EXPONENTIAL RANK OF EXTENSIONS OF C*-ALGEBRAS

JA A JEONG* AND GIE HYUN PARK

ABSTRACT. We show that if I is an ideal of a C^* -algebra A such that the unitary group of \tilde{I} is connected then $cer(A) \leq cer(I) + cer(A/I)$, where cer(A) denotes the C^* -exponential rank of A.

0. Introduction

Let A be a unital C^* -algebra, U(A) its unitary group, and $U_0(A)$ the connected component of U(A) which contains the unit of A. Then it is well known that $U_0(A)$ is the set of all finite products of exponentials of elements of A, that is, $U_0(A) = \{ \exp(ia_1) \cdots \exp(ia_n) \mid a_j \in A_{sa}, n = 1, 2, \dots \}$. The unitary group of the C^* -algebra B(H) of all bounded linear operators on a separable infinite dimensional Hilbert space H is connected and each unitary is of the form $\exp(ia)$ for some self adjoint operator a in B(H), and the same assertion is true for all finite dimensional C^* -algebras. But if A is a UHF algebra then there exists a unitary in $U_0(A)$ which can not be expressed as $\exp(ia)$ with $a \in A_{sa}$ although $\{ \exp(ia) \mid a \in A_{sa} \}$ is dense in $U_0(A)$ ([2]).

For a unital C^* -algebra A and a unitary $u \in U_0(A)$, the C^* -exponential rank of u, denoted by cer(u), is defined as follows: cer(u) = n if $u \in \exp(iA_{sa})^n$ but $u \notin \exp(iA_{sa})^{n-1}$, $cer(u) = n + \varepsilon$ if $u \in \exp(iA_{sa})^n$ but $u \notin \exp(iA_{sa})^n$. Note that we can order the possible ranks: $1 < 1 + \varepsilon < 2 < 2 + \varepsilon < \cdots$. Indeed if two unitaries u and v are close so that $||1 - u^{-1}v|| = ||u - v|| < 2$ then the spectrum $sp(u^{-1}v)$ is a proper subset of the unit circle \mathbb{T} . Hence we can find a suitable branch of logarithm function and use continuous functional calculus to express

Received January 22, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 46L05.

Key words and phrases: exponential rank, real rank.

^{*}Supported by GARC-KOSEF, BSRI-96-1417(1996-1997).

 $u^{-1}v = \exp(ia)$, $(a = -i\log(u^{-1}v))$ or $v = u\exp(ia)$. Thus we have $n < n + \varepsilon < n + 1$ for each $n = 1, 2, \ldots$ Then the C^* -exponential rank of A, written cer(A), is defined by

$$cer(A) = \sup\{ cer(u) \mid u \in U_0(A) \}.$$

If A is not unital then we define $cer(A) = cer(\tilde{A})$, where \tilde{A} is the unitization of A. See [1] for more on exponential rank.

If $\pi:A\to B$ is a surjective homomorphism then it follows that $cer(B)\leq cer(A)$ since $\pi(U_0(A))=U_0(B)$.

In this short note we get an upper bound of the exponential rank of a C^* -algebra from the ranks of an ideal and the quotient algebra. Before proving the main theorem in section 2, we discuss in section 1 several conditions which have been studied in connection with the notion of C^* -exponential rank.

1. Exponential rank and weak (FU)

Recall that a unital C^* -algebra A has real rank zero, RR(A) = 0, if the set of invertible self-adjoint elements is dense in the set A_{sa} of all self-adjoint elements, and a nonunital C^* -algebra A has real rank zero if $RR(\tilde{A}) = 0$ where \tilde{A} denotes the unitization of A. It is shown in [1, 2.6. Theorem] that RR(A) = 0 if and only if the set of self-adjoint elements with finite spectra is dense in A_{sa} . In connection with exponential rank, Lin ([4]) proved that if A is a C^* -algebra of real rank zero then $cer(A) \leq 1+\varepsilon$ by showing that A has the property weak (FU); every unitary in the identity component $U_0(A)$ (or in $U_0(\tilde{A})$ if A is nonunital) can be approximated by unitaries with finite spectra. Since a C^* -algebra with weak (FU) is always of real rank zero [6, Proposition 1.5] it follows that a C^* -algebra A is of real rank zero if and only if A has weak (FU) [4, Corollary 6].

Proposition 1.1. For a C^* -algebra A the following are equivalent

- i) RR(A) = 0.
- ii) A has weak (FU); every unitary in $U_0(A)$ ($U_0(\tilde{A})$ if A is nonunital) can be approximated by unitaries with finite spectrum.

iii) every unitary in $U_0(A)$ ($U_0(\tilde{A})$ if A is nonunital) can be approximated by unitaries v such that 1 and -1 are isolated points in the spectrum sp(v).

Proof. We have only to show that iii) implies i), and this can be done by modifying the proof of [6, Proposition 1.5].

Let $a \in A_{sa}$. We may assume that A is unital and $||a|| < \pi$. Set $u = \exp(ia)$, then $u \in U_0(A)$ and hence u is the limit of unitaries $v_n \in U_0(A)$ whose spectra contain 1 and -1 as isolated points. Let log be the branch of the logarithm function with range $i(-\pi, \pi]$. Then for each v_n , $-i \log(v_n) \in A_{sa}$ and $\operatorname{sp}(-i \log(v_n))$ has 0 as an isolated point. Since $a = \lim_n (-i \log(v_n))$ and each self-adjoint element $-i \log(v_n)$ can be approximated by invertible self-adjoint elements we complete the proof.

One may consider a property like that the set of all unitaries with finite spectra is dense in the set of all unitaries in a unital C^* -algebra, which has been introduced and studied in [6] by the name of (FU).

Lin introduced the condition (UFS) in [3] and showed that if A is a σ -unital C^* -algebra with stable (UFS) and cacellation of projections and B is a hereditary C^* -subalgebra of the multiplier algebra M(A) of A then $U(\tilde{B})$ is connected and $\operatorname{cer}(\tilde{B}) \leq 2 + \varepsilon$. A unital C^* -algebra A is said to have (UFS) if the set of normal partial isometries with finite spectrum is dense in the set of all normal partial isometries, and stable (UFS) if $M_n(A)$ has (UFS) for each $n=1,2,3,\ldots$ A nonunital C^* -algebra A is said to have (UFS) if \tilde{A} has (UFS).

The following shows the relation between the properties (UFS) and (FU):

PROPOSITION 1.2. A C^* -algebra A has (UFS) if and only if for each nonzero projection p in A the hereditary C^* -subalgebra pAp has (FU).

Proof. (\Rightarrow) Let $u \in U(pAp)$ and $\varepsilon > 0$. Since pAp has (UFS) [3, 1.2. Lemma], there exists a normal partial isometry $v \in pAp$ with finite spectrum such that $||u-v|| < \varepsilon (<1)$. Then $||u^*u-v^*v|| = ||p-q|| < \varepsilon$, where $q = v^*v$. Since q is a projection in pAp it follows that p = q and v must be a unitary because it is normal.

 (\Leftarrow) Let v be a normal partial isometry with $v^*v = vv^* = p$. Since pAp has (FU) we can find a unitary $u \in U(pAp)$ with finite spectrum such that $||u-v|| < \varepsilon$. Thus v can be arbitrarily approximated by normal partial isometries of finite spectrum.

Recall that a unital C^* -algebra A has topological stable rank 1, tsr(A) = 1, if the set of invertible elements is dense in A. For a nonunital C^* -algebra A, we define $tsr(A) = tsr(\tilde{A})$. For precise definition and properties refer [9]. Examples are all AF-algebras, the commutative algebra $C(\mathbb{T})$, Bunce-Deddens algebras and irrational rotaion algebras among others.

If a C^* -algebra A contains two orthogonal isometries then $tsr(A) \neq 1$ ($tsr(A) = \infty$ precisely). Cuntz algebras \mathcal{O}_n , B(H), and Toeplitz algebra $C^*(S)$ [9, Example 4.13] are examples which have topological stable rank more than one.

PROPOSITION 1.3. Let A be a unital C^* -algebra with tsr(A) = 1. Then A has stable (UFS) if and only if RR(A) = 0 and $K_1(A) = 0$.

- *Proof.* (\Rightarrow) Obviously (UFS) implies weak (FU), that is, RR(A) = 0. For a C^* -algebra of topological stable rank 1, it is known that $K_1 = U(A)/U_0(A)$. But (UFS) implies that U(A) is connected, so that $K_1(A) = 0$.
- (\Leftarrow) Since the properties, RR(A) = 0 and tsr(A) = 1, are preserved through the matrix algebras $M_n(A)$ over A it suffices to show that A has (UFS).

We show that for any nonzero projection $p \in A$ the hereditary subalgebra pAp has (FU). Then A has (UFS) by Proposition 1.2. First note that RR(pAp) = 0, that is, pAp has weak (FU). By [5, Lemma 2.4] we have $K_1(pAp) = 0$ and hence $K_1(pAp) = U(pAp)/U_0(pAp) = 0$ since tsr(pAp) = 1 [2, Corollary 3.6]. Therefore pAp has weak (FU) and has connected unitary group so that it has (FU).

2. Exponential rank of extensions

As mentioned in section 1, Lin showed that if A is a σ -unital C^* -algebra with stable (UFS) and cancellation of projections then $cer(\tilde{B}) \leq$

 $2+\varepsilon$ for any hereditary C^* -subalgebra B in $M(A). Especially we have <math display="inline">cer(M(A)) \leq 2+\varepsilon.$

The following theorem gives an upper bound for exponential rank of C^* -extensions. As extremely opposite cases to Lin's, if A is a purely infinite σ -unital (not unital) simple C^* -algebra then it has real rank zero and its corona algebra (M(A)/A) is also purely infinite simple with real rank zero so that both of them have exponential rank $\leq 1+\varepsilon$. Therefore our theorem can be applied to obtain the same bound as Lin's

$$cer(M(A)) \le 2 + \varepsilon$$

if $K_1(A) = 0$, that is, $U(\tilde{A})$ is connected.

THEOREM 2.1. Let I be an ideal of a C^* -algebra A such that the unitary group of \tilde{I} is connected. Then $cer(A) \leq cer(I) + cer(A/I)$ with convention $\varepsilon + \varepsilon = \varepsilon$.

Proof. Case 1: cer(I) = m, cer(A/I) = n for $m, n \in \mathbb{N}$. Let $\pi : A \to A/I$ be the canonical quotient homomorphism. If u is in $U_0(A)$ then $\pi(u) \in U_0(A/I)$. Hence we can write

$$\pi(u) = \exp(i\pi(a_1)) \cdots \exp(i\pi(a_n))$$
$$= \pi(\exp(ia_1) \cdots \exp(ia_n))$$

for some self adjoint elements $a_i \in A$. It follows that $u - \exp(ia_1) \cdots \exp(ia_n) \in I$ and we have $u \exp(-ia_n) \cdots \exp(-ia_1) = 1 + x$ for some $x \in I$. The unitary 1 + x is the product of m exponentials, therefore we have

$$u = \exp(ix_1) \cdots \exp(ix_m) \exp(ia_1) \cdots \exp(ia_n)$$

for some self adjoint elements $x_i \in I$.

Case 2: $cer(I) = m + \varepsilon$, cer(A/I) = n. The proof for this case is similar to that of case 1.

Case 3: cer(I) = m, $cer(A/I) = n + \varepsilon$. For the sake of simplicity we may assume that $cer(I^+)=1$ and $cer(A/I) \le 1 + \varepsilon$. For a unitary $u \in U_0(A)$ and $\varepsilon > 0$ ($\varepsilon < 1$) we can find a self adjoint element $a \in A_{sa}$

such that $\|\pi(u) - \exp(i\pi(a))\| < \varepsilon$. Choose $x' \in I$ such that $\|(u - \exp(ia)) - x'\| < \varepsilon$, so

$$||u\exp(-ia) - (1+x)|| < \varepsilon$$

where $x = x' \exp(ia)$. Then 1 + x is invertible and its polar decomposition is of the form $1 + x = \exp(ib)|1 + x|$ for some $b \in I_{\text{sa}}$ because cer(I)=1. It follows that $||u - \exp(ib)|1 + \exp x| \exp(ia)|| < \varepsilon$. Then we have

$$||u - \exp\exp(ib) \exp(ia)|| \le ||u - \exp(ib)|| + x|\exp(ia)||$$

$$+ ||\exp(ib)|| + x|\exp(ia) - \exp(ib)\exp(ia)||$$

$$< \varepsilon + ||1 - |1 + x|||.$$

From (*) we see that $\operatorname{sp}(1+x) \subset \{\lambda \in \mathbb{C} | 1-\varepsilon \leq |\lambda| \leq 1+\varepsilon \}$, hence $||1+x|| \leq 1+\varepsilon$.

Put $v = u \exp(-ia)$ then

$$||1 - (1+x)^*(1+x)|| \le ||v^*v - (1+x)^*(1+x)||$$

$$\le ||v^*v - (1+x)^*v||$$

$$+ ||(1+x)^*v - (1+x)^*(1+x)||$$

$$\le \varepsilon + ||(1+x)^*|| ||v - (1+x)||$$

$$\le \varepsilon + (1+\varepsilon)\varepsilon$$

$$< 3\varepsilon.$$

Therefore $\operatorname{sp}(|1+x|) = \operatorname{sp}(((1+x)^*(1+x))^{1/2}) \subset (1-3\varepsilon, 1+3\varepsilon)$, that is, $||1-|1+x||| < 3\varepsilon$ and it follows from (**) that $||u-\exp(ib)\exp(ia)|| < 4\varepsilon$. Case 4: $\operatorname{cer}(I) = m + \varepsilon$, $\operatorname{cer}(A/I) = n + \varepsilon$. It is obvious from the above cases.

Let $C^*(S)$ be the C^* -algebra generated by the unilateral shift S on an infinite dimensional separable Hilbert space. Then $C^*(S)$ contains the C^* -algebra \mathcal{K} of compact operators as an ideal and the quotient algebra $C^*(S)/\mathcal{K}$ is isomorphic to the commutative C^* -algebra $C(\mathbb{T})$ where \mathbb{T} is the unit circle. Since the unitary group of \tilde{K} is connected with $cer(\mathcal{K})=1$ and C^* -exponential of every commutative C^* -algebra is obviously 1, we obtain the following.

COROLLARY 2.2.
$$cer(C^*(S)) \leq 2$$
.

Exponential rank of extensions of C^* -algebras

References

- [1] L. G. Brown and G. K. Pedersen, C^* -algebras of real rank zero, J. Funct. Anal. 99 (1991), 131–149.
- [2] _____, On the geometry of the unit ball of a C*-algebra, J. reine angew. 469 (1995), 113-147.
- [3] H. Lin, per Generalized Weyl-von Neumann theorems, Inter. J. of Math. 2 (1991), 725-739.
- [4] \longrightarrow , Exponential rank of C^* -algebras with real rank zero and Brown-Pedersen conjectures, J. Funct. Anal. 114 (1993), 1-11.
- [5] _____, Generalized Weyl-von Neumann theorems (II), Math. Scand. 77 (1995), 129-147.
- [6] N. C. Phillips, Simple C*-algebras with the property weak (FU), Math. Scand. 69 (1991), 127–151.
- [7] ______, C*-algebras: 1943-1993 A fifty year celebration, C ontemporary Math., vol. 167, Amer. Math. Soc., 1994, pp. 353-399.
- [8] _____, UHF algebras have neither property (FS') nor exponential rank 1, preprint.
- [9] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46 (1983), 301-333.

JA A JEONG

DEPARTMENT OF MATHEMATICS, KYUNG HEE UNIVERSITY, SEOUL 130-701, KOREA

GIE HYUN PARK

DEPARTMENT OF MATHEMATICS, HANSHIN UNIVERSITY, OSAN 447-791, KOREA