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h-STABILITY OF DIFFERENTIAL
SYSTEMS VIA t,-SIMILARITY

SUuNG Kyu CHol, NaM Jip Koo AND HYUN SOOK Ryu

ABSTRACT. In recent years M. Pinto introduced the notion of h-
stability. He extended the study of exponential stability to a variety
of reasonable systems called h-systems.

We investigate h-stability for the nonlinear differential systems
using the notions of to-similarity and Liapunov functions.

1. Introduction and Basic Notions

We consider the nonlinear nonautonomous differential system
1) ' = ft,x), xz(to) =z,

where f € C(RT x R*,R") and Rt = [0,00). We assume that the
Jacobian matrix f, = %xi exists and is continuous on Rt x R™ and
f(t,0) = 0. The symbol |.| denotes arbitrary vector norm on R™.

Let z(t) = z(t,%0,20) be denoted by the unique solution of (1)
through (p,z0) in RT x R™ such that z(to,to,zo) = zo. Also, we
consider the associated variational systems

(2) ’Ul = fz(t, 0)’0, ’U(to) =M
and
(3) 2" = fo(t,2(t, t0,20))2,  2(to) = 2o.
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The fundamental matrix solution ®(t, o, 0) of (2) is given by
®(t,10,0) = 9 z(t, to,0)
» L0, - 61’0 R4
and the fundamental matrix solution ®(t, t, xo) of (3) is given by

o
O(t,tg,z0) = —a;;x(t,tg,xo)‘

We recall some notions of h-stability [9].

DEFINITION 1.1. The system (1) (or the trivial solution z = 0 of
(1)) is called

(hS) h-stable if there exist ¢ > 1, § > 0 and a positive bounded
continuous function h on R* such that

()] < clzo|h(t)h(to) ™

for t > to > 0 and |zo| < 4,
(GhS) globally h-stable if in (hS) the § < oo,
(hSV) h-stable in variation if (3) (or z = 0 of (3)) is h-stable,
(GhSV) globally h-stable in variation if (3) (or z = 0 of (3)) is globally
h-stable.

The notion of h-stability(hS) was introduced by Pinto [9, 10] with
the intention of obtaining results about stability for a weakly stable
system (at least, weaker than those given exponential asymptotic sta-
bility) under some perturbations. That is, Pinto extended the study
of exponential asymptotic stability to a variety of reasonable systems
called h-systems [8].

Pinto studied the important properties about hS for the various dif-
ferential systems and the nonlinear differential systems [8, 10].

We investigated hS for the nonlinear Volterra integro-differential sys-
tem [2] and for the nonlinear perturbed systems [3]. Moreover, the con-
cepts of Lipschitz stablity and exponenetial asymptotic stability which
are closely related to hS were studied for the nonlinear functional dif-
ferential systems [4].
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Let 9 denote the set of all n x n continuous matrices A(t) defined on
R* = [0, 00) and & be the subset of 9 consisting of those nonsingular
matrices S(¢) that are of class C? with the property that S(t) and
S~1(t) are bounded.

DEFINITION 1.2. A matrix A(t) € 9 is t.o-similar to a matrix
B(t) € 9 if there exists an n x n matrix F(¢) absolutely integrable
over RT i.e.,

/oo IF(8)]ds < oo

0

such that

(4) S(t) + S(t)B(t) — A(t)S(t) = F(t)

for some S(t) € &.

It is not hard to show that the ty-similarity is an equivalence rela-
tion.

In [5], Hewer introduced the notion of ¢..-similarity and studied the
stability properties of the variational equation. This approach includes
most types of stability.

In this paper we investigate hS for the nonlinear differential systems
using the notions of ¢,-similarity and Liapunov functions.

2. Main Result

For the linear systems, note that
GhSV < GhS < hS < hSV

by Theorem 1 in [2]. Also, the linearized system inherits the property
of hS from the original nonlinear system, i.e., the solution v = 0 of (2)
is hS when the solution = = 0 of (1) is hS [2, Theorem 3.4]. Further,
in the following theorem (its proof is an adaptation of Theorem 4.1 in
[5]), we can show that

GhSV & GhS and hS < hSV

by using the concept of t..-similarity.
To do this, we need the following lemma. It is very effective to show
hS for the linear systems.
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LEMMA 2.1. (9, Lemma 1]. The linear system
(L) ¢ = At)z, z(to) = 2o,

where A(t) is an n X n continuous matrix, is hS if and only if there exist
a constant ¢ > 1 and a positive continuous bounded function h defined
on R™ such that for every zy in R™,

|® (¢, to, zo)| < ch(t)h(ty)™?

for all ¢ > tg > 0, where ®(t, to, zo) is a fundamental matrix of (L).

THEOREM 2.2. Assume that f;(t,0) is too-similar to f. (¢, z(t, o, To))
fort > tg > 0 and |zo| < § for some constant § > 0. Then the solution
z =0 of (3) is a hS provided the solution v = 0 of (2) is hS.

Proof. Since v = 0 of (2) is hS, by Lemma 2.1 there exist a constant
¢ > 1 and a positive continuous bounded function ~ defined on Rt such
that for every zq € R",

|®(t,t0,0)| < ch(t)h(to) "}
for all t > ¢ty > 0, where ®(¢,¢9,0) is the fundamental matrix solution

of (2). Let ®(t,to, o) denote the fundamental matrix solution of (3).
Then it is easily seen by differentiating that the solution S(t) of (4) is

S(t) = @(t,to,O)[S(to)—F/ &1 (s,to, 0)F(s)®(s, to, zo)ds]® 1 (¢, to, zo)

to

for t > tg > 0. Note that
(I)(t,to,l‘o) = @(t, S,.’L‘(S,to,x()))q)(s,t(.,fbo)

for all t > s > t3. Thus we have

B(t,t0, o) = S~L()[®(t, to, 0)S(to) + / (t, s,0)F(s)®(s, to, zo)ds].

to
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Then from Lemma 2.1 and by virtue of the boundedness of S (t) and
S _l(t) there are positive constants ¢; and ¢, such that

|B(¢, to, zo)| < [STH)I[|1®(2, to, 0)]|S (to)]

t
+ [ 18, 0)IF 1205, to,z0)lds]
t
’ t
< crcoh(t)h(te) "t + clcz/ R(t)h(s) " |F(s)]|®(s, to, zo)|ds.
to
By the well-known Gronwall inequality, we have

i

h(t) | ®(t, to, z0)| < csh(to) ™t + c;;/ h(s)™|®(s, to, zo)||F(s)|ds
to
t

< esh(to) ™" exp( | 1F(s)lds)

<ch(te)™, c=cs3 exp/ |F(s)|ds.
t

b}

Hence we obtain
|®(t,0,20)| < ch(t)h(to)™!, 0<to<t,
for some positive constant ¢ > 1. 0

REMARK. Theorem 3.5 in [2] is a corollary of Theorem 2.2, since

/ |F'(s)|ds :/ | fz(5,0) — fo(s,z(s, to, x0))|ds < o0,
when S(t) = I.

COROLLARY 2.3. Under the same conditions of Theorem 2.2, the
solution x = 0 of (1) is hSV.
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ExAMPLE. Consider the Ricatti scalar equation
(S) o' = At)(~z +a?), a(to) =z, A€ T(RY),

whose general solution is z(t, to, zo) = [14 (2=L)exp ft (s)ds]™1,t >
to > 0. We claim that f,(¢,0) and f.(t, a:(t to,.’L‘o;) are too —81m11ar if

Proof. We obtain two variational systems on the solution z(t, g, 2¢)
of (S) as the following :

(V-1) v = fo(t,0)v = - A(t)v

and
(V-2)

2 = fult, 2(t, to, 20))z = A(t){—1+2[1 + (22

! ) exp/t A(s)ds)] 1}z

Thus the fundamental matrix solution ®(¢,tg,0) of (V-1) is given by

¢
®(t,t0,0) = —exp/ —A(s)ds

to

and the fundamental matrix solution ®(¢, to, zo) of (V-2) is given by

(I)(t7t07x0) = $(t,t0,.’E0)

9

81‘0
— exp f to s)ds

[zo(1 + exp ft s)ds) — exp fr (s)ds)2’

Then we have

2(110,0)/ < exp( [ As)ds) = h(®)hito) ",

to

where h(t) = exp(— [; A( . Hence v = 0 of (V-1) is hS. Also, there
exists F(t) absolutely mtegrable over R7, ie.,

/W\F(s)\ds < 00
0
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such that
S(t) + S(t)fz(t 0) — fo(t, z(t, 20, 20)) S(t) = F(t)
for some S(t) = fo s)ds) and A(t) € L;/R™), since

/Ooo (s)|ds </0°o 5A(s) exp(— /OS,\(T)dT)ds

= [-sexp(= | AR < .

Thus f.(¢,0) and f.(¢,2(¢,to,20)) are too-similar. Therefore z = 0 of
(V-2) is hS by Theorem 2.2. O

Now, we shall prove Massera type converse theorem for hS by using
Theorem 2.2 and Liapunov functions. The techniques and results are
similar to those of [6].

We define the Liapunov functions

1
D*Viyy(t,z) = lim sup [V(t+ 6,2+ f(t,z)) — V(t, )|
50+ ]
for (t,z) € R* x R™ and for the solution z(t) = z(¢, to, To) of (1),
1
DTV (t,z(t)) = lim sup =[V(t +6,z(t 4 0)) — V(¢, ).
60+ 0

Then it is well-known that

DTVyy(t,z) = DTV (¢, z(t))
if V(t,z) is Lipschitzian in z for each t.

THEOREM 2.4. If x = 0 of (1) is GhS and f.(t,0) is too-similar to
fz(t,z(t, 10, 20)). Suppose further that h'(t) exists and is continuous
on R*. Then there exists a function V(t,z) satisfying the following
properties :

(i) V e C(R* x R*,R*") and V(t,x) is Lipschitzian in z for each
teRT.

(i) [z] < V(t,z) < clz], (t,z) € Rt x R™.

(iii) D*Viq)(t,z) < B (E)A(t) "V (¢, 2), (t,z) € RT x R™.
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Proof. Define the Liapunov function

V(t,z) = sup |z(t + 7, ¢, 2)[h(t + 7) " h(t)
>0

where (¢ + 7,t,2) is a solution of (1) for (t,z) € Rt x R*. From GhS
of (1) we have

,.’If(t,to,.ro)l < Cll‘olh(t)h(to)_l, t> to > 0, |£L‘o| < 0.
Furthermore, we obtain

sup |z(t + 7,t,2)|h(t +7) " h(t) > |z(t, ¢, z)| = |z|
>0

and
V(t,z) < clzlh(t + T)R(t) " h(t + 1) h(E) = cla].

Therefore (ii) is satisfied. From the definition of hS and uniqueness of
solutions of (1) it follows that V' (¢,z) is defined on Rt x R™.
We show that V(t,z) is Lipschitzian in z for each t € R*t. Let
(t, ), (t,y) € Rt x R™. Then we have
[V(t,z) = V(t,y)| <|suplz(t + 1,t, 2)|h(t + 7)"1h(t)
>0
= supla(t + 7,t,y)|A(t + )" h(t)]
>0

<suplz(t+7,t,z) — z(t + 7, ¢, y)|h(t + 'r)‘lh(t).
>0

Since for each zg and yg in a convex subset D of R™

|z(t, o, Zo) — z(t, 0, yo)| < |zo — ol sup |®(t, to, )]
ne

[6], we have

V(t.2) = V(t,y)| < |z -yl sup |@(t +7,¢, m)|A(t + ) A(2).
neD
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Now, by Theorem 2.2 and Lemma 2.1, we obtain

V(t,z) = V(t,y)| < |z — ylch(t + T)h(t) " h(t + 7) " h(t)
< clz -yl

This implies that V' (¢, z) is Lipschitzian in z for each t.

Next, the continuity of V' (¢, z) can be proved as in Theorem 3.6.1 of
[6].

We can compute the following by the uniqueness of solutions and the
definition of hS.
DYV (t,z(t))

) 1
= 65151+ sup S[V(t +6,z(t +6,t,z)) — V(t,z)]
= lim sup—l—[sup |zt +8+ 7, ¢+, z(t +6,t,2))|h(t+6 + )7 h(t + 6)
-0+ ) >0
—sup [z(t + 7,t,2)|[h(t + 7) " h(t)]
720

1 .
= lim sup < [sup [z(t + 7, ¢, 2)|A(t + 7) " h(t + 6)
60+ é T>68

—sup [z(t +7,¢,z)|[h(t + 7) " h(t)]
720

< Jim sup <fsupla(t + 7, t, ) A(t + ) h()(hit + S)h(t) " — 1)
804 1) >0

. 1 ~1
< 61_1}1(1)1+ sup g[h(t +0)h(t) — 1V (t,z)

(1)

Since, for small § > 0,

Vt+d8,z+68f(t,z))—V(t,z) <|V(E+6,z+ 6f(t,x)) - V(t+6,z(t + 6,t,2))]
+|V(t+6,z(t+4,t,z)) - V(t,z)|
Sclz+df(t,z) — x(t + ¢, ¢, z)|
+ V(i +8,2(t+6,t,x)) - V(L)
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it easily follows that
R (t)
D+ t,x) < :
‘/(1)( ,CL‘) = h(t) V(t7 CI?)

REMARK. For the system (1), Martynyuk [7] defined exponential z1-
stability by splitting the vector z € R™ into two subvector z; € R™, i =
1,2, n; +ng = 2. If we adapt his conditions in Theorem 1 [7], we can
obtain the following.

THEOREM 2.5. Suppose that there exists a function V (t,z) € C(R™
xR™, RT) which is locally Lipschitzian in ¢ and a positive bounded
continuously differentiable function h(t) on R" satisfying the following
properties :

(i) There exist a strictly increasing function b on R™ with b(0) = 0
and two positive constants N, ~ such that

Nlz|? < V(t,z) < b(|z]), (t,z)eRT x R™
(ii) For the solution z(t) of (1) through (to,xo) we suppose that
DtV (t,z) <R (RE)'V(t,z), (t,z)c RT x R™
Then z = 0 of (1) is hS.
Proof. Let x(t,tp,zo) be any solution of (1). As a consequence of

(ii), we obtain

t
V(t,z(t, to, z0)) < V(to, zo) exp/
to
From the condition (i) we have
2 (t, to, z0)| < N7 b(|zo|) TA(E)Th(to) 7, t>to > 0.
For every € > 0 we can choose

5 = b (Ne?) > |zo| >

a

’}‘:((SS)) ds = V(to, zo)h(t)h(to) L.

€
-, ¢c>1
c

Then we have
[(t, to, zo)| < €h(t)h{to) ™ < clzo| H(t)H(t) ™", |zo] <6,

where H(t) = h(t)% is a positive bounded continuous function on

Rt. O
Now, the following theorem can be easily obtained.
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THEOREM 2.6. Suppose that h(t) is a positive bounded continuously
differentiable function on R*. Furthermore assume that there exists a
function V (t, ) satisfying the following properties :

(i) V € C(R* x R, R*) and V (t,z) is Lipschitzian in = for each
t e RY.

(ii) [z| < V(t,z) < clz|, (t,x) € Rt x R™.

(i) DTV (6, =) <K ()R(1)"V (¢,2),  (t,2) € RT x R™,

Then x =0 of (1) is GhS.

Proof. As in the proof of Theorem 2.8, we obtain
[z(t, to, z0)| < clmo|h(t)h(to)™L, >ty >0,
whenever |zg| < co.

REMARK. If A’(t) = 0 in Theorem 2.6, then z = 0 of (1) is uniformly
Lipschitz stable, i.e., there exist M > 0 and § > 0 such that

|2(t)| < M|zo| whenever |zo| < § and ¢ > t5 > 0.
We consider the perturbed system of (1)
(P) v = fty) +9(t,y)
where g € C(R™ x R™,R") and g¢(t,0) = 0. The following theorem is
motivated by (1, Theorem 3.2] and can be proved by Liapunov’s second

method and the comparison principle. 0

THEOREM 2.7. Let « = 0 of (1) be GhS. Suppose that the pertur-
bation term satisfies

lg(t, )] < A@®)yl, t>t0>0, [y] < oo,

where A € L (R™).
Then y = 0 of (P) is GhS.
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Proof. By Theorem 2.4 there exist functions V (¢. z) and h(t) having
the three properties in that theorem. We have

DV (t,y) < D7V (t,y) + clg(t, y)
< TRVt + At

R'(t)

< D

+ A(t)]elyl.

We apply the comparison principle, where

w(t,u) = [%%—:)2 + A(t)]cu.

Let y(t,to,%0) be a solution of (P) such that V(to,y0) < 2cug, ug > 0.
Then the maximal solution of the scalar equation

W (t)

v =w(t,u) = [h(t)

+ At)]ew, ulto) = 2¢cup

is

u(t, to, ug) = ug exp(c /to f;:((;)) ds)exp(c/;0 A(s)ds)
= wo(h(Dh(t0) )" exple | Als)ds)
< ClyolH($)H (to) ™", H(t) = h(t), C = exp(c /too A(s)ds).
Hence y = 0 of (P) is GhS. O
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