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A LOCAL CONJUGACY IN LOCALLY
FINITE CC-GROUPS

HYUNYONG SHIN

ABSTRACT. A conjugacy theorem which holds for finite groups is
proven to hold for Cernikov groups and locally finite CC-groups.

1. Introduction

If G is a locally finite group, by 7(G) we denote the set of all prime
numbers dividing the orders of elements of G. Also we denote the radical
part of G by G° and the Hirsh-Plotkin radical of G by ®(G). If X is
locally nilpotent, then for a set ¢ of primes X has the unique Sylow o-
subgroup, denoted by X,,. As usual Linn(G) means the set of all locally
inner automorphisms of G. If G is a Cernikov group, then we define the
rank of G, r(G) = ZpErr(G) rank(O,(G?)), and we define i(G) = |G/GC|.
The pair (r(G),4(G)) will be called the size of G, denoted by |G|. We can
give a well-order on the sizes of Cernikov groups lexicographically. We
say that two subgroups U and V of a group G are p-conjugate (p-locally
conjugate) if a Sylow p-subgroup of U is conjugate (locally conjugate) to
a Sylow p-subgroup of V.

In 1979, Losey and Stonehewer proved [4]:

THEOREM 1. Let G be a finite solvable group. Let U and V be p-
conjugate for every prime p. Suppose that U and V have a nilpotent
common normal supplement X in G and that one of the following con-
ditions is satisfied:

1. X is abelian;
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2. G/X is nilpotent;
3. the Sylow p-subgroups of G have class at most 2 for every prime p.
Then U and V are conjugate.

In this theorem, the solvability of G is not necessary [3]. This paper
is devoted to obtain the similar result for the locally finite CC-groups.
We consider the Cernikov groups first and prove:

THEOREM 2. Let G be a Cernikov group. Let U and V be p-conjugate
for every prime p. Suppose that U and V have a locally nilpotent common
normal supplement X in G and that one of the following conditions is
satisfied:

1. X is abelian;
2. G/X is locally nilpotent;
3. the Sylow p-subgroups of G have class at most 2 for every prime p.

Then U and V are conjugate.

In the next section we will prove Theorem 2. For the proof of this
theorem we need the following fact:

LEMMA 1. Let G be a Cernikov group. If G = XU = XV, for some
normal subgroup X of G and subgroups U and V' satisfying (X)) N
m(U) =n(X)Nw(V) =0, then U and V are conjugate.

Proof. Clearly U° = V© is normal in G. Consider
G/U = (XU /U (U/U%) = (XU USv/UY).
If we set H/U® =< U/U% V/V° > then by the Dedekind Law H/U® =

(XU/U N H/UYU/U®) = (XU°/U® N H/U®)(V/U®). However H/U®
is finite, so by the Schur-Zassenhaus theorem, U and V are conjugate. [

Using Theorem 2 we will prove the following main theorem in section 3.

THEOREM 3. Let G be a locally finite CC-group. Let U and V be
p-locally conjugate for every prime p. Suppose that U and V have a
locally nilpotent common normal supplement X in G and that one of
the following conditions is satisfied:

1. X is abelian;

2. G/X is locally nilpotent;

3. the Sylow p-subgroups of G have class at most 2 for every prime p.
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Then U and V are locally conjugate.
As an application of Theorem 3 we show:

THEOREM 4. The Sylow m-subgroups of a locally finite and locally
solvable CC-group are locally conjugate, where 7 is a set of primes.

2. Proof of Theorem 2

In this section we prove Theorem 2. First, we obtain various reductions
that enable us to strengthen the hypotheses.

Throughout this section G is assumed to be a Cernikov group. More-
over, G = XU = XV is assumed to be a counter example to Theorem
2.

LEMMA 2. There are counter examples in which X is a p-group for
some prime p.

Proof. Suppose no counter example exists with 7 (X) = {pr}. We shall
prove by induction on |7(X)| that G does not exist. By assumption, the
induction starts with |7(X)| = 1. Suppose that Theorem 2 holds for
K =YU =YV, with |7(Y)| < |7(X)|. Now X = XpXp, 80 G/ X, =
(X/X)UX,/Xp) = (X/Xp)(VX,)/Xp). However |7 (X/Xp)| = |m(X)|-
1, and UX,/X, and VX, /X, are g-conjugate for every prime ¢. So by
the induction hypothesis, there exists ¢ € G such that U X, =(VX,)? =
V% = X,. Replacing V9 by V, we may assume that UX,=VX,=H.
Then G = HX,,. Consider the natural isomorphism

G/Xpl = HXp'/Xpl — H/(HQXPI)
InG/Xy,UXy /Xy, and VX, /X, are g-conjugate for every prime q and
m(X/Xp) = {p}. By assumption, UX,,/ X, and V' Xy /X, are conjugate
and hence their images (HNUX,,)/(HNX,) and (HN VXy)/(HNXy)
are conjugate in H/(H N X,y). However, if h € HNUX,, = UX,NUX,,
then h = wa = wugb, for ujuy € U, a € Xp, and b € X,,. Hence
ab~! = u;'uy € U. Using the fact that a and b are commuting elements
of coprime order, it follows that a, b € U. Hence h = u1a € U and so
U<UX,NUX, = HNUX, <U. Hence U = HNUX,, and similarly
V=HNVXy. SoU and V are conjugate. Hence if there are counter
examples to the theorem, there are counter examples in which X is a
p-group. 0
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The last part of the argument in the proof of Lemma 2 is essentially
that occurring in [4].

By Lemma 2 we may suppose G is a counter example with X a o2
group for some prime p. From now on, we assume that I/ and V have a
common Sylow p-subgroup U,. This we may do because of the hypothesis
of p-conjugacy, so UpVy# for some g and we can replace V by V9.

LEMMA 3. We may assume that G =< U,V >.

Proof. Notice that if H =< U,V > then by the Dedekind Law H =
(X NH)U = (X N H)V. By the assumption on G, U, = Vp. On the
other hand, for ¢ # p, U,, V, € Syl,(H), where U, and V; are Sylow
g-subgroups of U and V. Now

1. if X is abelian, then X N H is abelian;

2. G/X is locally nilpotent, then H/(X N H) is locally nilpotent;

3. if the Sylow g-subgroups of G have class at most 2, then the Sylow

g-subgroups of H have class at most 2.

Since G is a counter example, so is H. O
We now suppose G =< U, V' > is a counter example with X a p-group.

LEMMA 4. We may assume that O,(U) = O,(V) = 1 and hence X N
U=XnNnV=1

Proof. Clearly ®(G) N U, = (®(G) NU), char ®(G) NU < U. Hence
®(G)NU, < Oy(U). On the other hand, XO,(U) is a normal p-subgroup
of G, so Op(U) < &(G) NU,. Hence ®(G) N U, = O,(U). Similarly,
D(G) NU, = Op(V). So, O,(U) = 0,(V), and hence, O,(U) < G =<
U,V > . However if G is a counter example to the theorem, so is G/ Op(U)
and Op(U/Oy(U)) = 1. Hence we may suppose O,(U) = O,(V) = 1.
Since X NU < O,(U),XNU=1=XnNV. O

LEMMA 5. [X,U] = X.

Proof. For each prime ¢, pick a Sylow g-subgroup Vg of V. Then
Uy* =V, for some U, € Syl,(U), w € U and z € X. Then V, < [X,U|U,
and hence V < [X, U]U since a Cernikov group is always generated by a

~complete set of Sylow g-subgroups. But this means G = [X,U]U since
G =< U,V >. Hence X = XN[X,U]U = [X,U])(XNU) by the Dedekind
Law. However G is a counter example with X NU = 1. So it follows
that X = [X, U]. O
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Now we prove Theorem 2 through the claims.
CLAM 1. If X is finite abelian, Theorem 2 holds.
Proof. Tt is clear that G° = U% = V0. So,
GU® = (U/U°)(XT°/U°) = (V/VO) (XVO/V0),
Now by the theorem of (3], U and V are conjugate. O
CramM 2. If X is infinite abelian, Theorem 2 holds.

Proof. Note that X is a direct sum of finitely many quasicyclic groups
and cyclic groups of prime power orders. So if F is a finite subset of X ,
then we can find a finite characteristic subgroup W of X that contains F'.
Let 7(G) = {p1,...p}, U, € Syl (U), Vp, € Sy, (V), for i = 1,... k.
There exist z;,y; € X,u; € U, and v; € V such that Up, = Vpi®, and
Voo = Upi¥, for i = 1,... k. By the above remarks there is a finite
characteristic subgroup W of X such that {1, o, u1, -} S WL
Then W J G. Consider G* = UW. It is clear that UW = VIW. Also W
is a finite abelian normal subgroup of G*, and U and V are pi-conjugate
in G* fort=1,... k. By Claim 1, U and V are conjugate in G*, and
hence in= G. a

CrAam 3. If G/X is locally nilpotent, Theorem 2 holds.

Proof. If this claim is false, then by Section 2 there would exist a
counter example satisfying O,(U) = 1 and X NU = 1. Since U ~ G/X
is locally nilpotent, U is a p’-group. Therefore U and V are Sylow p'-
subgroups of G. So, by Lemma 1, U and V are conjugate, a contradiction.

a

CLAIM 4. If the Sylow p-subgroups of G have class at most 2 for
every prime p, then Theorem 2 holds.

Proof. If this claim is false, then there would exist a counter example
G such that the size of U is minimal. Note that we may assume the
lemmas in Section 2 for this group G. If U = U},] , where U}E] is the
normal closure of U, in U, then by Lemma 5, [X, Uﬂ = [X,U] = X.
But [X,U,, X] = 1 since the Sylow p-subgroups have class at most 2,
and hence [X,U,] < Z(X). This implies that X = [X, UY] < z(X).
Hence X is abelian and by Claim 1 and Claim 2, U7 and V are conjugate.
Therefore we may assume that U;(,J < U. As in the proof of Lemma 5,
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it is clear that XUJ = XUY = N. It is also clear that UY and U are
g-conjugate in N for every prime q. Now |U, U’ < |U|. By the mlmmahty
of U, Uy U and U, v are conjugate in N. Therefore, there exists n € N
such that Uy = (U V)", Consider M =< U, V" >. UY is normalized by
U and V™. So J=UY < M. Consider M/J = ((X ﬂM)J/J)(U/J)

(XNnM)yJ/J (V"/J) If J=1,then U, =1so0oby Lemma 1, U and V
are conjugate. If J # 1, then 1 ;é U, £U o because O,,(U) = 1. Therefore
|{U/J| < |U|. Now by the mlnlmahty of U,U/J and V"/J are conjugate,
a contradiction. O

This completes the proof when G is a Cernikov group.

3. Proof of Theorem 3

Let ¥ = {F; : i € I} be the local system of G consisting of all F€
for any finite subset F' of G. Note that each F, is Cernikov. Also note
that the Sylow p-subgroups of a CC-group are locally conjugate [1]. If
Up € Sylp(U), then Uy N F; = U, N F;NU € Syl,(F,NU). Now let

(F NnU) = {py, ... ,piki}. Then there exist d;; € Linn(G) such that

8i5(Up,) = V,,J,j—il,...,’ Also 6;;(U,, NF;) = V,,, N F;. Since Uy, N F;
is contained in a normal Cernikov subgroup of G, there exists u;;T;; such
that (Up, N Fy)"a% =V, NF; for j =iy, ... i, Also there exist vy; € V

and y;; € X so that (uwxw) V= v,y Let
Xi=af. 2l yl . oyl (XNFENU)SXNENV)S <X

11

Then X} is a Cernikov, normal, and locally nilpotent subgroup of G.
Consider G} = (F; NU)X; = (F;NV)X;. It is clear that F; N U and
F; NV are p-conjugate, for all primes p € n(F; N U), in G}. Now

1. if X is abelian, then X} is abelian,

2. if G/X is locally nilpotent, then G}/X} is locally nilpotent,

3. if the Sylow p-subgroups of G have class at most 2, then the

Sylow p-subgroups of G} have class at most 2.

But Gj is Cernikov. So, by Theorem 2, (F; N U)* = (F;NV) for some
z; € G. Now let I'; be the set of automorphisms of F; induced by the
inner automorphisms of G such that a(F; NU) = (F;NV). Then T}
Is non-empty. Suppose F; < Fj. Define a map ¢;; : I, — T by
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0ji(e) = a |, for o € T;. If we give an ordering on I by i < j if
Fy < Fj, then {I';,0;; : 4,5 € I,i < j} is an inverse system of sets and
mappings. We endow I'; with a suitable topology, to facilitate the use
of a theorem from general topology. Suppose «,3 € T;. Then there
exist z,y € G so that o = A, |, 8 = A, |F, where ), and Ay are inner
automorphisms of G induced by z and y, respectively. Thus 8~ la =
Aey=1 |p,. Moreover, B7'\a(F,NU) = F;NU. So, zy~' € Ng(F; N U).
Let K; = Ng(F,NU)/Cea(F;), a Cernikov group. It is easy to show that
there is a 1-1 correspondence between I'; and K,. Now using the same
argument as in the proof of theorem 3.9 in [2], {T,68;; : 4,5 € I,i < j}
Is an inverse system of non-empty compact topological T}-spaces and
closed, continuous maps. So,

P=HmT, #0.

If (a;) € T, define @ : G — G by a(z) = a;(z) for z € F,. Then a is a
well-defined, locally inner automorphism of G such that a(U) = V. So
U and V are locally conjugate.

4. An application

In CC-groups, a locally inner automorphism can be extended from a
subgroup H of G to G or lifted from a factor group G/N to G [6]. Using
this fact we prove Theorem 4 as an application of Theorem 3.

Proof of Theorem 4. Let S and T be Sylow m-subgroups of G. Note
that G/G is an FC-group, where G is the radicable part of G 5]. Since
SG/GY and TG/G? are locally conjugate by Theorem 5.2 in [7], we can
find 6 € Linn(G) such that G* = SG° = (T)G°. Clearly S and 6(T)
are p-locally conjugate for every prime p. Since ;¢ is abelian normal in
G*, by Theorem 3, S and §(T’) are locally conjugate in G*. It is obvious
that S and T are also locally conjugate in G.
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