \in B_i \to x \in S} u(x).$

 $\frac{\partial u^+}{\partial \nu}$ and $\frac{\partial u^-}{\partial \nu}$ will have similar interpretations for the exterior normal derivatives; r=|x| and $\partial/\partial r$ indicates the derivative in the outward radial direction. Note that B_i may be the union of more than one disjoint domains.

The scattering problem defined by equations (2.1) - (2.5) has a unique solution (see Anar and Celebi [2]) under the conditions (2.6)

3. Integral representation

THEOREM 3.1. Let

(3.1)
$$G_n(x,y,k) = -\frac{i}{4} \left(\frac{k}{2\pi |x-y|} \right)^{\frac{n-2}{2}} H_{\frac{n-2}{2}}^{(1)}(k|x-y|), n > 2$$

be the unmodified free sapce Green's function for $(\nabla^2 + k^2)u = 0$ in \mathbb{R}^n where $H_{(n-2)/2}^{(1)}$ is the Hankel function of the first kind of order (n-2)/2.

If u is the solution of the scattering problem (2.1) - (2.5) then u has the integral representation for $x \in \mathbb{R}^n$; (3.2)

$$egin{aligned} u(x) = &u^i(x) + \int\limits_S \{[1-
ho(x)]u(x) - [1-
ho(y)]u(y)\} rac{\partial G_n(x,y,0)}{\partial
u_y} ds(y) \ &+ \int\limits_S [1-
ho(y)]u(y) rac{\partial}{\partial
u_y} [G_n(x,y,0) - G_n(x,y,k)] ds(y) \ &- \int\limits_{B_i} \{[k_i^2(y) - k^2]
ho(y)G_n(x,y,k)u(y) \ &+
abla
ho(y) \cdot
abla_u G_n(x,y,k)u(y)\} dy \end{aligned}$$

where

(3.3)
$$G_n(x,y,0) = \frac{\Gamma(n2)}{(2-n)2\pi^{n/2}} \frac{1}{|x-y|^{n-2}}$$

Proof. We know in [2]

(3.4)
$$\alpha_n(x) = -\lim_{\epsilon \to 0} \int_{\partial B_{\epsilon}(x) \cap B_{\epsilon}} \frac{\partial}{\partial \nu_y} G_n(x, y, 0) ds(y),$$

$$= \begin{cases} -1, & \text{if } x \in B_{\epsilon} \\ -\frac{1}{2}, & \text{if } x \in S \\ 0, & \text{if } x \in B_{i} \end{cases}$$

where $B_{\epsilon}(x) = \{y : |x - y| < \epsilon\}$, and $\partial B_{\epsilon}(x)$ is the boundary of $B_{\epsilon}(x)$. In [2] we have the integral relation for the problem (2.1) - (2.5) is that

(3.5)

$$u^i(x) + \alpha_n(x)u(x) = \int\limits_S \Big[u^+(y) \frac{\partial G_n(x,y,k)}{\partial \nu_y} - G_n(x,y,k) \frac{\partial u^+(y)}{\partial \nu_y} \Big] ds(y).$$

Since on $Su^+ = u^-$ and $\frac{\partial u^+}{\partial \nu} = \rho \frac{\partial u^-}{\partial \nu}$ the equation (3.5) takes the form:

(3.6)
$$u^{i}(x) + \alpha_{n}(x)u(x) = \int_{S} [1 - \rho(y)]u^{-}(y) \frac{\partial G_{n}(x, y, k)}{\partial \nu_{y}} ds(y) + \int_{S} \rho(y) \left[u^{-}(y) \frac{\partial G_{n}(x, y, k)}{\partial \nu_{y}} - G_{n}(x, y, k) \frac{\partial u^{-}(y)}{\partial \nu_{y}} \right] ds(y).$$

Now, apply Green's theorem to B_i and using the relations

(3.7)
$$\lim_{\epsilon \to 0} \int_{\partial B_{\epsilon}(x)} \rho(y) u(y) \frac{\partial G_{n}(x, y, k)}{\partial \nu_{y}} ds(y) = [1 + \alpha_{n}(x)] \rho(x) u(x)$$

and

(3.8)
$$\lim_{\epsilon \to 0} \int_{\partial B_{\epsilon}(x)} \rho(y) G_{n}(x, y, k) \frac{\partial u(y)}{\partial \nu_{y}} ds(y) = 0$$

we obtain

$$(3.9) \int_{S} \rho(y) \left[u^{-}(y) \frac{\partial G_{n}(x,y,k)}{\partial \nu_{y}} - G_{n}(x,y,k) \frac{\partial u^{-}(y)}{\partial \nu_{y}} \right] ds(y)$$

$$= \left[1 + \alpha_{n}(x) \right] \rho(x) u(x)$$

$$+ \int_{B_{i}} \left\{ \left[k_{i}^{2}(y) - k^{2} \right] \rho(y) G_{n}(x,y,k) + \nabla \rho(y) \cdot \nabla_{y} G_{n}(x,y,k) \right\} u(y) dy.$$

Substitute (3.9) in (3.6) we have

$$u^{i}(x) + \alpha_{n}(x)u(x)$$

$$= \int_{S} [1 - \rho(y)u^{-}(y)\frac{\partial G_{n}(x, y, k)}{\partial \nu_{y}}ds(y)$$

$$+ [1 + \alpha_{n}(x)]\rho(x)u(x) + \int_{B_{i}} \{[k_{i}^{2}(y) - k^{2}]\rho(y)G_{n}(x, y, k)$$

$$+ \nabla \rho(y) \cdot \nabla_{y}G_{n}(x, y, k)\}u(y)dy.$$

Since

(3.11)
$$\int_{S} \frac{\partial G_n(x, y, 0)}{\partial \nu_y} ds(y) = 1 + \alpha_n(x)$$

the integral equation (3.10) takes the form: (3.12)

$$\begin{split} u(x) &= u^{i}(x) + \int_{S} \{[1 - \rho(x)]u(x) - [1 - \rho(y)]u(y)]\} \frac{\partial G_{n}(x, y, 0)}{\partial \nu_{y}} ds(y) \\ &+ \int_{S} [1 - \rho(y)]u(y) \frac{\partial}{\partial \nu_{y}} [G_{n}(x, y, 0) - G_{n}(x, y, k)] ds(y) \\ &- \int_{B_{i}} \{[k_{i}^{2}(y) - k^{2}]\rho(y)G_{n}(x, y, k) + \nabla \rho(y) \cdot \nabla_{y} G_{n}(x, y, k)\}u(y) dy. \end{split}$$

4. The integral operators

We introduce the following integral operators;

$$(4.1) (L_1 u)(x) := \int_{S} \{ [1 - \rho(x)] u(x) - [1 - \rho(y)] u(y) \} \frac{\partial G_n(x, y, 0)}{\partial \nu_y} ds(y)$$

$$(4.2) (L_2 u)(x) := \int_{S} [1 - \rho(y)] u(y) \frac{\partial}{\partial \nu_y} [G_n(x, y, 0 - G_n(x, y, k)] ds(y)$$

$$(4.3) (L_3 u)(x) := \int_{S} [k^2 - k_i^2(y)] \rho(y) G_n(x, y, k) u(y) dy,$$

$$(4.4) (L_4u)(x) := -\int\limits_{B_1} \nabla \rho(y) \cdot \nabla_y G_n(x,y,k) u(y) dy.$$

Hence, if u is the solution of the problem (2.1) - (2.5), then u has the operator equation representation

$$(4.5) u = u^i + L_u$$

where

$$(4.6) L_u = (L_1 + L_2 + L_3 + L_4)u.$$

We will use the following direct method to solve the equation

$$(I-L)u=u^i.$$

This will lead to the Neumann series

$$\sum_{m=0}^{\infty} L^m u^i.$$

For this it is suffcient to prove that

$$||L|| := \sup_{C(\bar{B}_i)} \frac{||L_u||}{||u||} < 1$$

where the norm defined by,

$$||u|| := \sup_{\bar{B}_i} |u(x)|.$$

We now collect some basic results for the operator L defined by (4.6). (a) The Operator L_1 ; We first examine the continuity,

(4.7)

$$\begin{split} &|(L_{1}u)(x)-(L_{1}u)(x_{1})|\\ &=|\int_{S}\left[\left\{[1-\rho(x)]u(x)-[1-\rho(y)]u(y)\right\}\frac{\partial}{\partial\nu_{y}}[G_{n}(x,y,0)-G_{n}(x_{1},y,0)]\right]\\ &+\left\{[1-\rho(x)]u(x)-[1-\rho(x_{1})]u(x_{1})\right\}\frac{\partial}{\partial\nu_{y}}G_{n}(x_{1},y,0)\left]ds(y)\right|\\ &\leq\int_{S}\left|\left\{[1-\rho(x)]u(x)-[1-\rho(y)]u(y)\right\}\right|\left|\frac{\partial}{\partial\nu_{y}}[G_{n}(x,y,0)-G_{n}(x_{1},y,0)]\right|ds(y)\\ &+|[1-\rho(x)]u(x)-[1-\rho(x_{1})]u(x_{1})|[1+\alpha_{n}(x_{1})] \end{split}$$

We decompose S into a protion lying within a ball of radius δ and center x,

$$\sum_{\delta}(x) = \{y \in S : |x - y| < \delta\}$$

and the remainder $S \setminus \sum_{\delta} (x)$. So that

$$(4.8) \qquad \frac{|(L_1u)(x) - (L_1u)(x_1)|}{\leq I_1 + I_2 + |[1 - \rho(x)]u(x) - [1 - \rho(x_1)]u(x_1)|[1 + \alpha_n(x_1)],}$$

where

(4.9)
$$I_{1} = \int_{\sum_{\delta}(x)} |[1 - \rho(x)]u(x) - [1 - \rho(y)]u(y)| \times \left| \frac{\partial}{\partial \nu_{y}} [G_{n}(x, y, 0)] - G_{n}(x_{1}, y, 0)] \right| ds(y)$$

and

(4.10)
$$I_2 = \int_{S \setminus \sum_{\delta}(x)} |[1 - \rho(x)]u(x) - [1 - \rho(y)]u(y)| \times \left| \frac{\partial}{\partial \nu_y} [G_n(x, y, 0) - G_n(x_1, y, 0)] \right| ds(y).$$

$$(4.11) I_1 \leq \sup_{y \in \sum_{\delta}(X)} \left| [1 - \rho(x)] u(x) - [1 - \rho(y)] u(y) \right|$$

$$\times \int_{\sum_{\delta}(X)} \left| \frac{\partial}{\partial \nu_y} [G_n(x, y, 0) - G_n(x_1, y, 0)] \right| ds(y).$$

Since $\sum_{\delta}(x)$ is a portion of the Lyapunov segment or any finite combination of such segment then (see Mikhlin [7] and, Ahner and Kleinman [1]) there exists a constant C_1 such that,

$$(4.12) I_1 \leq C_1 \sup_{y \in \sum_{\delta}(x)} |[1 - \rho(x)]u(x) - [1 - \rho(y)]u(y)|.$$

It is clear that (since u and ρ are continuous on S) there is some constant C_2 such that

$$(4.13) I_2 \leq C_2 \int_{S \setminus \Sigma_{n+1}} \left| \frac{\partial}{\partial \nu_y} [G_n(x,y,0) - G_n(x_1,y,0)] \right| ds(y).$$

Since $y \in S \setminus \sum_{\delta}$ then $|x - y| \ge \delta$. With the additional restriction that for any $\delta_1 < \delta$ such that $|x - x_1| < \delta_1 < \delta$ the following expansion (Lebedev [6]) is valid for all $x_1 \in \sum_{\delta}(x)$ and $y \in S \setminus \sum_{\delta}(x)$

(4.14)
$$\frac{1}{|x_1 - y|} = \sum_{i=0}^{\infty} \frac{|x - x_1|^j}{|x - y|^{j+1}} P_j \left(\frac{\widehat{x_1 - x}}{|x_1 - x|} \cdot \frac{\widehat{y - x}}{|y - x|} \right),$$

where P_j are the Legendre polynomials. The series (4.14) is uniformly and absolutely convergent. It follows form (4.14) that

$$(4.15) \quad \frac{1}{|x_1 - y|} - \frac{1}{|x - y|} = \sum_{j=1}^{\infty} \frac{|x - x_1|^j}{|x - y|^{j+1}} P_j \Big(\widehat{\frac{x_1 - x}{|x_1 - x|}} \cdot \widehat{\frac{y - x}{|y - x|}} \Big).$$

Now consider the integrant in the inequality (4.13),

$$\left| \frac{\partial}{\partial \nu_y} [G_n(x, y, 0) - G_n(x_1, y, 0)] \right|$$

$$= \left| \frac{\Gamma(\frac{n}{2})}{(2 - n)2\pi^{n/2}} \frac{\partial}{\partial \nu_y} \left(\frac{1}{|x - y|^{n-2}} - \frac{1}{|x_1 - y|^{n-2}} \right) \right|$$

We can write

$$\frac{1}{|x-y|^{n-2}} - \frac{1}{|x_1-y|^{n-2}} = \left(\frac{1}{|x-y|} - \frac{1}{|x_1-y|}\right) F_n\left(\frac{1}{|x-y|}, \frac{1}{|x_1-y|}\right)$$

where

(4.17)
$$F_n(|x-y|^{-1},|x_1-y|^{-1}) = \sum_{i=0}^{n-3} |x-y|^{3-n+i} |x_1-y|^{-i}.$$

Hence

$$\frac{\partial}{\partial \nu_{y}} \left(\frac{1}{|x-y|^{n-2}} - \frac{1}{|x_{1}-y|^{n-2}} \right)
= F_{n}(|x-y|^{-1}, |x_{1}-y|^{-1}) \sum_{m=1}^{\infty} \frac{|x-x_{1}|^{m}}{|x-y|^{m+2}} f_{m}(x, x_{1}, y)
+ \left[\sum_{m=1}^{\infty} \frac{|x-x_{1}|^{m}}{|x-y|^{m+1}} P_{m}(\mu) \right] \frac{\partial}{\partial \nu_{y}} F_{n}(|x-y|^{-1}, |x_{1}-y|^{-1})$$

where (see Ahner and Kleinman [1]) (4.19)

$$f_m(x, x_1, y) = -(m+1)\hat{\nu}_y(\widehat{x-y})P_m(\mu) + [\hat{\nu}_y \cdot (\widehat{x-x_1}) - \hat{\nu}_y(\widehat{x-y})(\widehat{x-y})(\widehat{x-y})]P_m(\mu)$$

and

(4.20)
$$\mu = \frac{\widehat{x_1 - x}}{|x_1 - x|} \cdot \frac{y - x}{|y - x|}.$$

So

$$\left| \frac{\partial}{\partial \nu_{y}} \left(\frac{1}{|x_{1} - y|^{n-2}} - \frac{1}{|x_{1} - y|^{n-2}} \right) \right|$$

$$\leq |F_{n}(|x - y|^{-1}, |x_{1} - y|^{-1}) \sum_{m=1}^{\infty} \frac{|x - x_{1}|^{m}}{\delta^{m+2}} |f_{m}|$$

$$+ \left| \sum_{m=1}^{\infty} \frac{|x - x_{1}|^{m}}{\delta^{m+1}} P_{m}(\mu) \right| \left| \frac{\partial}{\partial \nu_{y}} F_{n}(|x - y|^{-1}, |x_{1} - y|^{-1}) \right|.$$

We have that estimates,

$$(4.22) |F_n(|x-y|^{-1}, |x_1-y|^{-1})| \le \frac{n-2}{(\delta-\delta_1)^{n-3}}$$

$$\left| \frac{\partial}{\partial \nu_y} F_n(|x-y|^{-1}, |x_1-y|^{-1}) \right| \le \frac{(n-2)(n-3)}{(\delta - \delta_1)^{n-2}}.$$

Hence we have,

$$\left| \frac{\partial}{\partial \nu_{y}} \left(\frac{1}{|x - y|^{n-2}} - \frac{1}{|x_{1} - y|^{n-2}} \right) \right| \\
\leq \frac{n - 2}{(\delta - \delta_{1})^{n-3}} \sum_{m=1}^{\infty} \frac{|x - x_{1}|^{m}}{\delta^{m+2}} |f_{m}| \\
+ \frac{(n - 2)(n - 3)}{(\delta - \delta_{1})^{n-2}} \sum_{m=1}^{\infty} \frac{|x - x_{1}|^{m}}{\delta^{m+1}} |P_{m}(\mu)|.$$

Assuming $|x - x_1| < 1$. Then for $0 < \alpha < 1$ and $x \neq x_1$ choosing

$$\delta = |x - x_1|^{(1-\alpha)/3} > |x - x_1|$$

 $_{
m then}$

(4.25)
$$\frac{|x-x_1|^m}{\delta^{m+2}} = |x-x_1|^\alpha |x-x_1|^{(m-1)(\alpha+2)/3}$$

and

(4.26)
$$\frac{|x-x_1|^m}{\delta^{m+1}} = |x-x_1|^{\alpha/3} |x-x_1|^{\frac{2m-1+\alpha m}{3}}.$$

Hence the inequality (2.24) takes the form;

$$\left| \frac{\partial}{\partial \nu_{y}} \left(\frac{1}{|x-y|^{n-2}} - \frac{1}{|x_{1}-y|^{n-2}} \right) \right|$$

$$(4.27) \qquad \leq \frac{n-2}{(\delta - \delta_{1})^{(n-3)}} \sum_{m=1}^{\infty} |x-x_{1}|^{\alpha} |x-x_{1}|^{(m-1)(\alpha+2)/3} |f_{m}|$$

$$+ \frac{(n-2)(n-3)}{(\delta - \delta_{1})^{n-2}} \sum_{m=1}^{\infty} |x-x_{1}|^{\frac{\alpha}{3}} |x-x_{1}|^{\frac{(2m-1+\alpha m)}{3}} |P_{m}(\mu)|$$

Finally we have inequality, (4.28)

$$\begin{split} I_2 &\leq C_3 \left\{ (n-2)|x-x_1|^{\alpha} \int\limits_{S \setminus \sum_{\delta}(x)} \sum_{m=1}^{\infty} |f_m| \frac{|x-x_1|^{(m-1)(\alpha+2)/3}}{(\delta-\delta_1)^{n-3}} ds \right. \\ &+ (n-2)(n-3)|x-x_1|^{\alpha/3} \int\limits_{S \setminus \sum_{\delta}(x)} \sum_{m=1}^{\infty} |P_m(\mu)| \frac{|x-x_1|^{(2m-1+\alpha m)/3}}{(\delta-\delta_1)^{n-2}} ds \right\} \end{split}$$

Since $|x-x_1| < 1$, the integrals of the power series in (4.28) are bounded and hence there are some constants C_4 and C_5 such that

$$(4.29) I_2 \le C_4 |x - x_1|^{\alpha} + C_5 |x - x_1|^{\alpha/3}.$$

Utilizing the results (4.12) and (4.29) in (4.8) it follows that

$$(4.30) |(L_1u)(x) - (L_1u)(x_1)| \le C_1 \sup_{y \in \sum_{\delta}(x)} |[1 - \rho(x)]u(x) - [1 - \rho(y)]u(y)| + C_4|x - x_1|^{\alpha} + C_5|x - x_1|^{\alpha/3} + |[1 - \rho(x)]u(x) - [1 - \rho(x_1)]u(x_1)|[1 + \alpha_n(x_1)].$$

The right-hand side may be made arbitrarily small by making $|x-x_1|$, small enough, provided u and ρ are continuous at x.

The above analysis yields the following theroem.

THEOREM 4.1. If S is a piecewise Lyapunov surface then

$$(4.31) L_1:C(S)\to C(S)$$

where C(S) is the space of continuous functions on S.

Moreover, if $u, \rho \in C(S)$ then

(4.32)
$$|[1-\rho(x)]u(x)-[1-\rho(y)]u(y)|$$

is continuous for $y \in S$. $\forall x, y \in S$ we have

$$(4.33) |[1 - \rho(x)]u(x) - [1 - \rho(y)]u(y)| \le 2||1 - \rho|||u||.$$

Hence

$$(4.34) |(L_1 u)(x) \le 2||1 - \rho|| ||u|| \int_{S} \left| \frac{\partial G_n(x, y, 0)}{\partial \nu_y} \right| ds(y).$$

Also,

$$\int_{S} \left| \frac{\partial G_n(x, y, 0)}{\partial \nu_y} ds(y) \right| = \frac{\Gamma(\frac{n}{2})}{2\pi^{n/2}} \int_{S} \frac{1}{|x - y|^{n-1}} ds(y)$$

$$\leq \frac{\Gamma(\frac{n}{2})}{2\pi^{n/2}} \int_{\Sigma_a(x)} \frac{1}{|x - y|^{n-1}} ds(y)$$

$$\leq 1$$

where $\sum_{a}(x)$ is the sphere radius a and center x which contains S. So that

$$(4.36) |(L_1 u)(x) \le 2||1 - \rho|||u||$$

and we have the lemma:

Lemma 4.1. Let S be a closed, simply connected, strictly convex Lyapunov surface, then

$$||L_1 u|| \le 2||1 - \rho|| ||u||.$$

(b) The Operator L_2 :

Now examine the operator L_2 in defined by

(4.38)
$$(L_2)(x) := \int_{S} [1 - \rho(y)] u(y) \frac{\partial}{\partial \nu_y} G_n(x, y, 0) ds(y)$$
$$- \int_{S} [1 - \rho(y)] u(y) \frac{\partial}{\partial \nu_y} G(x, y, k) ds(y).$$

So,

$$(4.39) \qquad |(L_2 u)(x) \leq ||1 - \rho|| ||u|| \int_{S} \left| \frac{\partial}{\partial \nu_y} G_n(x, y, 0) \right| ds(y)$$

$$+ ||1 - \rho|| ||u|| \int_{S} \left| \frac{\partial}{\partial \nu_y} G_n(x, y, k) \right| ds(y)$$

Also we have in [2] this estimate

$$\left|\frac{\partial}{\partial \nu_y} G_n(x, y, k)\right| \le \frac{C}{|x - y|^{n - 1}}, x \ne y.$$

Hence we obtain

(4.41)

$$|(L_{2}u)(x)| \leq ||1 - \rho|| ||u|| \int_{S} \left| -\frac{\Gamma(\frac{n}{2})}{2\pi^{n/2}} \hat{\nu}_{y} \frac{\widehat{x - y}}{|x - y|} \cdot \frac{1}{|x - y|^{n-1}} \right| ds(y)$$

$$+ ||1 - \rho|| ||u|| \int_{S} \frac{C}{|x - y|^{n-1}} ds(y)$$

$$(4.42) \le \|1 - \rho\| \|u\| \left\{ \frac{\Gamma(\frac{n}{2})}{\sum_{a(x)}} \int_{a(x)} \frac{1}{|x - y|^{n-1}} ds(y) + C \int_{a(x)} \frac{1}{|x - y|^{n-1}} ds(y) \right\}$$

$$\le \|1 - \rho\| \|u\| (1 + Cw_n),$$

where

$$w_n = \frac{\Gamma(\frac{n}{2})}{w\pi^{n/2}}.$$

Hence we have the lemma.

LEMMA 4.2.

$$(4.43) ||L_2 u|| \le ||1 - \rho|| ||u|| (1 + Cw_n).$$

It is obvious that L_2 is weakly singular then L_2 is a compact operator on C(S) (see Colton and Kress [3]).

(c) The Operators L_3 and L_4 :

Anar and Celebi [2] have proved L_3 and L_4 are compact operators on $C(\bar{B}_i)$ that is

$$L_3, L_4: C(\bar{B}_i) \to C(\bar{B}_i).$$

It is easy to see that estimates;

$$|(L_{3}u)(x)| = \left| \int_{B_{i}} [k^{2} - k_{i}^{2}(y)] \rho(y) G_{n}(x, y, k) u(y) dy \right|$$

$$\leq \|k_{i}^{2} - k^{2}\| \|\rho\| \|u\| \int_{B_{i}} \frac{M}{|x - y|^{n - 2}} dy$$

$$\leq \|k_{i}^{2} - k^{2}\| \|\rho\| \|u\| \int_{0}^{a} \int_{\sum_{a}(x)} \frac{M ds(y)}{|x - y|^{n - 2}} d|x - y|$$

$$\leq \|k_{i}^{2} - k^{2}\| \|\rho\| \|u\| \frac{M}{2} a^{2} w_{n}$$

where M is some constant. Also

$$|(L_4 u)(x)| = \left| - \int_{B_i} \nabla \rho(y) \cdot \nabla_y G_n(x, y, k) u(y) dy \right|$$

$$\leq \|\nabla \rho\| \|u\| \int_{B_i} |\nabla_y G_n(x, y, k)| dy.$$

Since [2]

then we have

$$|(L_4u)(x)| \le \|\nabla \rho\| \|u\| aw_n C_2.$$

Hence we have the lemma:

LEMMA 4.3.

$$||L_3u|| \le C_1 ||k_i^2 - k^2|| ||\rho|| ||u||$$

and

$$||L_4 u|| \le C_3 ||\triangle \rho|| ||u||$$

Hence we have the estimate,

$$(4.47) ||Lu|| \le ||C_1||k_i^2 - k^2|| ||\rho|| + C_2||1 - \rho|| + C_3||\nabla \rho|| ||u||.$$

Hence, for any $\delta_0 > 0$ it is always possible to choose $||k_i^2 - k^2||$, $||1 - \rho||$ and $||\nabla \rho||$ small enough

$$(e.g.,\|k_i^2-k^2\|<\frac{\delta_0}{3C_1\|\rho\|},\|1-\rho\|<\frac{\delta_0}{3C_2} \text{ and } \|\nabla\rho\|<\frac{\delta_0}{3C_3})$$

so that

$$||Lu|| \le \delta_0 ||u||.$$

Choosing $\delta_0 < 1$, we have

(4.49)
$$||L|| = \sup_{C(\bar{B}_i)} \frac{||Lu||}{||u||} \le \delta_0 < 1.$$

This conclusion permit us to establish the main result.

THEOREM 4.2. If S is Lyapunov (not piecewise Lyapunov) the ||L|| < 1 for sufficiently small $||1 - \rho||, ||k_i^2 - k^2||$ and $||\nabla \rho||$.

I. Ethem ANAR

References

- Ahner J. F. and R. E. Kleinman, The exterior Neumann problem for the Helmholtz equation, Arch. Rational Mech. Anal. 52 (1973), 26-43.
- [2] Anar I. E. and A. O. Celebi, A Scattering Problem in Rⁿ, Bull. of the Inst. of Math. Academia Sinica 22, (1994), 323-340.
- [3] Colton D. and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley and Sons, Inc, (1983).
- [4] Colton D, and Wendland Wendland W., Constructive methods for solving the exterior Neumann problem for the reduced wave equation in a spherically symmetric medium, Proc. of the Royal Socity of Edinburgh 75A, 8 (1975/76).
- [5] Jones D. S., Integral Equations for the exterior acoustic problem, Q. J. mech. Appl. Math. 27 (1974), 129-142.
- [6] Lebedev. N. N., Special Functions and Their Applications, Dover Publications Inc. (1972).
- [7] Mikhlin S. G., Mathematical Physics, an Advanced Course (1970), North-Holland Amesterdam.
- [8] Ursell F., On the exterior problems of acoustics, Proc. Cambridge Philos. Soc. 74 (1973), 117-125.
- [9] Wall D. J. N., A uniqueness theorem for the reduced wave equation governing the acoustic wave in a heterogeneous medium, Q. J. Mech. Appl. Math., Vol 41, Pt. 1 (1988).
- [10] Werner P., Zur mathematischen Theorie akustischer Wellenfelder, Arch Rational Mech. Anal. 6 (1960), 231-260.
- [11] _____, Beugungsprobleme der mathematischen akustik, Arch. Rational Mech. Anal. 12 (1963), 153-184.

Department of Mathematics, Faculity of Arts and Sciences, Gazi University, Ankara, Turkey