INTEGRAL OPERATORS THAT PRESERVE THE SUBORDINATION

TEODOR BULBOACĂ

ABSTRACT. Let H(U) be the space of all analytic functions in the unit disk U and let $\mathcal{K} \subset H(U)$. For the operator $A_{\beta,\gamma}: \mathcal{K} \longrightarrow H(U)$ defined by

$$A_{eta,\gamma}(f)(z) = \left[rac{eta + \gamma}{z^{\gamma}} \int_{0}^{z} f^{eta}(t) t^{\gamma - 1} dt
ight]^{1/eta}$$

and $\beta,\gamma\in\mathbf{C}$, we determined conditions on $g(z),\beta$ and γ such that

$$z \left[\frac{f(z)}{z} \right]^{\beta} \prec z \left[\frac{g(z)}{z} \right]^{\beta} \qquad \text{implies} \qquad z \left[\frac{A_{\beta,\gamma}(f)(z)}{z} \right]^{\beta} \prec z \left[\frac{A_{\beta,\gamma}(g)(z)}{z} \right]^{\beta}$$

and we presented some particular cases of our main result.

1. Introduction

Let H(U) be the space of all analytic functions in the unit disk $U = \{z \in \mathbf{C} : |z| < 1\}$ and let $f, g \in H(U)$. We say that f is subordinate to g, written $f(z) \prec g(z)$, if g is univalent in U, f(0) = g(0) and $f(U) \subseteq g(U)$. In [7] the authors determined conditions under which

$$f(z) \prec g(z)$$
 implies $A(f)(z) \prec A(g)(z)$

$$\text{where} \quad A:K\longrightarrow H(U),\ K\subset H(U)\ \text{and}\ A(f)(z)=\left[\frac{1}{z^{\gamma}}\int_{0}^{z}f^{\beta}(t)t^{\gamma-1}\ dt\right]^{1/\beta},\ \beta,\gamma\in\mathbf{C}.$$

Note that some particular cases of this result were previously obtained in [2], [3] and [9].

Received February 17, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C80; Secondary 30C25, 30C45.

Key words and phrases: Differential subordination, integral operator, subordination chain, univalent function.

For $h \in \mathcal{A}$, $\mathcal{A} \subset H(U)$, considering the integral operator $A_h : \widetilde{K} \longrightarrow H(U)$, $\widetilde{K} \subset H(U)$ defined by

$$A_h(f)(z) = \left[\beta \int_0^z f^{eta}(t)h^{-1}(t)h'(t)\,dt\right]^{1/eta}, eta \in \mathbf{C}$$

in [1] the author gives sufficient conditions on h(z) and g(z) such that

$$\left[\frac{zh'(z)}{h(z)}\right]^{1/\beta}f(z) \prec \left[\frac{zh'(z)}{h(z)}\right]^{1/\beta}g(z) \quad \text{implies} \quad A_h(f)(z) \prec A_h(g)(z).$$

Let the integral operator $A_{\beta,\gamma}:\mathcal{K}\longrightarrow H(U),\,\mathcal{K}\subset H(U)$ defined by

$$(1) \qquad A_{\beta,\gamma}(f)(z)=\left[\frac{\beta+\gamma}{z^{\gamma}}\int_{0}^{z}f^{\beta}(t)t^{\gamma-1}(t)\,dt\right]^{1/\beta},\quad \beta,\gamma\in\mathbf{C}.$$

In the present paper we determine conditions on g(z), β and γ so that the next implication holds:

$$z \left[\frac{f(z)}{z} \right]^{\beta} \prec z \left[\frac{g(z)}{z} \right]^{\beta} \Longrightarrow z \left[\frac{A_{\beta,\gamma}(f)(z)}{z} \right]^{\beta} \prec z \left[\frac{A_{\beta,\gamma}(g)(z)}{z} \right]^{\beta}$$

and in addition some particular cases obtained for different choices of β, γ and g(z) will be given.

2. Preliminaries

In order to prove our main results, we will need the next definitions and lemmas presented in this section.

Let $c \in \mathbf{C}$ with $Re \ c > 0$ and let $N = N(c) = \frac{|c|\sqrt{1 + 2Re \ c} + Im \ c}{Re \ c}$. If k is the univalent function $k(z) = \frac{2Nz}{1 - z^2}$ then we define the "open door" function R_c by

(2)
$$R_c(z) = k \left(\frac{z+b}{1+\bar{b}z} \right), \ z \in U.$$

Note that R_c is univalent in U, $R_c(0) = c$ and $R_c(U) = k(U)$ is the complex plane slit along the half-lines $Re \ w = 0$, $Im \ w \ge N$ and $Re \ w = 0$, $Im \ w \le -N$.

Let A be the set of functions $f(z) = z + a_2 z^2 + \cdots$ that are analytic in the unit disk U and we denote by $D = \{\phi \in H(U) : \phi(z) \neq 0 \text{ for } z \in U, \phi(0) = 1\}.$

LEMMA 2.1. [6] Let ϕ , $\Phi \in D$ and let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0$, $\alpha + \delta = \beta + \gamma$ and $Re(\alpha + \delta) > 0$. If $f \in A$ satisfies

$$lpha rac{zf'(z)}{f(z)} + rac{z\phi'(z)}{\phi(z)} + \delta \prec R_{lpha+\delta}(z),$$

where R_c is defined by (2) and if the function F is defined by

$$(3) F = A_{\beta,\gamma}(f)$$

then

$$F\in\ A,\ \frac{F(z)}{z}\neq\ 0,\ z\in U\ and\ Re\ \left[\beta\frac{zF'(z)}{F(z)}+\frac{z\Phi'(z)}{\Phi(z)}+\gamma\right]>0,\ z\in U.$$

(All powers in (1) are principal ones.)

A function $L(z;t), z \in U, t \geq 0$ is called to be a subordination (or a Loewner) chain if $L(\cdot;t)$ is analytic and univalent in U for all $t \geq 0$, $L(z;\cdot)$ is continuously differentiable on $[0,+\infty)$ for all $z \in U$ and $L(z;s) \prec L(z;t)$ when $0 \leq s \leq t$.

LEMMA 2.2. [8, p. 159] The function $L(z;t) = a_1(t)z + \cdots$ with $a_1(t) \neq 0$ for all $t \geq 0$ and $\lim_{t \to +\infty} |a_1(t)| = +\infty$ is a subordination chain if and only if

$$Re\left[z\frac{\partial L/\partial z}{\partial L/\partial t}\right] > 0, \ z \in U, \ t \ge 0.$$

A function $f \in A$ is called to be a convex (and univalent) function in U if $Re\left[1+\frac{zf''(z)}{f'(z)}\right]>0$, $z\in U$ and we represent the class of such functions by K. We denote by $K(\gamma)$, $\gamma\leq 1$ the class of convex functions if $order\ \gamma$, i.e.

$$K(\gamma) = \left\{ f \in A : Re \left[1 + \frac{zf''(z)}{f'(z)} \right] \right\} > \gamma, \ z \in U.$$

LEMMA 2.3. [5] Let F be analytic in U and let G be analytic and univalent in \bar{U} with F(0)=G(0). If F is not subordinate to G, the there exist points $z_0 \in U$, $\zeta_0 \in \partial U$ an $m \geq 1$ for which $F(|z|<|z_0|) \subset G(U)$, $F(z_0)=G(z_0)$ and $z_0F'(z_0)=m\zeta_0G'(\zeta_0)$.

Teodor Bulboacă

LEMMA 2.4. Suppose that the function $\psi: \mathbb{C}^2 \times U \longrightarrow \mathbb{C}$ satisfies the condition $Re \ \psi(is,t;z) \leq 0$ for all $s \in R$, $t \leq -\frac{1+s^2}{2}$ and all $z \in U$. If $p \in H(U)$ with p(0) = 1 then

Re
$$\psi(p(z), zp'(z); z) > 0$$
, $z \in U$ implies Re $p(z) > 0$, $z \in U$.

More general forms of this lemma may be found in [5].

LEMMA 2.5. [5] Let $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and let $h \in H(U)$ with h(0) = c. If $Re \left[\beta h(z) + \gamma\right] > 0$, $z \in U$ then the solution of the differential equation

$$q(z) + rac{zq'(z)}{eta q(z) + \gamma} = h(z)$$

with q(0) = c is regular in U and satisfies $Re \left[\beta q(z) + \gamma\right] > 0, z \in U$.

Finally we denote by $\mathcal{F}_{\beta,\gamma}$ the class of functions $f \in A$ that satisfy

$$\beta \frac{zf'(z)}{f(z)} + \gamma \prec R_{\beta+\gamma}(z).$$

3. Main Results

First we will determine the subset, $\mathcal{K} \subset H(U)$ such that the integral operator given by (1) will be well defined, considering a more general form of this operator.

LEMMA 3.1. Let $\beta, \gamma \in \mathbf{C}$ with $\beta \neq 0$, $Re(\beta + \gamma) > 0$ and let $h \in A$ with $h(z)h'(z)/z \neq 0$, $z \in U$. If $f \in A$ and

$$\beta \frac{zf'(z)}{f(z)} + (\gamma - 1)\frac{zh'(z)}{h(z)} + 1 + \frac{zh''(z)}{h'(z)} \prec R_{\beta + \gamma}(z)$$

then

$$F \in A, \ \frac{F(z)}{z} \neq 0, \ z \in U \ and \ Re \ \left[\beta \frac{zF'(z)}{F(z)} + \gamma \frac{zh'(z)}{z}\right] > 0, \ z \in U$$

where

$$F(z) = I_h(z) = \left[rac{eta + \gamma}{h^\gamma(z)} \int_0^z f^eta(t) h^{\gamma-1}(t) h'(t) dt
ight]^{1/eta}.$$

Proof. In order to prove the above result we will use Lemma 2.1 for $\alpha = \beta$, $\Phi(z) = [h(z)/z]^{\gamma}$ and $\phi(z) = [h(z)/z]^{\gamma-1}h'(z)$. From the assumptions we have $\Phi, \phi \in D$, $A_{\beta,\gamma} = I_h$ and a simple calculus shows that the conditions of Lemma 2.1 are satisfied, hence we obtain our result.

REMARK. Taking h(z) = z in Lemma 3.1 and using the fact that $I_h = A_{\beta,\gamma}$, for the case h(z) = z we have the next implication:

Let $\beta, \gamma \in \mathbf{C}$ with $\beta \neq 0$, $Re(\beta + \gamma) > 0$. Then $f \in \mathcal{F}_{\beta,\gamma}$ implies $F \in A$, $\frac{F(z)}{z} \neq 0$, $z \in U$ and $Re\left[\beta \frac{zF'(z)}{F(z)} + \gamma\right] > 0$, $z \in U$ where $F(z) = A_{\beta,\gamma}(f)(z)$.

THEOREM 1. Let $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$, $0 < \beta + \gamma \leq 1$. Let $f, g \in \mathcal{F}_{\beta,\gamma}$ and for $\beta \neq 1$ suppose in addition that $f(z)/z \neq 0$, $g(z)/z \neq 0$, $z \in U$.

$$If \quad Re \quad \left[1 + \frac{z\phi''(z)}{\phi'(z)}\right] > 1 - (\beta + \gamma), \text{ where } \phi(z) = z \left[\frac{g(z)}{z}\right]^{\beta} \text{ then}$$

$$z \left[\frac{f(z)}{z}\right]^{\beta} \prec z \left[\frac{g(z)}{z}\right]^{\beta} \text{ implies } z \left[\frac{A_{\beta,\gamma}(f)(z)}{z}\right]^{\beta} \prec z \left[\frac{A_{\beta,\gamma}(g)(z)}{z}\right]^{\beta}.$$

Proof. Denoting $F = A_{\beta,\gamma}(f)$, $G = A_{\beta,\gamma}(g)$, $\psi(z) = z[f(z)/z]^{\beta}$, $\phi(z) = z[g(z)/z]^{\beta}$, $\Psi(z) = z[F(z)/z]^{\beta}$, $\Phi(z) = z[G(z)/z]^{\beta}$, we need to prove that $\psi(z) \prec \phi(z)$ implies $\Psi(z) \prec \Phi(z)$. Then $\psi, \phi \in A$ and by the above remark we have $F(z)/z \neq 0$ and $G(z)/z \neq 0$ hence $\Psi, \Phi \in H(U)$ and moreover $\Psi, \Phi \in A$.

Differentiating the equality $G(z) = A_{\beta,\gamma}(g)(z)$ we have

(4)
$$G^{\beta}(z) \left[\beta \frac{zG'(z)}{G(z)} + \gamma \right] \frac{1}{\beta + \gamma} = g^{\beta}(z).$$

Since $\Phi(z)=z\left[\frac{G(z)}{z}\right]^{\beta}$, by differentiating this relation we obtain $\beta\frac{zG'(z)}{G(z)}+\gamma=\beta+\gamma-1+\frac{z\Phi'(z)}{\Phi(z)}$

and replacing this in (4) we deduce that

(5)
$$\phi(z) = \left(1 - \frac{1}{\beta + \gamma}\right)\Phi(z) + \frac{1}{\beta + \gamma}z\Phi'(z).$$

Letting $L(z;t)=\left(1-rac{1}{eta+\gamma}
ight)\Phi(z)+rac{1+t}{eta+\gamma}z\Phi'(z)$, then $L(z;0)=\phi(0).$

If $L(z;t) = a_1(t)z + \cdots$ then

$$a_1(t) = \frac{\partial L(0;t)}{\partial z} = \left(1 + \frac{t}{\beta + \gamma}\right) \Phi'(0) = 1 + \frac{t}{\beta + \gamma}$$

hence $\lim_{t\to +\infty} |a_1(t)| = +\infty$ and since $Re\ (\beta+\gamma)>0$ we obtain $a_1(t)\neq 0$ for all $t\geq 0$.

In order to prove that L(z;t) is a subordination chain we will use Lemma 2.2.

A simple computation shows that

(6)
$$Re\left[z\frac{\partial L/\partial z}{\partial L/\partial t}\right] = Re\left[\beta + \gamma + \frac{z\Phi''(z)}{\Phi'(z)}\right] + tRe\left[1 + \frac{z\Phi''(z)}{\Phi'(z)}\right]$$

and we need to show that

(7)
$$Re \left[1 + \frac{z\Phi''(z)}{\Phi'(z)}\right] > 0, \ z \in U$$

and

(8)
$$Re \left[\beta + \gamma + \frac{z\Phi''(z)}{\Phi'(z)}\right] > 0, z \in U.$$

Letting $q(z) = 1 + \frac{z\Phi''(z)}{\Phi'(z)}$ and by differentiating (5) we have

$$\phi'(z) = \left(1 - \frac{1}{\beta + \gamma}\right) \Phi'(z) + \frac{1}{\beta + \gamma} \left(\Phi'(z) + z\Phi''(z)\right),$$

then by computing the logarithmical derivative of the above equality we deduce

(9)
$$q(z) + \frac{zq'(z)}{q(z) + \beta + \gamma - 1} = 1 + \frac{z\phi''(z)}{\phi'(z)} \equiv h(z).$$

Taking in Lemma 2.5 $\beta \equiv 1$, $\gamma \equiv \beta + \gamma - 1$ since h(0) = 1 = c then the condition $Re \ [\beta h(z) + \gamma] > 0$ is equivalent to the assumption of the Theorem. It follows from Lemma 2.5 that the differential equation (9) has a solution $q \in H(U)$ with q(0) = 1 and this solution verify $Re \ q(z) > 1 - \beta + \gamma$, $z \in U$. From $\beta + \gamma \leq 1$ we have $Re \ q(z) > 1 - \beta - \gamma \geq 0$, $z \in U$ hence inequality (7) is proved.

Using (7) and the fact that $\Phi \in A$, then Φ is univalent in U and from the above inequality we have

$$Re\left[\frac{z\Phi''(z)}{\Phi'(z)}+\beta+\gamma
ight]=Re\ q(z)+\beta+\gamma-1>0,\ z\in U,$$

then relations (6) and (7) are proved and by using Lemma 2.2 we conclude that L(z;t) is a subordination chain.

Now, by using Lemma 2.3 we will show that $\Psi(z) \prec \Phi(z)$. Without loss of generality we can assume that $\Phi(z)$ is regular and univalent in \bar{U} . If not, let $\psi_r(z) = \psi(rz)$, $\phi_r(z) = \phi(rz)$, $\Psi_r(z) = \Psi(rz)$ and $\Phi_r(z) = \Phi(rz)$, where 0 < r < 1. Then Φ_r is regular and univalent in \bar{U} and we need to prove that

$$\psi_r(z) \prec \phi_r(z)$$
 implies $\Psi_r(z) \prec \Phi_r(z)$, for all $0 < r < 1$

and by letting $r \longrightarrow 1^-$ we obtain $\Psi(z) \prec \Phi(z)$.

Suppose that $\Psi(z) \not\prec \Phi(z)$. Then by Lemma 2.3 there exist $z_0 \in U$, $t_0 \geq 0$ and $\zeta_0 \in \partial U$ such that $\Psi(z_0) = \Phi(\zeta_0)$, $z_0 \Psi'(z_0) = (1 + t_0)\zeta_0 \Phi'(\zeta_0)$. We deduce that

$$egin{aligned} L(\zeta_0;t_0) &= \left(1-rac{1}{eta+\gamma}
ight)\Phi(\zeta_0) + rac{1+t_0}{eta+\gamma}\zeta_0\Phi'(\zeta_0) = \ &= \left(1-rac{1}{eta+\gamma}
ight)\Psi(z_0) + rac{1}{eta+\gamma}z_0\Psi'(z_0) = \psi(z_0), \end{aligned}$$

and since L(z;t) is a subordination chain and $\phi(z) = L(z;0)$ it follows that $\psi(z_0) = L(\zeta_0;t_0) \notin \phi(U)$ and this contradicts the assumption of the Theorem.

Next we will presents a few particular cases of this Theorem obtained for appropriate choices of β , γ and g(z).

COROLLARY 3.2. Let $f \in \mathcal{F}_{1,\gamma}$ and $g \in K(-\gamma)$ where $-1 < \gamma \leq 0$. Then

$$f(z) \prec g(z) \text{ implies } A_{1,\gamma}(f)(z) \prec A_{1,\gamma}(g)(z).$$

Proof. In order to use our Theorem for $\gamma = 0$ we need to prove that

$$g \in K(-\gamma)$$
 implies $Re \frac{zg'(z)}{g(z)} > -\gamma, z \in U.$

Letting $p(z) = \frac{1}{1+\gamma} \left[\frac{zg'(z)}{g(z)} + \gamma \right]$, since g is univalent then $g(z)/z \neq 0$, $z \in U$, hence $p \in H(U)$ and p(0) = 1. Twice differentiating the previous equality and using the fact that $g \in K(-\gamma)$ we have

(10)
$$Re\left[p(z) + \frac{zp'(z)}{(1+\gamma)p(z) - \gamma}\right] > 0, z \in U.$$

Denoting by $\psi(w_1, w_2) = \frac{w_1 + w_2}{(1 + \gamma)w_1 - \gamma}$ then

$$Re \ \psi(is,t) = Re \ rac{-\gamma t}{\gamma^2 + (1+\gamma)^2 s^2} \leq 0 \ ext{for all} \ s \in R \ ext{and} \ t \leq -rac{1}{2}(1+s^2).$$

From Lemma 2.4 we conclude that (10) implies $Re \ p(z) > 0, z \in U$, i.e.

$$Re \; rac{zg'(z)}{g(z)} > -\gamma, \; z \in U \quad ext{so} \quad rac{zg'(z)}{g(z)} + \gamma \prec R_{1+\gamma}, \quad ext{or} \quad g \in \mathcal{F}_{1,\gamma}.$$

For the case $\gamma=0$, this result was obtained in [3] and later improved in [7] by the condition $g\in K(-1/2)$.

Taking $\beta + \gamma = 1$ in our Theorem we have :

COROLLARY 3.3. Let $\beta \in \mathbb{C}^*$, let $f, g \in \mathcal{F}_{\beta, 1-\beta}$, and for $\beta \neq 1$ suppose in addition that $f(z)/z \neq 0$, $g(z)/z \neq 0$, $z \in U$. If $\phi(z) = z \left\lceil \frac{g(z)}{z} \right\rceil^{\beta} \in K$, then

$$z \left[\frac{f(z)}{z} \right]^{\beta} \prec z \left[\frac{g(z)}{z} \right]^{\beta} \quad implies \quad z \left[\frac{F(z)}{z} \right]^{\beta} \prec z \left[\frac{G(z)}{z} \right]^{\beta}$$

$$where \ F = A_{\beta,1-\beta}(f), \ G = A_{\beta,1-\beta}(g).$$

For the case $g(z)=ze^{\lambda z}$ we may easily prove the next Corollary :

Corollary 3.4. Let $\beta, \gamma \in \mathbf{C}$ with $\beta \neq 0, \ 0 < \beta + \gamma \leq 1$, and let

$$\lambda \in C \ with \ |\lambda| \leq rac{2+eta+\gamma-\sqrt{(eta+\gamma)^2+4}}{2|eta|}.$$

Let $f \in \mathcal{F}_{\beta,\gamma}$ and for $\beta \neq 1$ suppose in addition that $\frac{f(z)}{z} \neq 0$, $z \in U$. Then

$$z \left[\frac{f(z)}{z} \right]^{\beta} \prec z e^{\lambda \beta z} \quad implies \quad z \left[\frac{F(z)}{z} \right]^{\beta} \prec \frac{\beta + \gamma}{z^{\beta + \gamma - 1}} \int_{0}^{z} t^{\beta + \gamma - 1} e^{\lambda \beta t} dt$$

$$where \quad F = A_{\beta, \gamma}(f).$$

Proof. For $g(z) = ze^{\lambda z}$, $\lambda \in \mathbb{C}$, we have $g \in \mathcal{F}_{\beta,\gamma}$ if and only if $h(z) = \lambda \beta z + \beta + \gamma \prec R_{\beta+\gamma}(z)$. But

$$(11) |\lambda \beta| \le \beta + \gamma + 1$$

is equivalent to $|h(z)-(\beta+\gamma)| < \beta+\gamma+1$, $z \in U$, and this last condition is sufficient for $g \in \mathcal{F}_{\beta,\gamma}$. A simple calculus shows that $\phi(z) = ze^{\lambda\beta z}$ and $1+z\frac{\phi''(z)}{\phi'(z)} = 1+\lambda\beta z + \frac{\lambda\beta z}{1+\lambda\beta z}$ and in order to use our Theorem we must to determine the largest $r = |\lambda\beta|$ such that

$$Re \ \Phi(\zeta) > 1 - (\beta + \gamma), |\zeta| < r \text{ where } \Phi(\zeta) = 1 + \zeta + \frac{\zeta}{1 + \zeta}.$$

Since $r \leq 1$ then $|\lambda \beta| \leq 1$ which implies (11). If $\zeta = re^{i\theta}, \theta \in [0, 2\pi]$ then

$$Re \ \Phi(re^{i\theta}) = 2 + r\cos\theta - \frac{1 + r\cos\theta}{r^2 + 2r\cos\theta + 1}.$$

It is easy to show that $Re \ \Phi(re^{i\theta}) \geq 2 - r - \frac{1}{1-r} = t(r), \ \theta \in [0, 2\pi]$ and

$$t(r) \ge 1 - (\beta + \gamma)$$
 if and only if $r \le \frac{2 + \beta + \gamma - \sqrt{(\beta + \gamma)^2 + 4}}{2}$
= $r_* \in (0, 1)$

or
$$|\lambda\beta| \leq r_*$$
.

References

- T. Bulboacă, On a special integral subordination, Indian J. Pure Appl. Math. 28 (1997), 361-369.
- [2] G. M. Goluzin, On the majorization principle in function theory (Russian), Dokl. Akad. Nauk. SSSR 42 (1953), 647-650.
- [3] D. J. Hallenbeck and S. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195.

Teodor Bulboacă

- [4] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
- [5] ——, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 67 (1987), 199-211.
- [6] —, Integral operators on certain classes of analytic functions, Univalent Functions, Fractional Calculus and their Applications, Halstead Press, J. Willey (1989), 153-166.
- [7] S. S. Miller, P. T. Mocanu and M. O. Reade, Subordination-preserving integral operators, Trans. Amer. Math. Soc. 283 (1984), 605-615.
- [8] Ch. Pommerenke, "Univalent Functions", Vanderhoeck and Ruprecht, Göttingen, 1975.
- [9] T. J. Suffridge, Some remarks on complex maps of the unit disk, Duke Math. J. 37 (1970), 775-777.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE. BABES-BOLYAI UNIVERSITY, 3400 CLUJ-NAPOCA, ROMANIA

E-mail: bulboaca@math.ubbcluj.ro