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THE DEFORMATION SPACE
OF REAL PROJECTIVE STRUCTURES
ON THE (*nynqnzng)-ORBIFOLD

JUNGKEUN LEE

ABSTRACT. For positive integers n; > 2,7 = 1,2,3,4, such that
> 711_, < 2, there exists a quadrilateral P = P, P, P3P, in the hyper-
bolic plane H? with the interior angle aat P Let ' C Isom(H?)
be the (discrete) group generated by reflections in each side of P.
Then the quotient space H2/I' is a differentiable orbifold of type
(*rinangng). It will be shown that the deformation space of RP2-
structures on this orbifold can be mapped continuously and bijec-
tively onto the cell of dimension 4 — [{i|n; = 2}|.

1. Introduction

Goldman showed that the deformation space of reflection groups in
the convex k-gons of type (nins---n;) in the projective plane is home-
omorphic to the cell of dimension 3k — 8 — |{¢|n; == 2}| for k > 4, n; >
2,> = < k—2. (See Goldman [2], pp 58-64.) We note that it is
similar to“the deformation space of real projective structures on the
(*ning - - - ng)-orbifold”. (The definition of (*n 7, - - - ng)-orbifold will be
given in the next section.) We will consider the special case k = 4:
We will define the deformation space of real projective structures on the
(*ningnanyg)-orbifold and show that it can be mapped continuously and
bijectively onto the cell of dimension 4 — |{i|n; = 2}| by concrete matrix
calculations, using the deformation theorem in Goldman [3]. But the re-
striction & = 4 is actually unnecessary. Our method can be used equally
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well in the cases £ > 4. We restrict ourselves to the case & = 4 only to
avoid some complications.

2. Orbifolds

This section will be devoted to some basic definitions and proposi-
tions about orbifolds. See Ratcliffe [5], Scott [6], or Thurston [7] for
more details. Roughly speaking, an orbifold is a topological space locally
modeled on open subsets of R™ quotient out by some finite groups. More
precisely,

DEFINITION 1. An n-orbifold O with underlying space Xy is a Haus-
dorff topological space X equipped with a covering by open sets {U;}
closed under finite intersection such that
e to each Uj; is associated a finite group I'; and an action of I'; on an
open subset I/J\'Z of R and a homeomorphism ¢; : ﬁi /T — U;

e whenever U; C Uj, there is an inclusion f;; : I, — I'; and an
embedding cz;ij U — Uj equivariant with respect to f;; such that
the following diagram commutes :

o % 0
3 \
ST 5/ fisTi
4
d ¢)z j/Fj
1

U, C Uj

DEFINITION 2. The singular set £ of an orbifold @ is the set of all
points z in X such that in each local coordinate system U = U/T" near
z, and for each 7 in U projecting to x, the stabilizer I'; of Z is nontrivial.

EXAMPLE 3. A manifold without boundary may be regarded as an
orbifold whose singular set is empty.

DEFINITION 4. Let O be a 2-orbifold. A point x € X is a reflector
if there is a local coordinate U — R?/Z, near x where Z, acts as the
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reflection in a line through 0 € R? and z corresponds to 0. A point
y € Xo is a corner reflector of order m if there is a local coordinate
V — R?/D,,, near y where D,,, acts as the dihedral group of order 2m
generated by reflections in two lines through 0 which form an angle of
size m/m and y corresponds to 0.

EXAMPLE 5. Let ny,ny,--- ,n; > 2 be positive integers. The (*nn,

.- ng)-orbifold is a 2-orbifold with the two-dimensional disk as its un-

derlying space and with the boundary of the disk as the singular set such
that

e there are k corner reflectors z; of order n; on the boundary lying in
the (cyclic) order z), zg, - - - , k.
¢ the other boundary points are reflectors.

DEFINITION 6. A covering orbifold of an orbifold @ is an orbifold O
with a projection p : X5 — X0 such that

°p is a local covering; that is, each € X5 has an open neighborhood

U homeomorphic to U/r (in the sense of ‘above definition) such that

p(U) is an open set U’ homeomorphic to /T for some group IV D T
and the following diagram commutes :

u;wr — v/
- .
v o U
® p is an even covering, that is, each z € Xo has an open neigh-
borhood V homeomorphlc to V /T for which each component U, of

p~1(V) is isomorphic to V/ I'; for some subgroup I'; C I such that
the following diagram commutes

\: 1
u, L v
From now on, “covering” will mean orbifold covering.

PROPOSITION 7. An orbifold has a universal cover. In other words, if
r € Xo — Yo is a base point for an orbifold O, then there is a (orbifold)

covering p : O — O with base point & (with p(Z) = #) such that for each
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other covering p/ : P — O with base point &’ (and p'(Z')

= ) there isa
unique lifting g : © — P of p to a covering of P with q(z) =

Note that the universal cover is unique; that is, if z € Xp — & and

: O; — O, i = 1,2, are universal coverings with p;(Z;) = = then there

1s a homeomorphism «a : (91 — (92 such that «,a~! are coverings with
a(Zy) = .

DEFINITION 8. Let p: @ — O be an orbifold covering. A deck trans-
formation of the covering is a homeomorphism v : @ — @ such that
poy =p.

DEFINITION 9. The fundamental group 7, (O) of an orbifold @ is the
group of deck transformations of the universal covering.

3. The deformation spaces

In this section, we will see the definition of the deformation space of
real projective structures on an orbifold.

PROPOSITION 10. The quotient space of a connected manifold M by
a group I' which acts faithfully and properly discontinuously on M is an
orbifold (which we will denote by M/I'). The quotient map M — M/T
is an orbifold covering. If, in addition, M is simply connected, then it is
the universal covering and 7;(M/T') may be identified with I .

Henceforth we will consider only orbifolds of the form M / [, where
Mis a simply connected differentiable e manifold without boundary and

I' is a group of diffeomorphisms of M acting faithfully and properly
discontinuously on it.

DEFINITION 11. Let X be a real analytic n-manifold and G a group
of analytic diffeomorphisms of it. Let ¢ be an orbifold M /T. (So T =
m(O).) Then a development pair of an (X, G)-structure on O is a pair
(dev, H) satisfying the following:

o dev: M — X is an immersion.

e H € Hom(I',G) : the set of all group homomorphisms of T into G.

e H is equivariant with respect to dev, that is, devoy = H(y) o dev :

M——»Xforeach’yél‘.
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For a development pair (dev, H), dev is called a developing map of the
structure and H the holonomy (homomorphism) corresponding to dev.

By the first and third requirements in the above definition, the holo-
nomy is determined by the developing map. That is, if both (dev, H;)
and (dev, Hy) are development pairs then H; = H,.

EXAMPLE 12. Let T be a subgroup of Isom(H?) acting properly dis-
continuously on H?. Since H? is simply connected, the quotient map
H? — H?2?/T is the universal orbifold covering. A development pair
of a real projective structure (i.e. (RP? PGL(3,R))-structure or RP%-
structure) on this orbifold is a pair (dev, H) such that

e dev : H? — RP? is an immersion.

e H € Hom(I', PGL(3,R)).

e devoy = H(y) odev: H? — RP? for each v € I.

Now we can define the deformation space of RP2-structures on the
orbifold @ = M/T. For convenience, PGL(3,R) will be identified with
SL(3,R) and G will be used sometimes in place of them. Let ®'(O)
be the set of all developing maps of RPQ—struCEEres on O. We topol-
ogize D'(O) regarding it as a subspace of C°(M,RP?) with the weak
topology. (For the definition of the weak topology, see Hirsch [4].) We
also topologize Hom(I', G) by the compact-open topology. Since I is
countable and discrete, the compact-open topology equals the pointwise
convergence topology. Assigning to each developing map the holonomy
corresponding to it gives a map hol, : ©'(O) — Hom(T', G), which can
be shown to be continuous. Fix a point g € O and &y € M pro-
jecting to it. Let Diff,(O) be the identity component in the group
{F € Diff (M) | f(Zo) = 70, foy =70f Vv e T} Diff(O) acts
on ©'(O) by composition to the right. Let ©(O) be the quotient space
D'(O)/Diff o(O). Since hol; is constant on each orbit of the action, it
induces holy : D(O) — Hom(T', G). Moreover there are actions of GG on
both D(0) and Hom(I'",G) : G acts on ®'(O) by compositions to the
left. Such an action projects to an action of G on D(0). On the other
hand, G acts on Hom(I', G) by conjugations. It can be readily checked
that hol, induces a well-defined map hol : ©(0)/G — Hom(I',G)/G.
We denote D(O)/G by T(O) and call it the deformation space of RP?-
structures on (0. We remark that if O itself is a manifold , then hol, is
a local homeomorphism. See Goldman [3] for more details.
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4. Convex real projective structures

By an affine patch in the projective plane, we mean the complement
of a projective line of RP2. An affine patch has a natural structure of
an affine plane. Then a conver set in RP? is an affinely convex subset
of an affine patch in RP?. Now, as in the preceding section, let O be
an orbifold M /T'. The deformation space €(O) of convez real projective
structures on () is the subspace of T(O) consisting of equivalence classes
of real projective structures each of which has a developing map dev :
M — RP? an embedding onto a convex subset of RP2. It is known that
if O is a closed orientable surface of genus > 1, then the restriction to
€(0) of hol : F(0) — Hom(I',G)/G is an embedding onto a connected
component of Hom(I', G)/G. See Choi [1] for the proof. However for
orbifolds, we do not have the proof.

5. The main part

We turn to our main discussion. Let n; > 2,4 := 1, 2, 3,4, be integers
such that 3 (1/n;) < 2. There is a quadrilateral P = PP,P;P; in H?
such that the angle at P, is 7/n; for each i. Let I' be the subgroup of
Isom(H?) generated by reflections in each side of P. The group I' acts
properly discontinuously on H? and P is a fundamental domain for T.
Let us denote the reflection in the side P,P,,; by r;. Then I' admits a
presentation

S LU P S SO il __ - ;
<o, Ty Tl = (riri) T =1, =1,2,3,4 >

The quotient space O = H?/T is an orbifold of type (*ningnang) and the
quotient map H? — O is the universal covering. Throughout this section,
n;’s are fixed and O will always mean the (*ninungny) orbifold H2/T,
where I is as above. The manifold H? will be identified with the universal
cover of O and D', D, T, and ¢ will be used in place of D'(O), D(0),%(0),

and €(0O), respectively. Our main purpose is to prove

THEOREM 1. % can be mapped continuously and bijectively onto the
cell of dimension 4 — |{i|n; = 2}|.

It is known that € = %; that is, each developing map dev : H? —
RP? is an embedding onto a convex set in RP2. et $) be the image of
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hol. Then § is the subspace of Hom(I', G)/G consisting of equivalence
classes of homomorphisms each of which is the holonomy of an RP2-
structure on . Fix a projective quadrilateral p = p;papsps in RP?. (Let
p = [0,0,1],p = [1,0,1],p3 = (1,1,1],p4 = [0,1,1] in homogeneous
coordinates for ease of computations.) Since for any two projective bases
of RP? there is a unique element in G carrying one to the other, we have
a one-to-one correspondence between $ and h, where b is the subset of
Hom(I', G) consisting of holonomies corresponding to dev € ®' such that
dev(P,) = p; for t = 1,2,3,4. Thus the restriction to h of the quotient
map Hom(T,G) — Hom(I', G)/G is one-to-one and onto §).

ProorF OF THE THEOREM: We will show that b is the cell of dimen-
sion 4 — #{i|n; = 2}. It will follow easily from Lemmas 1 and 2.

LEMMA 1. H € Hom(I',G) is in b if and only if

-1 —a 0 --c 0 ¢—1
H(T‘l) = 0 1 0 H(T'Q) = --d -1 d

0 —-b -1 —c—1 0 c

-1 f —f -1 0 0
H(rs)=10 e —e—1 H(rg)=|—-y -1 0

0 e-1 —e -k 0 1
for a,b,c,d,e, f, g, h € R satisfying
d(a—b) =2+2cos(2n/ng), d<0 ifny>2 (A)
d=0,a=b ifng =2
(c—d+1)(—e+ f+1)=2+2cos(2n/n3), c—d+1<0 ifng>2 (B)
cmd+1=0, e+ f+1=0 ifng =2
fl—=g+h)=2+2cos(2m/ny), f>0 ifng>2 (©)
f:O,g:h ifng=2
ag =2+ 2cos(2m/m), a>0 ifny >2° (D)
a=0,9g=0 ifn; =2
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LEMMA 2. Theset ofall(a,b,c,d, e, f,g,h) € B® satisfying (A), (B), (C')
and (D) is the cell of dimension 4 ~ |{i|n; = 2}|.

PROOF OF LEMMA 1. We want to find all the holonomies correspond-
ing to dev such that dev(P;) = p;. Let dev be such a developing map and
H the holonomy corresponding to it. Let A; = H (r;) for ¢ = 1,2,3,4.
From the equivariance relation dev oy = H (7) o dev for each v € T we
see that A; fixes the (projective) line p;p;,, pointwise since r; fixes the
(hyperbolic) line P,P;;| pointwise. So we get the following equations:

S s

(1) Al 0 =10 VsteR
i s+t i _s+t—
I s+t\ | [s +t]

(2) Ao t = t Vs.t e R
| s+t ] _s+t~
- o\ ( .

(3) Azl s+t | = |s+t Vs,teR
i s+t J _S+tj
i 0 \] [ 0]

(4) A | s =1 s Vs,t € R
] s+t) | [s+t]

in the homogeneous coordinates.

From the relations r;2 = 1, we also have 4,2 = I.

(5) A2 =1
(6) AP =1
(7) A;;z == .[
(8) qu - [

Note that A; # I from the equivariance.
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Py P
A
r ('P) 1 (p)
P p
dev
P2 D2
in H? in RP?

Figure 1: A figure illustrating the equivariance

So (1) and (5) mean that A, is a reflection in the line p;p;. Solving them,
we get

-1 —a 0
(9) A=l0 1 0 a,beR
0 —-b -1
Solving (2) and (6), we get
—c 0 ¢—1
(10) A= -d -1 d ¢,d € R
—c—1 0 c
Solving (3) and (7), we get
-1 f —~f
(11) As=1| 0 e —e-—1 e,/ €R
0 e—-1 —e
Solving (4) and (8), we get
-1 0 0
(12) Ay=|-g -1 0| gheRr
—-h 0 1

Finally, we consider the relations (r;7;,1)™ ' = 1 together with the equiv-
ariance. These induce the relations (A;A;;1)%+ = I. We will only
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consider the relation (4;4,)" = I. Here we must take the two cases
(a)na = 2 and (b)ny > 2 separately.

(a) ng = 2: We have (4,4,)2 = [ or A4y = Ay A;. Substituting (9)
and (10) into this equation, we get d = 0,a = b from the following.

¢+ ad a —c—ad+1 c ac—be+b —c+1
—~d -1 —d = d ad—bd—1 —d
bd+c+1 b —bd — ¢ c+1 ac—bc+a —c

(b) ng > 2 : Since A;A, has 1 as an eigenvalue and (A4;A4,)™ = I,
Ay A; has e™/m2 and e=27ki/m2 a5 the other two coraplex eigenvalues for a
k€{1,2,--- ,ny—1}. Since 77, is the rotation around P, by the angle
21 /ny, A1 Ay has €*™/™2 and 2"/ a5 eigenvalues other than 1, by the
equivariance. So the trace of A A; equals 1+ 2cos(2m/ny). Thus we get
d(a —b) = 2+ 2cos(27/ny) > 0. Note that for small positive values 7,

ltar

1 —1-ar 1+br

. — T

Al T - r 4o

1 -1 —-br ]

in the homogeneous coordinates.

We must have d < 0. Suppose on the contrary that d > 0 or, equivalently,
a > b. Then the interiors of A,(p) and Ay A;(p) overlap. To see this, note
that (1+ar)/(1+br) > 1 for small positive values . So the intersection
of Ai(p) with an open neighborhood of p, looks like Fig. 2.

1
p
Ai(p)
P2 [1,7,’ 1] P3
/ﬁ%’ oo 1]
Figure 2
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Let U be a small open neighborhood of py such that dev restricted to an
open neighborhood U of P, is a diffeomorphism onto U and let W be one
of the four regions of U formed by the projective lines pyp; and psps in
Fig. 3.

W P

P2 ps
Az(lp/

Figure 3

Taking sufficiently small U, we may assume that W C A;(p). Since
Ay is a reflection in pyps, A2(W) N A;(p) has nonempty interior. So U N
A2A;(p)N Ay (p) has nonempty interior. Since U Nryri(P)Nr(P) has the
empty interior, dev is not a local diffeomorphism. Hence a contradiction.
The other relations (A;A;,1)™* = I, 4 = 2,3,4 can be treated in the
same way.

Conversely, suppose H € Hom(T', G) satisfies the conditions of Lemma
1. Then H induces a tessellation of a convex set Qy = U,er H)(pP).
See Goldman [2] for the proof of the fact that Qy is convex. So it is

evident that there is a dev € @’ satisfying the equivariance relation :
devoy = H(y)odev YyeT. 0

PROOF OF LEMMA 2. We only consider the two cases (I) ny, ng, n3, n4
> 2 and (II) n; = 2, ng,n3,ng > 2. The other cases can be treated
similarly.

(I) Let all n;’s be greater than 2. Define p : R® — E* by

pla,b,c,d,e, f,9,h) =(d,c—d+1, f,a)

Let S be the set of all (a,b, ¢, d, e, f, g, h) € R® satisfying (A),(B),(C),(D).
Then p|s is one-to-one and onto the subset J = {(z,y, z,w) € Rz <
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0,y <0,z > 0,w > 0} of R*: Define j: J — S by
iz, y, z,w) = (w,w — (24 2cos(2n /ny))/z, 2 +y — 1, z,
z =1 (24 2cos(21/n3))/y, z, (2 + 2 cos(27/n))) Jw,
(2+ 2cos(2m/m1)) /w + (2 + 2cos{27/ny))/2)

This map was obtained just by solving (A), (B), (C), (D), letting d =
r,c—d+1=y, f=2za=w. Soitis trivial that p|s: S — J and j are
inverses. Since J is a 4-cell, we are done in this case.
(IT) Let ny = 2, ny,n3,nq > 2. Define p: R® — R3 by

p(a,b,c,d,e,f,g,h):(d,c—d+1.f)

Let S be as in Case(l) and J = {(z,y,2) € R*a < 0,y < 0,z > 0}.
Define j : J — S by

Hz,y,2) =(0, =(2+ 2cos(2m/n2)) [z, +y — 1, 2,2 + 1,
— (2 + 2cos(2m/n3)) /Y, 2,0, (2 + 2 cos(27 /nyg))/ 2)

Then p|s : § — J and j are inverses. Since J is a 3-cell, we are done in
this case, too. ]
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