GENERALIZED THOM CONJECTURE FOR ALMOST COMPLEX 4-MANIFOLDS

YONG SEUNG CHO

ABSTRACT. Let X be a closed almost complex 4-manifold with $b_2^+(X) > 1$, and have its canonical line bundle as a basic class. Then the pseudo-holomorphic 2-dimensional submanifolds in X with non-negative self-intersection minimize genus in their homology classes.

1. Introduction

In [8] Kronheimer and Mrowka proved that algebraic curves in $\mathbb{C}P^2$ have minimum genuses in their homology classes. In [10] Morgan, Szabó and Taubes proved that if Σ is a smooth holomorphic curve in a compact Kähler surface with non-negative self-intersection number $\Sigma \cdot \Sigma \geq 0$, then Σ minimizes genus in its homology class. They used the Seiberg-Witten gauge theory to get their results. In [11] Taubes showed that the canonical complex line bundle of a symplectic 4-manifold has nonzero Seiberg-Witten invariant. The above results extend to symplectic 4-manifolds with almost same proofs. There are non-symplectic 4-manifolds which have nonzero Seiberg-Witten invariants [2].

In this paper we give some almost complex 4-manifolds X constructed by the connected sums of symplectic 4-manifolds X_1 and homology 4-spheres. These almost complex 4-manifolds have no symplectic structures. However there are a one-to-one correspondence between Seiberg-Witten invariants of X and ones of X_1. If X is an almost complex 4-manifold, then the connected sum $X \# n\mathbb{C}P^2$ of X and n copies
of $\mathbb{C}P^2$ has an almost complex structure. If X is a closed almost complex 4-manifold and its complex canonical line bundle is a basic class, then an embedded pseudo-holomorphic curve Σ in X with $\Sigma \cdot \Sigma \geq 0$ minimizes genus in its homology class.

2. Vortex Equations

Let X be an almost complex 4-manifold with canonical complex line bundle K and let Σ be an embedded 2-dimensional submanifold of X with zero self-intersection number $\Sigma \cdot \Sigma = 0$. Let $W^+ = E \oplus (K^{-1} \otimes E) \to X$ be a Spinc structure on X, where E is a complex line bundle over X. Let $L = \det W^+ = E \otimes (K^{-1} \otimes E)$. For a connection A of L and a section $\phi \in \Gamma(W^+)$ of W^+ the Seiberg-Witten equations are

\[
(*) \begin{cases}
D_A \phi = 0 \\
F_A^+ = -\tau(\phi, \bar{\phi}).
\end{cases}
\]

Since $\Sigma \cdot \Sigma = 0$ there is a tubular neighbourhood $N(\Sigma)$ of Σ in X such that its boundary $\partial N(\Sigma) \equiv Y$ is diffeomorphic to $\Sigma \times S^1$. Let (X_R, g_R) be the Riemannian manifold obtained from X by cutting along Y and inserting a cylinder $[-R, R] \times Y$, here g_R is a product metric on $[-R, R] \times Y$. In [8] Kronheimer and Mrowka showed the following:

Proposition 2.1 [8]. Suppose the moduli space $\mathcal{M}(L, g_R)$ is non-empty for all sufficiently large R. Then there is a solution of the equation $(*)$ on the cylinder $\mathbb{R} \times Y$ which is translation invariant in a temporal gauge.

In the temporal gauge a connection A and a section ϕ on the cylinder $\mathbb{R} \times Y$ can be thought as a path $A(t)$ of connections and a path $\phi(t)$ of sections in the restricted Spinc structure over 3-manifold Y. In this case, the Seiberg-Witten equations become

\[
(**) \begin{cases}
\frac{d\phi}{dt} = -\overline{D}_A \phi \\
\frac{dA}{dt} = -\ast F_A - \tau(\phi, \bar{\phi})
\end{cases}
\]
where \bar{D}_A is the Dirac operator in 3-dimensional Spinc structure W and τ is a pairing obtained from Clifford multiplication by using the hermitian metric on W.

By the uniformization theorem there is a Riemannian metric on $\Sigma \times S^1 \equiv Y$ such that Σ has constant scalar curvature. Then using the Gauss-Bonnet theorem, Kronheimer and Mrowka showed the following:

Theorem 2.2 [8]. *If there is a solution to the Seiberg-Witten equations on $\mathbb{R} \times Y$ which translation-invariant in a temporal gauge, then $|c_1(L)[\Sigma]| \leq 2g(\Sigma) - 2$.*

We assume that the line bundle L over $\Sigma \times S^1$ is pulled back from a line bundle over Σ. This may be justified when the cohomology class of L over $\Sigma \times S^1$ has no component in $H^1(\Sigma) \otimes H^1(S^1)$. The equations of S^1-invariant solutions of (**) reduce to the following vortex equations (***) over Σ, for details see [6]. By the symmetry between L and L^{-1}, we may suppose that the degree $d = c_1(L^{-1}) \cdot \Sigma \geq 0$ is non-negative.

\[
\begin{cases}
\bar{D}_A \psi = 0 \\
F_A = -|\psi|^2
\end{cases}
\]

where A is a connection of $L^{-1} \to \Sigma$ and ψ is a section of $K^{1/2}_\Sigma \otimes L^{-1/2} \to \Sigma$. In this case the twisted spinor bundle is $W = K^{1/2}_\Sigma \otimes L^{-1/2} \oplus K^{-1/2}_\Sigma \otimes L^{-1/2}$, and the determinant line bundle is $\det W = L^{-1}$ over the Riemann surface Σ. Suppose that $E \oplus K^{-1} \otimes E \to X$ is a Spinc structure over an almost complex 4-manifold X and Σ is an embedded 2-manifold in X with self-intersection number $\Sigma \cdot \Sigma = 0$.

Theorem 2.3. Under above assumptions,

1. If a Spinc structure $E \oplus (K^{-1} \otimes E) \to X$ has a solution of the Seiberg-Witten equations, then the reduced vortex equations over Σ has a solution. In this case $2g(\Sigma) - 2 \geq c_1(L) \cdot \Sigma(= d)$ if $E = K^{1/2}_\Sigma \otimes L^{-1/2}$.

2. If $r = (2g - 2) - d \geq 0$, then the space of solutions of the vortex equations is identified with the symmetric product $s^r(\Sigma)$ of r copies of Σ.

405
Proof. We will sketch the proof of this theorem, for details see [6] and [13].

(1) The Seiberg-Witten equations (\(*\)) is reduced to the vortex equations (\(\ast \ast \ast\)) under the above conditions. If the vortex equations have a solution, then the degree \(c_1(K^1_\Sigma \otimes L^{-\frac{1}{2}}) \cdot [\Sigma] \geq 0\) is non-negative. So we have \(2g(\Sigma) - 2 \geq c_1(L) \cdot \Sigma\).

(2) If \(r = 2g(\Sigma) - 2 - c_1(L) \cdot \Sigma \geq 0\), then for any set of pairs:
\((x_1, n_1), \ldots, (x_k, n_k) \in X \times \mathbb{N}\) with \(\sum_{i=1}^{k} n_i = r\), there is a unique up to gauge equivalence, solution to the vortex equations \((\ast \ast \ast)\). □

3. Almost Complex Manifolds

It is a classical result of Wu that a closed 4-manifold \(X\) has an almost complex structure \(J\) with first Chern class \(c \in H^2(X, \mathbb{Z})\) if and only if \(c\) reduces modulo 2 to the second Stiefel-Whitney class \(w_2(X) \in H^2(X, \mathbb{Z}_2)\) and \(c^2 = 2\chi(X) + 3\sigma(X)\). Moreover for each such \(c\) there is unique one isomorphism class of \(J\). The space \(3CP^2\) of 3 copies of \(CP^2\) has an almost complex structure, but the \(2CP^2\) does not. By the vanishing theorem the almost complex space \(3CP^2\) has no basic class.

Let \(X_1\) be a closed symplectic 4-manifold. Let \(P\) be the Poincaré homology 3-sphere. Surgery on \(P \times S^1\) eliminating the generator of \(\pi_1(S^1)\) yields an integral homology 4-sphere \(X_2\) with \(\pi_1(X_2) = \pi_1(P)\). Let \(X = X_1 \# X_2\) be the connected sum of \(X_1\) and \(X_2\). The collapsing map \(f : X \to X_1\) induces an isomorphism \(f^* : H^2(X_1, \mathbb{Z}) \to H^2(X, \mathbb{Z})\). By the Wu’s theorem the cohomology class \(f^*(c)\) defines an almost complex structure on \(X\) if \(c \in H^2(X_1, \mathbb{Z})\) defines an almost complex structure on \(X_1\). However by [4] the space \(X\) cannot have any symplectic structure. The map \(f : X \to X_1\) induces identification \(\text{Spin}^c\) structures, and preserves the Seiberg-Witten invariants between \(X\) and \(X_1\).

Theorem 3.1. In the above notations, the space \(X = X_1 \# X_2\) has an almost complex structure, but does not have any symplectic struc-
Generalizes Thom conjecture for almost complex 4-manifolds

ture. There are a one-to-one correspondence between Seiberg-Witten invariants of X and ones of X_1.

Lemma 3.2. Let X_1 be an almost complex 4-manifold. Then the connected sum $X \equiv X_1 \# n\overline{CP^2}$ has an almost complex structure.

Proof. Let $c_1 \in H^2(X_1, \mathbb{Z})$ define an almost complex structure. Let the E_i ($i = 1, \cdots, n$) be the Poincaré duals of the exceptional spheres of the $\overline{CP^2}$'s. Let $c \equiv c_1 - E_1 - \cdots - E_n \in H^2(X, \mathbb{Z})$. Then the Euler characteristic $\chi(X) = \chi(X_1) + n$, and the signature $\sigma(X) = \sigma(X_1) - n$, and the intersection number $c^2 = c_1^2 - n$. Thus we have

$$2\chi(X) + 3\sigma(X) = 2(\chi(X_1) + n) + 3(\sigma(X_1) - n)$$

$$= (2\chi(X_1) + 3\sigma(X_1)) - n = c_1^2 - n = c^2.$$

The class c reduces modulo 2 to the second Stiefel-Whitney class $w_2(X)$. By Wu's theorem c defines an almost complex structure on X. \qed

If a cohomology class $c \in H^2(X, \mathbb{Z})$ defines a Spinc structure on X which has nonzero Seiberg-Witten invariant, then c is called a basic class of X.

Theorem 3.3 (Connected Sum) [1]. If K is a basic class of a closed, almost complex 4-manifold X, then $K \pm E_1 \pm \cdots \pm E_n$ are basic classes of the space $X \# n\overline{CP^2}$, where the E_i's are exceptional spheres of the $\overline{CP^2}$'s.

4. The Main Theorem

Now we are ready to prove the main theorem by using the results of previous sections.

Theorem 4.1. Let X be a closed almost complex 4-manifold with $b_2^+(X) > 1$, and have its canonical bundle as a basic class. Then the pseudo-holomorphic 2-dimensional submanifolds in X with non-negative self-intersection minimize genus in their homology classes.
Proof. Let \(u : \Sigma \to X \) represent a pseudo-holomorphic 2-dimensional submanifold in \(X \) with non-negative self-intersection. The almost complex structure on \(X \) descends to an almost complex structure on \(\Sigma \), here we identify \(\Sigma \) with its image \(u(\Sigma) \) in \(X \). Thus we have the adjunction formula:

\[
2g(\Sigma) - 2 = \Sigma \cdot \Sigma + K \cdot \Sigma
\]

here we use the same notation \(K \) as the Poincaré dual of the first Chern class of the canonical line bundle \(K \) to \(X \).

(1) Suppose that the self-intersection number \(\Sigma \cdot \Sigma = 0 \) is zero. The boundary of a tubular neighbourhood of \(\Sigma \) in \(X \) is diffeomorphic to the 3-manifold \(\Sigma \times S^1 \). For some positive number \(r > 0 \), embed \(\Sigma \times S^1 \times [-r, r] \) into \(X \) as an isometry. Since the canonical class \(K \) is a basic class, by the theorem [8] the restriction of \(K \) on \((\Sigma \times S^1) \times \mathbb{R} \) has a solution to the Seiberg-Witten equations which is a translation-invariant in a temporal gauge. Thus we have a solution to the 3-dimensional Seiberg-Witten equations for the restricted bundle \(K \to \Sigma \times S^1 \). As in [6] or [13] the equations descend to the vortex equations over \(\Sigma \) for the line bundle of degree \(d = K \cdot \Sigma \). The vortex equations has a solution if and only if the degree \(d \) is less than or equal to \(2g(\Sigma) - 2 \). Thus we have the inequality \(2g(\Sigma) - 2 \geq K \cdot \Sigma \).

(2) Suppose that the self-intersection number \(\Sigma \cdot \Sigma > 0 \) is positive. Then we can reduce to the case of zero self-intersection number by \(n \)-times connected sum of \(\overline{CP^2} \). Let \(\bar{X} = X \#_n \overline{CP^2} \) be the connected sum of \(X \) and \(n \) copies of \(\overline{CP^2} \), where we can think of the connected sums as being made at \(n \) points of \(\Sigma \). Let \(E_i \) \((i = 1, \ldots, n)\) be the exceptional spheres in the corresponding \(\overline{CP^2} \)'s. Let \(\bar{\Sigma} \) be the surface in \(\bar{X} \) obtained by taking a internal connected sum with the \(E_i \)'s in the \(\overline{CP^2} \)'s. Then the surface \(\bar{\Sigma} \) has the form \(\Sigma - E_1 - \cdots - E_n \) and self-intersection number \(\bar{\Sigma} \cdot \bar{\Sigma} = 0 \). By the connected sum formula the classes \(K \pm E_1 \pm \cdots \pm E_n \) are basic classes in \(\bar{X} \). Let \(\bar{K} \equiv K + E_1 + E_n \) be the sum of \(K \) and the \(E_i \)'s. Then the degree of the line bundle for \(\bar{K} \) over \(\bar{\Sigma} \) is

\[
\bar{K} \cdot \bar{\Sigma} = (K + E_1 + \cdots + E_n) \cdot (\Sigma - E_1 - \cdots - E_n) = K \cdot \Sigma + n = K \cdot \Sigma + \Sigma \cdot \Sigma.
\]

As in (1) we have \(2g(\bar{\Sigma}) - 2 \geq \bar{K} \cdot \bar{\Sigma} \). Thus we have the required
Generalizes Thom conjecture for almost complex 4-manifolds

inequality

\[2g(\Sigma) - 2 \geq K \cdot \Sigma + \Sigma \cdot \Sigma \]

which is equal when \(\Sigma \) is a pseudo-holomorphic curve in \(X \).

\[\square \]

Remark. If \(b_2^+(X) = 1 \), then the Seiberg-Witten invariants on \(X \) depend on the metric on \(X \). In [10] they define and use the negative Seiberg-Witten invariant for \(X \) to get the same result for compact Kähler surfaces. We may use the negative Seiberg-Witten invariant for almost complex 4-manifold with \(b_2^+ = 1 \).

References

Department of Mathematics, Ewha Women's University, Seoul 120-750, Korea

409