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FIXED POINTS OF A CERTAIN
CLASS OF MAPPINGS
IN UNIFORMLY CONVEX BANACH SPACES

BALWANT SINGH THAKUR AND JONG SO0 JUNG

ABSTRACT. In this paper, we prove in p-uniformly convex space a
fixed point theorem for a class of mappings T satisfying: for each

z, y in the domain and forn =1, 2, 3, .. ,

IT"2 = T7y|| < a - flz — yll + b(llz - T"z|| + |ly — T"y|))
tellle =Ty + |ly — T =),

where a, b, ¢ are nonnegative constants satisfying certain conditions.
Further we establish some fixed point theorems for these mappings
in a Hilbert space, in LP spaces, in Hardy spaces AP and in Sobolev
spaces HP* for 1 < p < oo and k > 0. As a consequence of our
main result, we also extend the results of Goebel and Kirk [7], Lim
(8], Lifshitz [12], Xu [20] and others.

1. Introduction

Let K be a nonempty subset of a Banach space E. A mapping
T : K — K is said to be uniformly a-Lipschitzian if

T2 - Tyl < & - ||z — y|

for all z, y in K and each n > 1. This class of mappings have been
studied by many authors. Goebel and Kirk [7] proved that such T has
a fixed point if K is a bounded closed convex subset of a uniformly
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convex Banach space F and a < M, M being the unique solution of
the equation M -(1—0g(45)) = 1 and 8g(-) the modulus of convexity of
E. For a Hirbert space H, M = _\és: and for LP, M = (1+ g)% Lifshitz
[12] and Lim [8] extended the Geobel and Kirk’s result in the setting of
Hilbert space and LP spaces, respectively. (See also [3, 11, 17 and 19].)
Recently, Xu [20] extended these results to p-uniformly convex Banach
spaces.

In this paper, we extend all above results for the class of mappings
whose nth iterate T satisfy

1Tz — Tyl < a- llz - yll + b(llz — T || + |ly = T"yl})

(1)
+e(lle =Tyl + [ly — T"=|)
foreach z, y € K and n =1, 2, --.,. where a, b, c are nonnegative
constants such that 3b + 3¢ < 1. By taking b = ¢ = 0, it will be
seen that this class of mappings is more general than uniformly o-
Lipschitzian mappings.

2. Preliminaries

The normal structure coeflicient N(E) of E is defined by (cf. Bynum

[2])

N(E) = inf {M :K is a bounded convex subset of £

Tk (K)
consisting of more than one point},

where diamK = sup{||lz — y|| : z, y € K} is the diameter of K and
Yk (K) = infze i (supyck [z —yl|) is the Chebyshev radius of K relative
to itself. E is said to have uniformly normal structure if N(E) >
1. It is known that a uniformly convex Banach space has uniformly
normal structure (cf. Danes [4]) and for a Hilbert space H, N(H) =
V2. Recently, Pichugov [13] (cf. Prus [15]) calculated that N(L?) =

. 1 el .
min{27,2°7 }, 1 < p < oco. Some estimates for normal structure
coefficient in other Banach spaces may be found in Prus [16].
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Let p > 1 and denote by A the number in [0,1] and by W,(A) the
function A - (1 — AP 4+ A7 (1 - ).

The functional || - ||? is said to be uniformly convex (cf. Zalinescu
[21]) on the Banach space E if there exists a positive constant cp such
that for all A € [0,1] and z, y € E, the following inequality holds:

(2) [z + (1 = XyllP < Alll? + (1 = NllylIP = Wp(X) - ¢ - ||z — gl

Xu [20] proved that the functional || - ||? is uniformly convex on the
whole Banach space E if and only if E is p-uniformly convex, i.e. there
exists a constant ¢ > 0 such that the moduli of convexity, & g(e) > c-eP
forall0<e<2.

Before presenting our main result we need the following:

LEMMA 1 [20]. Letp > 1 and let E be a p-uniformly convex Banach
space, K a nonempty closed convex subset of E and let {x,} C E be a
bounded sequence. Then there exists a unique point z in K such that

(3) limsup ||z, — 2||P < limsup ||z, — z||? - ¢, - ||z — 2||P
n—o0 n—ro0

for every x in K, where ¢, is the constant given in (2).

3. Main results

Now, we are in a position to give our main result.

THEOREM 1. Let p > 1 and let E be a p-uniformly convex Banach
space, K a nonempty closed convex subset of £ and T : K — K a
mapping whose nth iterate T™ satisfy the inequality (1) with

(a+B)P - {(a +B) — 1}}% _

i <1,
) L
where
_a+b+ec 5= 2b+2’c
a—l-—b—c’ T 1-b-¢’

N is the normal structure coefficient of E and c, is the constant given
in inequality (2). Suppose that there is an xo in K for which {T"z,}
is bounded, then T has a fixed point in K, i.e. there is a z in K such
that T'(z) = z.
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Proof. Since {T™xg} is bounded (and hence {T™z} is bounded for
any z in K), by Lemma 1, we can inductively constant a sequence
{Zn}n>1 in K as follows : for each integer m > 0, Tm+1 1s the asymp-
totic center of the sequence {T"z,,} in K. Let

Ym = Hmsup |[T"x,;m, — Tmy1| and Dy, = sup |2 — T2
T—00 n>1

By using (1) after a simple calculation, we have for each z, y in K

; ; a+b+c - 2b+2¢ ;
fe — Tiyll < =227 % g — it ek 117 o PO
1Tz =Tyl < 75— Iz ul+ == 177y - =l
ie.,
(4) 1Tz — Ty| < a- lz = T7 Py + 8- | Ty — .

By the result of Lim [9, Theorem 1] and by (4), we have

Ym = limsup ||T'i.rm — Tt

1— 00
1 . .
< — -limsup{||T"zm — TV 2m| : ¢, j >t}
N o
1 - ~
< < limsup{a - [|2m =T 2|+ 8 |2m — TP xm 1 i, § >t}
N t—o0

which implies
(a+8)
N

where N is the normal structure coefficient of E. For each fixed m > 1
and all n > k > 1, we have from (2) and (4)

(5) Ym <

Dy,

IAZms1 + (1= NT* Tmpy — T @ ||
t e WplA) - 2t = T*2mya P
< Mamer = Tzl + (1= A) - | T 21 — Tz [P
< Mamtr — T zm|P

+{(1-X)(a- Hl'm-f—l - TnAkCCmH + 8- [Tmy1 — T "z ||)P.
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Taking the limit superior as n — +o0 on each side, by definition of z,,,
we get
Vit € Wo(A) - [Zmi1 = T*2m i [P < {A+ (1= N) - (a + B)PIE,.
It then follows that
Dr,, < L Va o7 - 1)

m+1 = ( ) " Im
(1- {(a+5)p—1},(a+5)p_ p
= W, neo P

Letting A — 1, we conclude that

(a+8)P{(a+ )7 - ] Do = 4Dy m=1, 2.
¢, - NP

(6) Dinis = [

3

where A = [gﬁﬂa )pé(ﬁvﬂ;ﬂ )phl}] < 1, by the assumption of the theo-
rem. So, in general
Dypi1<A-Dp, <o <A™D;.

Since

[Zm+1 — T < |Zm+1 — T &m || + 17" 2 — Zml,
taking the limit superior as n — +o00 on each side, we have

1Zm+1 = Tmll € Y+ Dpn <2 Dy < -+ <2 A™71Dy,
— 0
as m — +oo. It then follows that {z,,} is a Cauchy sequence. Let
z = limy, o0 T,n. Then we have from triangle inequality and by (4)
Iz = Tzll < llz = 2wl + [[2m — T2l + | Tzm — T2
<z = @l + [2m = Tl + - [ = 2} + B [ T2 — 20

and so
1+a+
Iz =Tl < 212 E =l + -l = Tzl
— 0
as m — +o00. Hence Tz = z. This completes the proof. ol

If we put b = ¢ = 0 in Theorem 1, then we will have the following
result:
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COROLLARY 1 [20, Theorem 3|. Let p > 1 and let E and K be as
in Therem 1 and T : K — K is a uniformly a-Lipschitzian mapping.
Suppose that there is an x¢ in K for which {T™zy} is bounded and that

1 »
a<[§(1+\/1+4.cp-NP)] .
Then T has a fixed point in K.

Now we give applications of the established inequalities analogous to
(2) in some Banach spaces. Let us begin with the following:

LEMMA 2. (i) In a Hilbert space H, the following inequality holds:
(1) A2+ Q= Nyl = Azl + @ = W)llyl* = A1 = N)||lz — y|?
for all z,y in H and A € [0,1].

(ii) If 1 < p < 2, then we have for all z,y in LP and X € [0, 1],

(8) 1Az +(1=Nyll* < Xlz?+ @ =N)llylIP =A(1=X) - (p—1)- |z —yl*

(The inequality (8) is contained in Lim, Xu and Xu [11] and Smarzewski
[18]).

(iii) Assume that 2 < p < oo and t, is the unique zero of the functions
g(z) = —a*~' 4+ (p — 1)z + p — 2 in the interval (1,00). Let ¢, =

_ 14271
(p—1) (1+1t,)% P = Gl

(@) 1Az + (1 = Nyll? < AllellP + (1= DllyllP = Wp(X) - cp - |z — yI?

Then we have the following inequality

for all z, y in L? and X € [0,1]. (The inequality (9) is essentially due
to Lim, Xu and Xu [11] and Xu [20].)

By Theorem 1 and Lemma 2, we immediately obtain the following
results:

THEOREM 2. Let K be a nonempty closed convex subset of a Hilbert
space H. If T': K — K be a mapping whose nth iterate T"™ satisfy the

(a+ﬁ)2{(g+ﬁ)2—1} 3

inequality (1) with [ < 1, where «, 3 as in Theorem

1. Suppose that there is an zg in K for which {T™zy} is bounded. Then
T has a fixed point in K.
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THEOREM 3. Let K be a nonempty closed convex subset of LrP(1 <
p<oo). IfT: K — K be a mapping whose nth iterate T™ satisfy the
inequality (1) with

=

<1l for 1<p<2

[(aw)?{(aw)?—l}'
(p—1)-2%%

and

|

<1 for 2<p<co.

(@+B) - {{a+B)F —1}]*

Cp 2 |
Suppose that there is an g in K for which {T™xo} is bounded. Then
T has a fixed point in K.

If we put b = ¢ = 0 in Theorem 3, then we will have the following
result:

COROLLARY 2 [20, Corollary 4]. Let K be a nonempty closed convex
subset of LP(1 < p < 00). If T : K — K is a uniformly a-Lipschitzian
mapping. Suppose that there is an xq in K for which {T™z} is bounded
and that

1 T\ ]*
a< [5(1+\/1+4-(p—1)-2%“>] if1<p<2

and X
a<[%(l+\/l+8'cp)}p if 2<p< oo,

where c,, is as in (2). Then T has a fixed point in K.

4. Additional results

Using the results of Prus and Smarzewski [14], Smarzewski [17] and
Xu [20], we can obtain from Theorem 1 the fixed point theorems, for
example, for Hardy and Sobolev spaces.
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Let HP, 1 < p < oo, denote the Hardy space [6] of all functions z
analytic in the unit disc |z| < 1 of the complex plane and such that

1
1 2m ) P
lz|| = lim <——/ |a:(re’0)|pd0> < 0
r—1- 2 0

Now, let §2 be an open subset of R". Denote by H"P(), r >
0, 1 < p < oo the Sobolev space {1, p.149] of distributions x such that
Doz € LP(Q) for all |a| = a3 + - - - + @, < k equipped with the norm

1

el = [ X [ Ipa)ras

|l <k

Let (2,2 ., Ha), & € A, be a sequence of positive measure spaces,
where index set A is finite or countable. Given a sequence of linear
subspaces X, in LP(Q4,Y ., o), we denote by Ly ,,1 < p < oo and
q = max(2,p) [10], the linear space of all sequences z = {z, € X,
a € A} equipped with the norm

el = (Z(nxanp,a)q) "

acnN

where || - ||p,o denotes the norm in LP(Qq, Y, fta)-

Finally, let L, = L?(Sy,)_;,p1) and Ly = L9(Sy, > ,, p2), where
1 <p< oo, ¢g=max(2,p)and (S;,Y_;, ¢ti) are positive measure spaces.
Denote by L,(Lp) the Banach spaces [5, III. 2.10! of all measurable
Ly-value function z on Sy such that

el = ( / Z(Hx(s)llp)quz(ds)f

These spaces are g-uniformly convex with ¢ = max(2,p) [14, 17] and
the norm in these spaces satisfies

[Az + (1= Ayll? < Alzl?+ 1 = Mlyll* —d- We(A) - flz — y||*
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with a constant

if 1<p<2

if 2<p<oc.

Hence from Theorem 1, we have the following result:

THEOREM 4. Let K be a nonempty closed convex subset of the space
E, where E=H? ,or E=H"P(Q) ,or E=L,,, or E = L4(Ly), and
1 <p<oo, g=max(2,p), r >0. IfT: K — K be a mapping whose
nth iterate T™ satisfy the inequality (1) with

(atB){(a+B)1-1}]F
d- N9 T

Suppose that there is an zo in K for which {T"z¢} is bounded. Then
T has a fixed point in K.
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