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A NECESSARY AND SUFFICIENT
CONDITION FOR THE GENERALIZED
REGULAR RELATION TO BE TRANSITIVE

YOUNG CHAN LEE

ABSTRACT. In this paper we define the generalized regular relations
with respect to homomorphisms and find some properties of those
in transformation groups. And we also investigate the equivalent
conditions for the generalized regular relations to be transitive.

1. Introduction

The regular relations, which are the generalizations of proximal re-
lations in transformation groups introduced by Yu [12]. The regular
relation is reflexive, symmetric and invariant, but is not in general tran-
sitive or closed. The proximalities and regularities play an important
role to characterize the transformation groups. Proximal transforma-
tion groups and regular minimal sets are closely connected with the
proximal relation and regular relation, respectively. In this paper we
define the generalized regular relations with respect to homomorphisms
and find some properties of those in transformation groups. And we
also investigate the equivalent conditions for the generalized regular
relations to be transitive.

2. Preliminaries

Let (X, T, h) be a transformation group. Then X is called the phase
space and T is called the phase group. If x € X,t € T, then we shall
write xt instead of h(z,t), when there is no danger of ambiguity. Instead
of (X,T,h), we shall write (X,T).
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Lett €T . Amaph*: X — X is called t-shift if ht(z) = h(z,t)
forallz € X. Let G = {h*|t € T}. Amap h, : T — X defined by
hz(t) = h(z,t) = xt is called the motion of the point z € X.

DEFINITION 2.1. Let (X, T) be a transformation group. A subset
A C X is called invariant if AT C A. A non-empty closed invariant
subset M C X is called a minimal subset if M does not contain a proper
closed invariant subset. If X is itself minimal, X is called a minimal
transformation group or minimal set.

Let x € X. The set zT is called the orbit of the point z. It is clear
that the orbit 2T is the smallest invariant subset of X. If y € T, then
T = yT. The set T is the smallest closed invariant set containing x,
and a set M is minimal if and only if M = zT for every point x € M.

Let {(Xi, T, h;)|i € I} be a family of transformation groups indexed
by aset I and let X = [[{X;|i € I}. Let usdefineamaph: XxT — X
as follows. If z =< x;li € I > and ¢ € T, then h(z,t) =< hi(z;)|i €
I >. It is easy to verify that (X,T,h) is a topological transformation
group.

DEFINITION 2.2. Let (X,T,h) and (Y,T,k) be topological trans-

formation groups. A continuous map 7 : (X,T) -» (Y, T)(or simply,
m: X —Y) is said to be a homomorphism if the diagram

X T .Yy

(1) | |

X .y
is commutative, i.e., 7(zt) = w(z)t (zr € X,t e T).

If Y is minimal, the homomorphism = is always onto. Especially,
if 7 is onto, = is called an epimorphism. If the homomorphism 7 is a
homeomorphism, r is called an isomorphism. A homomorphism 7 from
(X,T) onto itself (not necessarily onto) is called an endomorphism of
(X,T). and an isomorphism 7 : (X, T) — (X, T) is called an automor-
phism of (X,T). The set of automorphisms of (X,T) is denoted by
A(X).
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Let (X,T,h) be a transformation group and let R be a relation
in X. Then the relation R is called invariant if (z,y) € R implies
(h*(z),h*(y)) € Rforallt € T.

Let (X,T,h) be a transformation group with compact Hausdorff
phase space X. Let XX denote the set of all functions from X to X,
provided with the topology of pointwise convergence. Then for t € T,
ht : X — X is a map of X into X, hence an element of the compact
Hausdorff space XX. The enveloping semigroup E(X), or E of (X, T, h)
is the closure of {ht|t € T} in XX. The space X? is naturally provided
with a semigroup structure, if p,q € XX then pg: X — X is such that

z(pg) = (zp)q (z € X).

Throughout this paper it will be assumed that the phase spaces of
all transformation groups are compact Hausdorff space.

THEOREM 2.1. Let w: (X,T) — (Y,T) be an epimorphism.

(1) There exists a unique epimorphism #(E(X),T) — (E(Y),T)
such that the diagram

E(X) —2— E(Y)
(2) Hxl Or(x)
X

commutes (x € X). Moreover 7 is also a semigroup homomor-
phism.

(2) If (Y, T) coincides with (X,T), then the map 7 in (1) is the
identity map.

(3) If K is a right ideal of E(Y), then #=1(K) is a right ideal of
E(X). Moreover, if K is a minimal right ideal of E(Y'), then
there exists a minimal right ideal I of E(X) such that #(I) = K.

(4) If K is a minimal right ideal of E(Y) and v € K is an idempo-
tent, then there is an idempotent u € E(X) belonging to some
minimal right ideal of E(X) such that #(u) = v.
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Proof. See ([5], Theorem 1.4.21, p.30). O

A non-empty subset I C E(X) is called a right ideal of E(X) if
IE(X) C 1. A right ideal I C E(X) is said to be a minimal right ideal
if it does not contain proper subsets which are right ideals of E(X).

Let v and v be two idempotents of E(X). We say that v and v are
equivalent tdempotents, writing u ~ v if wv = v and vu = v. Ifu ~ v
and v ~ w, then vw = wvw = wv = v and wu = wou = wv = w. Thus
u ~ w. Hence, above relation is indeed an equivalence relation.

LEMMA 2.1 [5]. Let S be a compact space provided with a semi-
group structure such that the left multiplication by each element is
continuous. Then S contains an idempotent u.

The compact Hausdorff space X carries a natural uniformity U[X]
whose indices are all the neighborhoods of the diagonal in X x X.

DEFINITION 2.3. Let (X, T) be a transformation group. Two points
z and y of X are called prorimal if for every index a € U[X] there
exists an element ¢ € 7" such that (zt,yt) € a. Two points, which are
not proximal are called distal. The set of all proximal pairs of points
is called the proximal relation and is denoted by P(X,T) or, simply
P(X). (X,T) is said to be a prorimal (resp. distal) transformation
group if the proximal relation equals X x X (resp. A(X) the diagonal
of X).

LEMMA 2.2 [6]. Let (X,T) be a transformation group, andz,y € X.
Then the following statements are pairwise equivalent:
(1) (z,y) € P(X,T).
(2) There exists p € E(X) with xp = yp.
(3) There exists a minimal right ideal I in E(X) such that zq =
ya(g € 1).

Let (X,T) be a transformation group, and = € X. Then z is called
an almost periodic point if T is a compact minimal subset of X.

LEMMA 2.3 [6]. Let (X,T) be a transformation group, E its en-
veloping semigroup, I a minimal ideal in E, and x € X. Then the
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following statements are equivalent:
(1) z is an almost periodic point of (X, T).
(2) There exists an idempotent u € I with zu = z.

LEMMA 2.4 [6]. Let (z,y) € p(x) and let (x,y) be an almost periodic
point of (X x X,T). Then z = y.

THEOREM 2.2. Let (X,T) and (Y, T) be transformation groups. m :
(X,T) — (Y,T) be an epimorphism and let # : X x X — Y xY
be the map defined by 7(xy,22) = (w(z1),m(z2)). Then the following
statements hold:

(1) If P(X,T) is an equivalence relation, so is P(Y,T).

(2) #P(X,T) C P(Y,T).

(3) If(Y,T) is pointwise almost periodic, then *P(X,T) = P(Y,T).

Proof. See ([6], Proposition 5.25, p.41). |

A minimal transformation group is said to bz regular minimal if it
is isomorphic to a minimal right ideal in the enveloping semigroup.

J. Auslander [2] proved that a minimal transformation group (X, 7’)
is regular minimal if and only if (z,y) € X x X implies there is an
endomorphism ¢ of (X, T') such that ¢(x) and y are proximal. In regular
minimal transformation group, every endomorphism is , in fact, an
automorphism [2].

DErFINITION 2.4 {12]. Let (X,T) be a transformation group and
z,y € X. Then z and y are regular if there exists a ¢ in A(X) such
that (¢(z),y) € P(X,T). The set of all regular pairs in X is called the
regular relation and is denoted by R(X,T) or, simply R(X).

Note that a minimal transfortion group (X,7) is regular minimal if
and only if R(X,T) =X x X. .

Yu [12] showed that if P(X,T) is transitive, then so is R(X,T'), but
the converse is not always true.

THEOREM 2.3 [12]. Let (X,T) be a transformation group. Then
the following statements are equivalent:

(1) R(X) is an equivalence relation.
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(2) Let u and v be the equivalent idempotents in any two minimal
right ideals of E(X). Then (zu,zv) € R(X) for allz € X.

We will generalize the above theorem in Theorem 3.6 with respect
to an epimorphism 7 : (X,T) — (Y, T).

3. The generalized regular relations
In this section, we define generalized regular relations in transforma-
tion groups.

DEFINITION 3.1. Let (X,T) and (Y,T) be transformation groups
and let m : (X,T) — (Y,T) be a homomorphism. Two points z; and
2 are said to be the regular with respect to = if 7(21) and 7(z2) are
regular in Y, ie., (7(x1),7(22)) € R(Y,T). The set of all regular pair
with respect to  is called the regular relation with respect to 7 and is
denoted by R.(X,T), or more briefly R,(X), that is,

Br(X,T) = {(z1,22) € X x X|(n(z1),7(z2)) € R(Y, T)}
= {(z1,22) € X x X|(¢n(z1), n(x2)) € P(Y,T)
for some ¢ € A(Y)}

Similarly, we also define the proximal relation with respect to w as
follows:

Pr(X,T) = {(z1,22) € X x X|(n(z1),7(z2)) € P(Y,T)}
We also denote Py (X, T) as Pr(X), simply. Clearly Pr(X) C Rr(X).

REMARK 3.1. If we take X = Y and 7 = 1y, the identity map of
X, then R.(X,T) coincides with R(X,T).

REMARK 3.2. Given a homomorphism 7 : (X,T) — (Y, T), define
S = {($1,£E2) € X x X]ﬂ'(.’]}l) = 7['(;1;2)}
Then

(1) S is a closed invariant equivalence relation and obviously § C
R, (X).

(2) If (Y,T) is distal transformation group, then S = R, (X).

(3) If (Y,T) is a regular minimal, then R,(X) = X x X.
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LEMMA 3.1. Let z € X, p € E(X) and ¢ an endomorphism of
(X,T). Then ¢(zp) = ¢(z)p.
Proof. See([1], Lemma 1, p.606). O

THEOREM 3.1. Let (X, T) and (Y, T) be transformation groups and
let m: (X,T) — (Y,T) be a homomorphism. The following hold:

(1) R.(X) is a reflexive, symmetric and invariant relation.
(2) If E(Y) contains just one minimal right ideal, then R.(X) is an
equivalence relation.

Proof. (1): Obvious.
(2): By (1), we only show that R, (X) is transitive. Let I be the
only minimal right ideal in E(Y), and let (z,y) € Rx(X) and (y,2) €
R.(X) . Then (hr(z),n(y)) € P(Y) and (kn(y),7(z)) € P(Y) for some
automorphisms h and k of Y. Since E(Y) contains just one minimal
right ideal I, we have, from Lemma2.2, that

(3) hr(z)p = 7(y)p and kn(y)p = 7(z)p
for all p € I. It follows that

(4) hkn(z)p = kn(y)p = w(z)p
for all p € I. Since hk € A(Y'), we have (w(x),n(2)) € R(Y). Therefore
(z,2) € Rx(X). O

THEOREM 3.2. R(Y) is an equivalence relaticn if and only if R, (X)
is an equivalence relation for all homomorphisms = : (X,T) — (Y, T).

Proof. Necessity. (z,y) € R.(X) and (y,2) € R:(X). Then (n(x),
7(y)) € R(Y) and (n(y),n(z)) € R(Y). Since R(Y') is an equivalence
relation, (7(z),7(z)) € R(Y'). This shows that (z,2) € R.(X).

Sufficiency. If we take X =Y and 7 =1y : Y — Y, then R,(X) =
R(Y). 0O

LEMMA 3.2. Let (z,y) € R(Y) and h € A(Y), then (h(z),h(y)) €
R(Y).
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Proof. There exists k € A(Y') such that (k(z),y) € P(Y). Hence
k(x)p = yp for all p in a minimal right ideal 7. We also have

(5) hk(z)p = h(k(z)p) = h(yp) = h(y)p,

that is,

(6) (hk(z), h(y)) = ((hkh™")h(2), h(y)) € P(Y).

Since hkh~! € A(Y), we obtain (k(z), h(y)) € R(Y). O

THEOREM 3.3. Let 7 : (X,T) — (Y,T) be an epimorphism, and
let u and v be the idempotents in E(X). If R,(X) is an equivalence
relation, then (zu,zv) € R (X) forallz € X.

Proof. Let 7 : E(X) — E(Y') be the homomorphism induced by .
Let 7(u) = v’ and #(v) = ¢’. Then v’ and v’ are idempotents in E(Y).
Let z € X, then we have, from Lemma 2.2, that

(7) (m(zu), m(z)) = (r(z)u’,7(z)) € P(Y) C R(Y),
and

(8) (n(2), m(zv)) = (7(z), 7(z)v') € P(Y) C R(Y),
that is,

(9) (zu,z) = Ro(X) and (z,zv) = R, (X).

Since R, (X) is an equivalence relation, we have (zu, zv) € R,(X). O

Let w: (X,T) — (Y,T) be an epimorphism and # : E(X) — E(Y)
be the induced map by n. Let u be an idempotent in E (Y). Consider
7' (u). Since 7~!(u) is a closed subset of the compact Ty-space E(X),
7~ 1(u) is also compact T». Then the restriction Lp|7r,‘1(u) ofL,: E— E

is continuous. Therefore, by Lemma 2.1 7! (u) contains an idempotent

u*.
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THEOREM 3.4. Let 7 : (X,T) — (Y,T) be au epimorphism and let
u and v be idempotents in E(Y). If R,(X) is an equivalence relation,
then (m(z)u,n(z)v) € R(Y) forallz € X.

Proof. By the above consideration, we can find idempotents «* and
v* in 77! (u) and 77 1(v), respectively. Suppose that R,(X) is an equiv-
alence relation. By Theorem 3.3, we have (zu*,zv*) € R,(X) for all
€ X, that is

(10) (m{z)u, w(z)v) = (w(zu*), 7(xv*)) € R(Y)
for all z € X. O

Let I and K be minimal right ideals of E(Y’), and let v be an idem-
potent of K. Let L, : [ — K defined by L,(p) = vp. Then L, is an
isomorphism.

Foreach y € Y , the map 9111 :p > ypof I into Y is a homomorphism.

THEOREM 3.5. Let m: (X,T) — (Y,T) be an epimorphism, and let
u and v be the equivalent idempotents in any two minimal right ideals
of E(Y). If (n(z)u,n(z)v) € R(Y) for all z € X, then R,(X) is an
equivalence relation.

Proof. Let (z,y) € Rx(X) and (y,z) € Rr(.X(). There exist auto-
morphisms k1 and kg of (Y,T) such that (kin(r),7(y)) € P(Y) and
(kem(y),m(2)) € P(Y). Therefore, there exist minimal right ideals I
and K of E(Y) such that ’

(11) kim(z)p = w(y)p and kom(y)q = m(2)q

forallpe I and g€ K.
Since L, is an isomorphism, for ¢ € K there exists pg € I such that
L,(po) = q. Therefore,

(12) kam(y)vpo = kam(y)q = 7(2)q = m(z)vpo.
By the hypothesis,
(13) (kom(y)u, ko (y)v) € R(Y) and (w(2)u w(z)v) € R(Y).
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So, there exist automorphisms ky and hy of (Y,T) such that

(14) (hikom(y)u, kam(y)v) € P(Y), (hom(z)u,7(2)v) € P(Y).

Since

(15) (hakam(y)u, ko (y)v)u = (hikom (y)u, kom(y)v)
and

(16) (ham(2)u, 7(2)v)u = (ham(2)u, 7(2)0),

we know, from Lemma2.3, that (hikem(y)u,kom(y)v) and (hom(z)u,
m(z)v) are almost periodic points of (Y x Y,T). Hence we have, from
Lemma?2.4, that

(17) hikem(y)u = kym(y)v and hom(2)u = (2)v.
Therefore

hikam(y)po = hikem(y)upo = kam(y)vpo

(18) = 7m(z)vpo = ham(z)upy = hom(2)po.

From (3.10) and (3.17), it follows that

(19) hy ' hikam(y)po = hy *hikakym(z)po = 7(2)po,

which implies

(20) (hy thikokym(z), w(2)) € P(Y).

This shows that (z,z) € R;(X). This completes the proof. O

From Theorem 3.4 and Theorem 3.5, we obtain the following.

THEOREM 3.6. Let 7 : (X,T) — (Y,T) be an epimorphism. The
following are equivalent:

(1) R,(X) is an equivalence relation.
(2) Let u and v be the equivalent idempotents in any two minimal
right ideals in E(Y'). Then (w(x)u,n(z)v) € R(Y) forallz € X.
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COROLLARY 3.1. Let 7 : (X,T) — (Y,T) be an epimorphism. If
R(Y') is a closed subset of Y x Y, then R.(X) is an equivalence relation.
Proof. Let v and v be the equivalent idempotents in any two minimal
right ideals of E(Y'). For every z € X, (w(z)u,n(z)) € R(Y) and since
R(Y') is closed, we obtain (7(z)u,n(z))v = (n(z)u,n(z)v) € R(Y) for
all z € X. Therefore, R,(X) is an equivalence relation. d

COROLLARY 3.2. Let I, K be minimal right ideals in E(Y). For a
given epimorphism 7 : (X,T) — (Y, T), the following are equivalent:

(1) Rr(X) is an equivalence relation.
(2) Thereis a ¢ € A(Y) such that the following diagram commutes

L

I K
(21) 9;(z)l le,’f(z)
y —% Ly

Proof. (1) implies (2). Suppose that R.(X) is an equivalence rela-
tion. Then by Theorem 3.6, (7(z)u,7(z)v) € R(Y) for u ~ v in E(Y).
This means that there is a ¢ € A(Y') such that (¢7(z)u, 7(z)v) € P(Y).
Since (¢7(z)u, m(z)v) is an almost periodic point, we obtain

(22) or(x)u = w(z)v = 7(x)vu,
which shows that
(23) ¢ 0 0714y (1) = 67, 0 Lu(u)

and the diagram commutes.
(2) implies (1). Suppose that there exists a ¢ £ A(Y') such that the
diagram (3.21) commutes.

Let u ~v. Then ¢ o Gfr(x)(u) = fo(w) o Ly(u), ie.,
(24) or(z)u = 7(z)uv = 7(x)v,

which implies (7(z)u, 7(z)v) € R(Y'). Therefore R,(X) is an equiva-
lence relation. (]

479



Young Chan Lee

THEOREM 3.7. Let (X,T) and (Y, T) be transformation groups and
let m: (X,T) — (Y,T) be an epimorphism. The following are equiva-
lent:

(1) Rx(X) is an equivalence relation.

(2) For (n(z),n(y)) € P(Y) and (r(y),m(2)) € P(Y), there exists

a ¢ € A(Y) such that (¢7(z),n(z)) € P(Y).

Proof. (1) implies (2). Let (x(z),n(y)) € P(Y) and (n(y),n(z)) €
P(Y). Then (z,y) € Rr(X) and (y,2) € R.(X), and thus (z,z) €
Rr(X), thatis, (m(z),7(z)) € R(Y). Therefore, there existsa ¢ € A(Y)
such that (¢m(z), 7(2)) € P(Y).

(2) implies (1). It is sufficient to show that R, (X) is transitive. Let
(z,y) € Rr(X) and (y,2) € Rx(X). There exist ¢; and ¢y in A(Y)
such that (¢17(z), 7(y)) € P(Y) and (¢27(y), 7(2)) € P(Y).

We also have, from Theorem2.2, that (¢2¢17(z), dom(y)) € P(Y),
and (@27 (y), 7(z)) € P(Y). By the assumption, there is a ¢3 in A(Y)
such that

(bag2017(2),7(2)) € P(Y).

Since ¢3¢2¢1 isin A(Y'), it follows that (7 (z), n(2)) € R(Y) and (z, 2) €
R (X). O
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