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WEAK SEMICONTINUITY FOR
UNBOUNDED OPERATORS

HYOUNGSOON KIM

ABSTRACT. Let A be a C*-algebra and A** its enveloping von Neu-
mann algebra. Pedersen and Akemann developed four concepts of
lower semicontinuity for elements of A**. Later, Brown suggested
using only three classes: strongly Isc, middle Isc, and weakly lsc.
In this paper, we generalize the concept of weak semicontinuity |1,
3] to the case of unbounded operators affiliated with A**. Also we
consider the generalized version of the conditions of the Brown'’s
theorem [3, Proposition 2.2 & 3.27] for unbounded operators.

1. Introduction and preliminaries

In [1], C. A. Akemann and G. K. Pedersen defined four concepts of
semicontinuity for elements of A**, the enveloping von Neumann alge-
bra of a C*-algebra A. Later, L.G. Brown [3] suggested using only three
classes AT, /I;’}l, and (Z;Z ) , and named them strongly lsc, middle lsc,
and weakly lsc, respectively. Then he made an extensive study on semi-
continuity [3]. Recently, the concepts of strong and middle semicontinu-
ity are generalized for unbounded operators in [9, 10]. In this paper we
generalize the concept and theory of bounded weak semicontinuous ele-
ments. Also we consider the generalized version of the conditions of the
Brown'’s theorem [3, Proposition 2.2 & 3.27] for unbounded operators.
Throughout this paper, A will denote a (non unital) C*-algebra, S(A)
the state space of A and Q(A) the quasi-state space of A. Equipped
with the weak* topology inherited from A*, Q(4) is a compact convex
set. It is well known that the enveloping von Neumann algebra of A
can be identified with the second dual of A, so it will be denoted by
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A™*. Let H, denote the universal Hilbert space of A. For M ¢ A**,
let M denote the norm closure of M in B(H,,)

Mg, ={z e M|z* =z}, and
My ={zeM|z>0}

For M C Aj;, M™ (resp. M,,) denotes the set of limits in A** of
monotone increasing nets (resp. monotone decreasing nets) of elements
of M. Let A denote the C*-algebra generated by A and the unit 1 of
A™, K s the Pedersen’s ideal of A, M(A) the multiplier algebra of A,
and QM (A) the quasi-multipliers of A.

A subset C of a topological space X (not necessarily Hausdorff ) is
called relatively (quasi-) compactif C is contained in a (quasi-) compact
subset of X. Throughout this paper A will denote the set of all rela-
tively compact open subsets of PrimA, the primitive ideal space of A
with hull-kernel topology. From [11, 5.39] it follows immediately that
Prim(/,) belongs to A for all a in (K4), where i, is the two sided
closed ideal generated by a. Applying (15, Lemma 5], we see that (C)
forms an increasing cofinal net where A is ordered by set inclusion. For
an open subset C of PrimA, I{C') denotes the closed two sided ideal of

A corresponding to C and p,. the central open projection corresponding
to 1(C).

b

2. Definition of WLSC(A) and main results

The generalization of strong semicontinuity was quite smooth due
to the cooperation of the quasi-state space Q(A) and the theory of
unbounded quadratic forms (see [9]). But for the concept of middle
and weak semicontinuity, there are some difficulties even though we
have several candidates.

In 1988, N. C. Phillips [15] obtained a new description of the multi-
plier algebra I'(K 4) of Pedersen’s ideal K4 of A as an inverse limit of
C*-algebras (pro C*-algebra) and derived a number of the results of [11]
directly from corresponding facts about inverse limits of C*-algebras.
Inspired by his description Middle semicontinuity was also generalized
for unbounded operators as well. We recall the definitions and refer to
[9, 10] for the details.
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Weak semicontinuity for unbounded operators

DEFINITION 2.1. Let h be a bounded below selfadjoint operator (not

necessarily densely defined) such that hn A**.

(a) h is called unbounded strongly lsc, denoted by h € SLSC(A), if
there exist a monotone increasing net (h;) in ,Zsa, h: = a; +X;1, such
that h;  h and \; 7 0.

(b) h is called unbounded middle lower semicontinuous (h € MLSC(A))
if there exists x in I'(K 4)+ such that h + z is in SLSC(A),..

For h bounded above selfadjoint operator, h is called unbounded strong,

middle upper semicontinuous (h €SLSC(A), MUSIC(A)) if —h is in

SLSC(A), MLSC(A) respectively.

In order to generalize the weak semicontinuity we are going to use
the same kind of considerations as in the middle case. Considering the
role of I'(K 4 ) in the theory of MLSC(A) we expect the quasicentralizers
of K 4 to be the elements both weakly lower and upper semicontinuous.
It turns out that in some cases an extra condition has to be imposed
on the quasicentralizers (see Theorem 2.3 below).

We have the following three conditions on an unbounded self-adjoint
operator h (possibly not densely defined) affiliated with A**:

(W1) YC € A, hp, is bounded below, and a*ha € SLSC(I(C)) for
all a in I(C) where a*ha denotes the operator that satisfies
(a*ha, p) = (h,p(a* - a)) for all ¢ in Q(I{C)).

Note: Even if h is densely defined, a*ha may not be densely
defined.

(W2) YC € A, hp, is bounded below, and (hp,)" is lower semicon-
tinuous on S({(C)).

(W3) YC € A, there exists a net (z;) in [[(C)™] such that z;  hp,..

sa

PROPOSITION 2.2. (W3) = (W2) = (W1).
Proof. (W3)=(W2): Let (x;) be a net in [f(\EY)m]— such that z;

hp. . By [3, Theorem 3.3], Z; is lower semicontinuous on S (1(C)), and
z; /* (hp.). Hence (hp,) is lower semicontinuous on S(I(C)).
(W2)= (W1): Let ¢; — ¢ in the weak* topology of Q(I(C)).
Then, for any a in I(C), ¢;(a* - a) — @(a* - a}, and ||p;(a* - a)]| —
lg(a* - a)|l. Since (hp,.) is lower semicontinuous on S(Z(C)), this im-
plies (a*ha, p) < lixginf(a*ha,cpi). Therefore a*ha is in SLSC(I(C)).00

449



Hyoungsoon Kim

REMARK. Note that the condition ((M1): YC ¢ A, 3¢ > 0 such
that (h+Ac)p. € SLSC(I(C))+) in [10] clearly implies (W3). And each
of the conditions (W1)-(W3) yields the same concept of weak continu-
ity. All of them imply continuous elements to be locally bounded; i.e.,
if h and —h both satisfy any one among (W1)-(W3) and A is densely
defined, then Ap. is bounded and hp_ is in QM (I(C)) for all C in A.
Conversely if h satisfies the condition that hp, € QM (I(C)) for all C
in A then it is easy to see that h and —h satisfy (W3). Also h is a
quasicentralizer of K4 by the operation h(z,y) = zhy for all z and y
in K A-

Let QI'(K 4) denote the set of quasicentralizers of K 4 and
QIo(Ka) ={hnA™ | hp, € QM(I(C)), vC € A }.

In general, QI'(K ) is strictly bigger than QIp(K 4). For example,
let A = K then K, is the set of finite rank operators and M(A) =
QM(A) = T'(K4) = QIv(Ka) = B(H). But QI'(K,) is the set of
everywhere defined quadratic forms on H. Such forms may not even
be represented by linear operators on H. Nevertheless, the following
theorem follows from Brown [4].

THEOREM 2.3. If A cannot be decomposed in the form A1®E, where
E = K(H) for an infinite dimensional Hilbert space H, then QI'(K 4)
can be identified with QIH(K 4).

We do not know whether the conditions (W1)—(W3) are equivalent.
In order to consider a more general situation, we will take (W1) as our
definition for unbounded weak semicontinuity.

DEFINITION 2.4. Let h be a self-adjoint operator (not necessarily
densely defined) such that hn A**. Then h is called unbounded weakly
lower semicontinuous (h € WLSC(A)) if h satisfies (W1); i.e., for all C
in A, hp is bounded below and a*ha is in SLSC(A) for all a in I(C).
Also h is called unbounded weakly upper semicontinuous (h eWUSC(A))
if —h is in WLSC(A). As a special case, we denote by WLSC%(A)
(resp. WUSC?(A)) the set of all densely defined h in WLSC(A) (resp.
WUSC(A)).
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Weak semicontinuity for unbounded operators

PROPOSITION 2.5. Let the superscript ¢ stands for densely define-
ness. Then
(a) h € (AT) <= h € WLSC(A) and h is bounded.
(b) WLSC?(A) N WUSC?(A) = QI(KA)sa-
(¢) T(K4)sa = MLSC?(A) N WUSCY(A) = WLSC?(A) N MUSC?(A).

Proof. (a) Combine Propositions 2.4 and 2.24 of {3].
(b) See the remark after Proposition 2.2.
(c) By [3, Proposition 2.3],

for each C in A. This implies the result by [10, Corollary 1.2]. O

PROPOSITION 2.6. Let I be an ideal of A with open central projec-
tion z.

(a) h € WLSC(A) = zh € WLSC(I).
(b) h € WLSC(A); = zh € WLSC(A), and zh € WLSC(I); .

Proof. (a) follows from the definition of WLSC(A) and [9, Proposi-
tion 3.12].

(b) It remains to prove zh € WLSC(A);. Since h € WLSC(A),
VC € A, a*ha € SLSC(I(C)) for all a in I(C). By [3, Proposition
2.18], a*zha = za*ha € SLSC(I(C))+ for all @ in I(C). Therefore zh €
WLSC(]).. O

PRrOPOSITION 2.7. If (I,) is an increasing net of ideals with open
central projections z, such that A = (|JI,)” and hn A}, then

sa’

h € WLSC(A) <= 2.h € WLSC(I,,), for all a.

Proof. Assume zo,h € WLSC(/,), for all a. Note that (Priml,) is
an increasing net and forms an open cover of PrimmA. Thus for each C in
A, there exists ap such that Priml,, D C. This implies that z4, > p.
and I,, D I(C). Hence hp, = zshp, and a*ha € SLSC(I(C)) for all
a € I(C). Therefore h € WLSC(A).

The converse follows from the definition of WLSC(A) and Proposi-
tion 2.6. O
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THEOREM 2.8. Assume 0 < hn A?*. Then

he WUSC(A) <= h™' € SLSC(A) and hp,, is bounded, VC € A.

Proof. If h € WUSC(A) then hp,. is bounded, and hence hp,, is in
[(If(\é)m)m]“ by definition and [3, Proposition 2.4]. Applying [9, The-
orem 3.18], we have (hp,) ' € SLSC(I(C))+ for all C in A. Therefore
h~! € SLSC(A)4 by [9, Theorem 3.19].

For the converse, we apply the Theorem 3.18 and 3.19 of [9] to get

hp. € ((I(C),,), ] forall Cin A. Hence h € WUSC(A) by definition.
0

In the proof of the following theorems we will use a certain Mé&bius
map. Let

(—%,oo) it6>0

(—o0, ~%) it 6 <0.

T
i@ =15, on

Note that fs is operator monotone on its domain such that f5 - f_5 =
f-6-fs =id and fs- f. = fs4c where defined. For a selfadjoint operator
h which is bounded below by a < 0, fs(h) (0 < § < —1) denotes the
bounded selfadjoint operator fs(h) & %(1 — pn). For k bounded above
by B > 0, we write f_s(k) = fosk)d(—=3)(1—pn), 0<d< %3

Let U denote the set of universally measurable e.ements of A** and
za¢ the central projection in A** which corresponds to the atomic part
of A** (See [14]). The following proposition shows that all kinds of
semicontinuous elements are completely determined by their atomic
parts.

PROPOSITION 2.9. For h in WLSC(A), z.h determines h com-
pletely.

Proof. Assume h; and hy are in WLSC(A) and z4hy = zgthe. We
will show that hip. = hop., VC € A; that is, (hyv,v) = (hyv,v), Vv €
pcH,. Note that p.A*™* = [(C)™ and p.H, is quasi-equivalent to
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the universal Hilbert space of I{C). By the Cohen-Hewitt factoriza-
tion theorem (see [7]), Vv € p.H,, 3a € I(C) and w € p,H, such
that aw = v. Since hi,hy € WLSC(A), a*hia, a*hea € SLSC(A).
Therefore fg(a*hia) € Am C U, i = 1,2, for sufficiently small pos-
tive §. Since the atomic representation is faithful on U ([14]), this
implies f:s(a*hla) = fg(a*hza), and hence a*hya = a*hga. Therefore
(hiv,v) = (hiaw, aw) = (a*hjaw,w) = (a*heaw, w) = (hgv,v), and we
are done. O

PROPOSITION 2.10. Ifh is in WLSC(A) and h is affiliated with the
set Z of central projections in A**, then h satisfies (M1).

Proof. Assume h € WLSC(A) and hnZ. For any C in A, there
is Ac > 0s.t. (h+ Ac)p. > 0 and a*ha € SLSC(I(C)) for all a in
I(C). Let (ea) be an increasing approximate identity of 7(C). Then

%

ed (h+ Ao)pe eo € SLSC(I(C))4+ and note that, for ¢, in Q(I(C)),

(e (h+ Ac)peed T (0a) = (b + Ac)pes puled - ed))
= ((h + Ac)poedv, edv)
= |((h + /\c)ﬂ?c)ieg_vll2
— lled ((h + Ac)pe) oll?  (since hn 2)

AR+ Ac)po) 2ol
(((h+ Ac)pov,v)
((h+2e)pe) (o).

o Rrl=

Il

Therefore ((h+ Ac)p. )" is lower semicontinuous on Q(J(C)), and hence
(h+ Ac)p. € SLSC(I(C))4+ by [9, Theorem 3.6 . O

REMARK. For hn Z, the above theorem implies that (W1)-(W3)
and (M1) are all equivalent. In this case h is also ¢-LSC by [10, Propo-
sition 3.3].

Now, we will investigate and generalize the conditions in the follow-
ing theorem for unbounded operators.
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PROPOSITION 2.11. (Brown 3, Proposition 2.2 and Theorem 3.27))
Consider the following conditions:

(a) \/O<e<h€A§';, 30 > 0 such that h — §1 € A™.
(b) 0<heAm = hecAm.
(c) Azy = (A7)~
(d) QM(A) = M(A).
Then (a) & (b) & (¢) and (a), (b), (¢c) = (d). Moreover, if A is
o-unital, then they are all equivalent.

PRrRopPOSITION 2.12. Consider the following conditions:

(a) For VO € A, V0 < e < he € SLSC(I(C)), 36 > 0 such that
hc — ép., € SLSC(I(C)).

(b) ForVC € A, 0 < he € MLSC(I(C)) = he = SLSC(A).

(c) For VC € A, h¢ € MLSC(I(C)) < 3 a net (h;) in e
such that h; Z‘\’jc. L

(') ForVC e A, I(C),. = [I(C)7]

(d) For¥C e A, MI(C)) = QM(I(C)).

Then (a) & (b) & (c) < (') and (a), (b), (c), (¢} = (d). Moreover,
if A is o-unital, then they are all equivalent.

Proof. (a)= (b): Assume 0 < hc € MLSC(I(C}). Since C is rela-
tively compact, it is easy to see that MLSC(I(C)) = R+ SLSC(I(C)).
Therefore there exists Ac in R such that he + Acp. € SLSC(I(C)).
Here, we may assume Ac > 0. Then, by the operator monotonicity of
the function fs5 and [9, Theorem 3.6), 0 < H(e)p. < fl(hc+/\(;pc) €
(1(C)) and hence

0< filhe + Acpe) — fi(Ae)pe

1 - Tinm
= 1T /\C fl(hC/(l + )\C)) € I(C)srz

Note that the given condition (a) implies that for V0 < € < he € I(C)
there exists & > 0 such that hc — dp. € I(C)™. So, _So, applying [3,

Proposition 2.2] for I(C), we have f;(h¢ /(14 Ac)) € I(C)™. Therefore
hc belongs to SLSC(I(C)) by [9, Corollary 3.10].
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(b)= (c): Assume that there exists a net (h;) in [/(C)..] such that
hi /7 hc. Let A = |lhy,|| for some i, then 0 < h; + Ap, € [I(C)7:]
for ¢ > 4g. Since given (b) implies the condition (ii) in [3, Proposition
2.2] for each I(C), applying the proposition, we have 0 < h; + Ap. €
[1(C)] ¢ MLSC(I(C)), for i > ip. Then by (b), 0 < h; + Ap,. €
SLSC(I(C))+ for i > ig and hence hg + Ap. € SLSC(I(C))+ as the
limit of monotone increasing net. This means he € MLSC(I(C)).

The converse is obvious.

(c)= (¢'): Let he € [I(C)]}] . Then, since the lower semicontinuity
is preserved under monotone increasing limits, there exists a net (h;)
in [I(C)7.] such that h; /* hc. By the given condition (c), we have
he in MLSC(I(C)). Since h¢ is bounded and C is relatively compact,
this implies that he € I(C)7

(¢)= (a): Assume that 0 < € < he € SLbC( (C)) Then, by
9, Theorem 3.18 (a)] and (¢), ha' € [(Z(C),,),.]” = ( )sa)m
Applying [9, Theorem 3.18 (b)], we obtain that there exxsts d > 0 such
that he — ép., € SLSC(I(C)).

(c')= (d): This follows easily from [1] and [14].

If A is o-unital, then I(C) is o-unital such that (d) is equivalent to
(¢) by [3, Theorem 3.27]. O

The conditions in the above Proposition are sort of local generaliza-
tion of those in [3, Proposition 2.2] for all ideal I(C) of A where C is a
relatively compact open subset of PrimA. And we obtained the same
kind of implications as in Proposition 2.11. However, it seems not very
smooth with the global generalization of the conditions. The result that
we have obtained so far is as follows.

ProrosiTION 2.13. Consider the following conditions:
(a) ForvV0 < e < h e SLSC(A), 36 > 0 such that h—81 € SLSC(A).
(b) 0<he MLSC(A) = he SLSC(A)+.
(c) he MLSC(A) & h e WLSC(A).
(d) T(Ka) = QIo(Ka).
Then [Prop 2.12 (b)] = (b) = (a) & [Prop 2.1! (a)] and (c)= (d)
& [Prop 2.12 (d)] .
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Proof. [Prop 2.12 (b)] = (b): Let 0 < h € MLSC(A). Then it is
easy to see that 0 < hp, € MLSC(I(C)) for all C = A by [9, Theorem
3.19] and [10, Corollary 1.2]. Therefore hp, € SLSC(I(C))4 for all
C € A by given condition, and this implies that h € SLSC(I(C)),.

(b) = (a): Let 0 < e < h € SLSC(A). Then 0 < h — ¢l €
R+SLSC(A) ¢ MLSC(A). By the given conditicn, h — €l belongs to
SLSC(A)..

(a) < [Prop 2.11 (a)] : Let 0 < € < h € SLSC(A). Then 0 <
fi(e) < fi(h) € A7 by [9, Theorem 3.6]. Applyinz the condition (a),
we have that there exists § > 0 such that fi(k) — 51 € A7, Choose a
4 small enough such that f_;(6) < e and 0 < fi(h) — §1. Then a little
computation shows that

h—f @)L < fa(filh) — f-1(o)1

= (s (A1() - 81)) € SLSC(A).

The converse is obvious.
(c) = (d) and (d) < [Prop 2.12 (d)] follow from [10, Corollary
1.2] and the Remark after Proposition 2.2. O
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