A NOTE ON TIGHT CLOSURE
AND FROBENIUS MAP

MYUNG IN MOON

In recent years M.Hochster and C.Huneke introduced the notions of tight closure of an ideal and of the weak F-regularity of a ring of positive prime characteristic. Here ‘F’ stands for Frobenius. This notion enabled us to play an important role in a commutative ring theory, and other related topics.

In this paper we study the connections between the Frobenius map and the tight closure.

A weakly F-regular ring is easily seen to be F-pure, but we do not know the converse is true or not in general. We study conditions for an F-pure ring to be weakly F-regular. And as a corollary we give a proof of R. Fedder’s conjecture in one dimensional case as follows: “R/xR is F-pur” implies “R is F-pur” whenever R is Cohen-Macaulay ring of dimension one. Finally we study the conditions related to the tight closure that the Cohen-Macaulay ring to be weakly F-regular and Gorenstein.

1. Preliminaries

All rings are commutative, Noetherian with identity of prime characteristic p. And all modules are finitely generated, unless otherwise specified.

Definition 1.1. [Hochster-Huneke] Let $I \subseteq R$ be an ideal and R^o denote the complement of the union of the minimal primes of R and

1991 AMS Subject Classification: 13B02, 13B22, 13H10.
Key words: F-pure, tight closure, weakly F-regular.
let $I^{[q]}$ denote the ideal $(i^q : i \in I)$. We say that $x \in I^*$, the tight closure of I, if there exists $c \in R^*$ such that $cx^q \in I^{[q]}$ for all $q \gg 0$, i.e., for all sufficiently large q of the form p^e. If $I = I^*$, we say that I is tightly closed.

Definition 1.2. [Hochster-Huneke] A Noetherian ring is called weakly F-regular if every ideal is tightly closed. If every localization of R at a multiplicative subset is weakly F-regular, then we say that R is F-regular.

Definition 1.3. [Fedder-Watanabe] A Noetherian local ring of characteristic p is called F-rational if every ideal generated by a system of parameter is tightly closed.

Now we introduce the notion of F-purity, relying on the special properties of the Frobenius homomorphism. And we discuss the relationship between the F-purity and the weak F-regularity. Let R be a ring of characteristic p. Denote by eR, the ring R viewed as an R-module via the e-th power of the Frobenius map $F(r) = r^q$, where $q = p^e$. Furthermore, for any R-module M, $^eM = M \otimes_R {}^eR$ will denote the group M viewed as an R-module via $r \cdot m = r^q m$. $R \xrightarrow{F^e} {}^eR$ is therefore an R-module homomorphism [9].

Definition 1.4. [Hochster-Roberts] A Noetherian ring R of characteristic p is called F-pure if for every R-module M,

$$0 \to M \otimes_R R \to M \otimes_R \overline{1}_R$$

is exact. Equivalently, for some $e > 0$, $0 \to M \to M \otimes_R {}^eR$ is exact.

Definition 1.5. [Fedder] We say that a local ring R is F-contracted if $R \to \overline{1}_R$ is contracted, which means that every ideal I which is generated by a system of parameter for R satisfies

$$(I \cdot \overline{1}_R) \cap R = I.$$

Lemma 1.6. For an F-pure or an F-contracted ring R, the Frobenius map must be injective. Whence R is reduced.
Proof. If R is F-pure, then the Frobenius map by tensoring with R is also injective from the definition.

If R is F-contracted, and if $F(r) = 0$, then certainly $F(r) \in I \cdot 1 R$ for every ideal I which is generated by a system of parameter for R. The contractedness hypothesis then guarantees that r lies in the intersection of all ideals of R which are generated by a system of parameter But this intersection is well known to be 0. Thus, $r = 0$ and the Frobenius map is injective. □

When R is reduced, there is a natural identification of maps:

1. $R \xrightarrow{F} 1 R$.
2. $R \rightarrow R^{1/p}$ where $R^{1/p}$ denotes the ring of the p-th roots of elements in R.
3. $R^p \rightarrow R$, where R^p denotes the ring of the p-th powers of elements in R.

Thus, if $I = (a_1, \cdots, a_t)$ is an ideal in R, then $1 I$ can be thought of as the ideal $(a_1^{1/p}, \cdots, a_t^{1/p}) \subset R^{1/p}$ under the second identification of maps.

Definition 1.7. [Hochster] The map $R \xrightarrow{\phi} S$ is called **cyclically pure** if for every ideal $I \subset R$, $\{x \in R \mid \phi(x) \in IS\} = I$.

Note that the fact that ϕ must be injective follows from the case when $I = 0$. Let $S = 1 R$ and ϕ be the Frobenius map. Then, since $I \cdot 1 R = 1 (I[p] R)$, it follows that $R \rightarrow 1 R$ is cyclically F-pure if and only if $f^p \in I[p]$ implies $f \in I$. Clearly if $R \rightarrow 1 R$ is F-pure, then this map is cyclically F-pure. But the converse is true only when R is approximately Gorenstein [6].

2. Weak F-regularity and F-purity

Proposition 2.1. A weakly F-regular ring R is F-pure.

Proof. In fact, the weak F-regularity always implies that the map $R \rightarrow 1 R$ is cyclically pure because $f^p \in I[p]$ implies $1 \cdot f^q \in I[q]$ for every $q = p^e$. Whence, $f \in I^* = I$. But if R is approximately Gorenstein, then $R \rightarrow S$ is cyclically pure if and only if it is pure. Since weakly F-regular rings are normal, and so approximately Gorenstein. It follows that R is F-pure. □
But the converse of Proposition 2.1., that is, the F-purity implies the weak F-regularity, remains open. However, for the zero dimensional case, we have an affirmative answer.

Theorem 2.2. A zero dimensional F-pure ring R is weakly F-regular.

Proof. We may assume that R is local with the maximal ideal m. Let I be an ideal of R and let $x \in I^*$. Then there exists $c \in R^o$ such that $cx^q \in I^{[q]}$ for all $q = p^e$ because an F-pure ring is reduced. But $\bigcup \{P : P \text{ is a minimal prime ideal of } R\} = m$, and $R^o = R - m$ is the units of R, we have $x^q \in I^{[q]}$. Thus $x \in I$ by F-purity. Hence $I = I^*$ and R is weakly F-regular. \Box

Now we can prove an one dimensional case of an important conjecture, which is raised by R. Fedder in his paper [2], by using Theorem 2.2.

Fedder’s Conjecture: “R/fR is F-pure” should imply “R is F-pure”, whenever R is Cohen-Macaulay ring and $f \notin Z(R)$.

Corollary 2.3. Let R be a one dimensional ring, and let $f \notin Z(R)$. If R/fR is F-pure, then R is F-pure.

Proof. Since R/fR is a zero dimensional F-pure ring, R/fR is weakly F-regular by Theorem 2.2. Since $\dim R = 1$, R is also weakly F-regular[1]. Thus R is F-pure. \Box

Now we prove that an F-pure ring is weakly F-regular for the higher dimensional case under additional conditions.

Definition 2.4. Let R be a Noetherian reduced ring of characteristic p, and let M be an R-module. We say that M is F-unstable if for every nonzero $x \in M$,

$$\bigcap_{e > 0} \text{Ann}_R(F^e(x)) = (0),$$

where $F^e(x)$ denotes the image of $x = x \otimes 1$ in $F^e(M) = M \otimes_R e^e R$.
Lemma 2.5. For every ideal I of a domain R, $I = I^*$ if and only if R/I is F-unstable as an R-module.

Proof. Assume that R/I is F-unstable and I is not tightly closed. Let $y \in I^* - I$. Then there exists $c \neq 0 \in R$ such that $cy^q \in I^{|q|}$ for all $q = p^e$. Let x be the image of y in R/I. Then $F^e(x) \in F^e(R/I) = R/I^{|q|}$, and $cF^e(x) = 0$ in $F^e(R/I)$ for every $e > 0$. Thus $0 \neq c \in \bigcap_{e>0} \text{Ann}_R(F^e(x))$, a contradiction.

Conversely, assume R/I is not F-unstable. Then there exist a nonzero $x \in R/I$ and nonzero $c \in \text{Ann}_R(F^e(x))$ for every $e > 0$. Thus $cy^q \in I^{|q|}$ for every $q = p^e$, where y is the representative of x in R. Hence $y \in I^*$, but $y \notin I$. That is, I is not tightly closed. \qed

Theorem 2.6. Let R be a complete F-pure domain. Then the followings are equivalent:

1. Every ideal of R is tightly closed.
2. Every finite R-module is F-unstable.
3. If R is a local ring with the unique maximal ideal m, then $E_R(R/m)$, the injective hull of R/m, is F-unstable.

Proof. (1) implies (2); We will prove by induction on the number n of generators of M.

(i) $n = 1$; M is a cyclic R-module, let $M = Rx, x \in M$. Then M is isomorphic to R/I, where $I = \text{Ann}_R(x)$. Since I is tightly closed by the weak F-regularity of R, M is F-unstable by Lemma 2.5.

(ii) $n > 1$; Let $M_1 = \sum_{i=1}^{k-1} Rx_i, M = \sum_{i=1}^k Rx_i$, and $M_2 = M/M_1$, where $x_i \in M$ for every $i = 1, \cdots, k$. Then the induction hypothesis implies that M_1 and M_2 are F-unstable. From the following commutative diagram follows that M is F-unstable.

\[
\begin{array}{ccccccccc}
& & 0 & & 0 & & 0 & & \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & 0 & \rightarrow & M_1 & \rightarrow & M & \rightarrow & M_2 & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & 0 & \rightarrow & M_1 \otimes_R {}^e R & \rightarrow & M \otimes_R {}^e R & \rightarrow & M_2 \otimes_R {}^e R & \rightarrow & 0
\end{array}
\]
(2) implies (3): we can write \(E = E_R(R/m) \) as a direct limit of finite \(R \)-modules. That is, \(E = \lim_{\to} M_i \), where \(M_i \) are finite \(R \)-modules. Here, each \(M_i \) is \(F \)-unstable by the hypothesis. Then,

\[
E \otimes_R e^c R = (\lim_{\to} M_i) \otimes_R e^c R = \lim_{\to} (M_i \otimes_R e^c R).
\]

The second equality follows from the fact that the tensoring, \(\otimes_R e^c R \), commutes with the direct limit. Thus (3) is also true.

(3) implies (1): Assume that \(I^* \supsetneq I \) for any ideal \(I \) of \(R \).

Then \((0 :_E I^*) \subsetneq (0 :_E I) = \{ r \in E \mid rI = 0 \} \), and \(I^* \cdot (0 :_E I) \neq 0 \).

For, if \((0 :_E I^*) = (0 :_E I) \), then \(\text{Ann}_R((0 :_E I^*)) = \text{Ann}_R((0 :_E I)) \).

But \(\text{Ann}_R((0 :_E J)) = J \) for any ideal \(J \) of \(R \) \[8\]. This implies that \(I = I^* \), which is a contradiction.

We can therefore choose \(y \in I^* \) and \(x \in (0 :_E I) \) such that \(z = yx \) is a nonzero element of \(E \). Since \(y \in I^* \), there exists \(c \neq 0 \in R \) such that \(cy^q \in I^{[q]} \) for all \(q = p^e \). Since \(x \in (0 :_E I) \), \(F^e(x) \in (0 :_E I^{[q]}) \). Thus, \(0 = (cy^q)F^e(x) = cF^e(yx) = cF^e(z) \) for every \(e > 0 \). That is, \(c \in \bigcap_{e > 0} (0 :_R F^e(z)) = \bigcap_{e > 0} \text{Ann}_R(F^e(z)) \). Since \(c \neq 0 \), \(E \) is not \(F \)-unstable, which is a contradiction. \(\square \)

3. The Frobenius Map and the Weak \(F \)-regularity

Recall that a ring \(R \) of characteristic \(p \) is \(F \)-contracted if every ideal generated by a system of parameter is contracted with respect to the Frobenius map \(F : R \to R \), that is, \((I \cdot R) \cap R = I \).

Proposition 3.1. Let \((R, m) \) be a Cohen-Macaulay local ring with the maximal ideal \(m \). Then the followings are equivalent:

1. The map from \(H^i_m(R) \) to \(H^i_m(R) \), induced by the Frobenius map from \(R \) to \(R \), is injective.
2. \(R \) is \(F \)-contracted.
3. There exists a system of parameter which is contracted with respect to the Frobenius map from \(R \) to \(R \).
Proof. See [3, Proposition 1.4].

For a Gorenstein local ring R of dimension n, it is a well-known fact from local duality theory that $H^n_m (R)$ is isomorphic to E, the injective hull of R/m, where m is the unique maximal ideal of R. Hochster and Roberts proved that R is F-pure if and only if $E \to E \otimes^1 R$ is injective [7]. Hence we have the following:

PROPOSITION 3.2. Let R be a local Gorenstein ring with the maximal ideal m. Then the followings are equivalent:

1. R is F-pure.
2. R is F-contracted.
3. There exists a system of parameter which is contracted with respect to the Frobenius map.
4. $H^n_m (R) \to H^n_m (1R)$ is injective, where $\dim R = n$.

Proof. (2), (3), and (4) are equivalent by Proposition 3.1. And the implication of (1) to (2) is clear. Now it remains only to prove that (4) implies (1). But $H^n_m (R) \cong E$, the injective hull of R/m, implies that $E \to E \otimes^1 R$ is injective. Thus, R is F-pure. \hfill \Box

Now we discuss the relationship between the F-contractedness and the weak F-regularity, and characterize the Gorenstein ring of dimension zero.

PROPOSITION 3.3. Let R be a local Gorenstein ring and let x_1, \cdots, x_d be a system of parameter. If the image of I in R/I is contracted with respect to the Frobenius map

$$F : R/I \to (R/I),$$

where $I = (x_1, \cdots, x_d)R$, then R is weakly F-regular.

Proof. R/I is a zero-dimensional Gorenstein F-pure ring by the hypothesis and Proposition 3.2. Thus R/I is weakly F-regular by Theorem 2. Since x_1, \cdots, x_d is a regular sequence in R, R is also Gorenstein. Thus R is weakly F-regular. \hfill \Box

In Proposition 3.3, the condition that R is Gorenstein can be replaced by the condition that R is Cohen-Macaulay.
LEMMA 3.4. Let R be a reduced ring of dimension zero. Then R is Gorenstein, and weakly F-regular.

Proof. We may assume that R is local. Since R is a direct product of finite number of fields, R is normal. But we know that any normal local ring is approximately Gorenstein. Since R is zero-dimensional local, R is Gorenstein. Now we need only to show that R is weakly F-regular. It is enough to show that (0), a system of parameterideal of R, is tightly closed. Let $r \in (0)^*$. Then there exists $c \in R^o$ such that $cr^q = 0$ for all $q = p^e$. But $R^o = R \setminus Z(R)$, since R is Noetherian reduced. We have $r^q = 0$ and $r = 0$. Thus, $(0) = (0)^*$, as required. \hfill \Box

THEOREM 3.5. Let R be a Cohen-Macaulay local ring of dimension d and let I be an ideal of R which is generated by a system of parameter If R/I is reduced, then R is Gorenstein and R is F-regular.

Proof. Since R/I is zero-dimensional and reduced, R/I is Gorenstein and (weakly) F-regular by Lemma 3.4. And since a system of parameter for R is a regular sequence in R, R is also Gorenstein. We know that if x_1, \cdots, x_d form a regular sequence in a Gorenstein local ring and $R/(x_1, \cdots, x_d)R$ is weakly F-regular, then R is weakly F-regular [1]. \hfill \Box

Now we prove that Proposition 3.3. is still true when R is Cohen-Macaulay.

PROPOSITION 3.6. Let R be a Cohen-Macaulay local ring of dimension d, and let x_1, \cdots, x_d be a system of parameter If the image of $I = (x_1, \cdots, x_d)R$ in R/I is contracted with respect to the Frobenius map

$$F : R/I \to 1(R/I),$$

then R is weakly F-regular and Gorenstein.

Proof. The condition that the image of $I = (x_1, \cdots, x_d)R$ in R/I is contracted with respect to the Frobenius map implies that R/I is F-contracted, and R/I is reduced. Thus R is Gorenstein and F-regular by Theorem 3.5. \hfill \Box
Corollary 3.7. Let R be a Cohen-Macaulay local ring of dimension d. If R/I is F-pure and I is an ideal generated by an s.o.p., then R is F-regular.

References

Global Analysis Research Center
Seoul National University
Seoul 151-742, Korea