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INTEGRAL POINTS ON HYPERBOLAS

JIN HONG, KYEONGHOON JEONG AND Jar-HooN KwON

1. Introduction

Finding all integers represented by the quadratic form bx?+czy+ay?
is a classical problem in number theory. The closely related problem of
finding all integral solutions to bx? 4 cxy + ay? = k for a fixed k € Z*
is also of interest.

A number theoretical approach to this problem appears in [1]. But
the solution involves finding a certain fundamental unit, which is not
an easy thing to do.

In [2], as a by-product of the study of rank 2 hyperbolic Kac-Moody
algebras, corresponding to the symmetric matrix (—?a ;(L>, Kang
and Melville find all integral solutions to 2% —azy+y? = —k when a > 3
and k > —1. There is a 1-1 correspondence between the imaginary
roots of length k and the integral points of 72 —axy+y? = —k. We also
know that all imaginary roots are generated by the Weyl group action
on a finite number of imaginary roots in an easily defined region. Using
these two facts, Kang and Melville reduce finding all integral solutions
of 22 — azy + y* = —k to finding them in a small region.

Motivated by the result above, we extend their result to a wider
range of hyperbolas. Given a,b,c,k € Z*, satisfying alc and bjc, we
shall give an explicit description for all integral solutions of bx? + cry +
ay? = k analogous to that of Kang and Melville. Our method and the
classical one appearing in [1] are similar in that both obtain all inte-
gral points of the hyperbola from that contained in some fundamental
region, but our method will require much less work.
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Finally, we apply our method to finding the minimal solution of the
Pell’s equation X% — dY? = 1 with d = p? — q, q|2p, and q # 1.

2. Fundamental Regions and Linear Transformations

Define f(r,y) = br? — abry -+ ay® with a,b € Z*. We assume
ab(ab—4) > 0, so that = {(z,y) € R?|f(z,y) = k} withk € Z* is a
hyperbola.

We split this into eight cases. We also define a region R for each of
the cases. It will be called the fundamental region for .

Casel. ab<0,a>0,and k>0
R={(r,y) eR¥Yz >0,y > 2z} U{(z,y) e R}z < 0,y < 2z}
Case 2. ab<0,a>0,and k<0
R={(z,y) R}z >0,2r <y <0}U{(s,y) € R}z <0,0<
y < 5o}

Case 1 Case 2

Case 3. ab<0,a<0,and k>0
R={(r.y) eRYz>0,0<y < sz}U{(r.y) e R}z < 0,5z <
y < 0}

Case 4. ab< 0,a<0,and k <0
R={(ry) eRYz >0,y < 22} U{(z,y) €R}z <0, 2z < y}
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Case 3 Case 4

Case 5. ab>4,a>0,and k >0
R = {(z,y) € R*|zy < 0}

Case 6. ab>4,a>0,and k <0
R={(ry e Rz 2 0.2z <y < Sz} U{(z.y) € Rz <
0,37 <y < 2z}

Case 5 Case 6

Case 7. ab>4,a<0,and k >0
R={(z,y) €R¥z > 0,5z <y < 2z} U{(z,y) € Rz <
0, %:1? <y< %.7:}

Case 8. ab>4,a<0,and k<0
% = {(r,y) € %[y > 0}
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Case 7 Case 8

0 1 b -1
We view them as linear transformations of R2. The definitions of the
matrices A and B were originated from simple reflections for the root
space of the Kac-Moody algebras corresponding to matrices of the form

2 b
(2 7)

Let us see what the matrices do to the region B We take Case 6 as
an example. With the help of the observation,

(@ 0E)-(2)

we can visualize A as “horizontal reflection in the line y = %m”. Sim-
ilarly we view B as “vertical reflection in the line y = %rc”. Keeping
this in mind, we draw the following sequence of pictures.

We next define two matrices A = <—1 a) and B = (1 0 >

BAR



Integral points on hyperbolas 153

BR ABR
This suggests that the hyperbola £ lies inside
(U2 (BAY'R)U(UZ0 B(AB)'R)URU(UZ G A(BA) R)U(US, (AB)'R).

Let us prove this. Starting with an arbitrary initial value, we define
the sequence {m;}2, C RU{oo} so that AB sends the line of slope m,
passing through the origin to a line of slope m; ;. Similarly, we define

ab)?2—4a ab—+/ 2—4a
{n;}2, using BA. Let v = ﬂ—\%{;&ﬂ and 6 = L—%?—iﬁ. The
asymptotes of the hyperbola are given by y = yr and y = éz.
LEMMA 1. The sequences {m;}$2, and {n;}$, are convergent re-

gardless of the initial values. The limit values are either -y or 6.

Proof. We have AB = (ab -1 —a>.

b -1
So m4q = FE%TT;FF with natural interpretations when m; = oc.
Solving
- b—x
y= ab—1-—ax
y=rx

L hnlt SUSE
ab-1-a, into the

gives two solutions (-y,7) and (6, 6j. Substituting v =

b—mi

equation m; ) —y = 2T — 7y, we get

mg — 7y
ab—1—am;)(ab—1-ay)

777,»i+1 - ’)/ = (

Using this and a similar equation with é in place of v, we get
miy1—7y _ab-1—ay m;—v
m,i+1—6_ab—l~b6 m; — 6
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We can show

ab—1—a . ) mi—-y , .
io1se| # 1 so that Iﬁl always approaches either
0 or co. The convergence of m; is now clear. Convergence of {n;},
may be taken care of similarly. [

This lemma is enough to show what has been suggested. Noting
A7l = A and B~! = B, we write this as:

PROPOSITION 1. The hyperbola $ lies inside the region
D = (Uiez(AB)'R) U (Uicz B(AB) ).

From Lemma 1, we know that © is the region bounded by the two
asymptotes of the hyperbola §). Proposition 1 says that given any point
(z,y) in D, there exists a point (7o, yp) in M and an integer i such that,
(5) = (AB)*(2°) or B(AB)i(zg).

Yy Yo

3. Integral Points on the Hyperbola

Define § = HNRNZ? to be the integral points on the hyperbola lying
inside the fundamental region RR. By direct calculation, we can see that
both A and B leave § invariant. (AB)!, B(AB)", and their inverses,
which are also of the same form, send integral points to integral points.
This together with Proposition 1 yields:

ProPOSITION 2. The_ integral points on the hyperbola, i.e. $NZ?,
are given by, (U;cz(AB)'F) U (U;ez B(AB)'g).

So all the integral solutions to « given hyperbola are generated by
the integral solutions inside the fundamental region. We must add that
the intersection of £ and R is only a finite segment so that § is a finite
set which may be found explicitly.

To write the solutions to £ more explicitly, we define the sequences
{an}nEZ: {b'n }nEZv {Cn}nEZ, and {(/n}nez by,

(i) =407 (g) e (i) = amr ().

Their explicit values are given by:
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LEMMA 2.
a+l . B+1 _,
= T +,@-—aﬁ’
b
bn: 'I),__ 'I‘L,
ol 8
a
o0 = goala” =),
8+1 a+1
dn: n n’
,B—aa +a—[3’ﬁ

where «a and (8 are the two roots of 22 — (ab—2)z +1 = 0.
With this, we can rewrite Proposition 2 as:

THEOREM. The integral points on the hyperbola bx? —abxy+ay® =
k are given by: {(xan+yc,, by +ydy,), (xan +ycn. x(bay, —by)+y(be, —
dn))|(z,y) € §,n € Z}.

REMARK. We can now find the complete set of integral solutions to

2 2 f— 7 ! 1 — .
br* — cxy + ay® = k when alc and2 blc. We multiply it by =5 So that
it is equivalent to solving 212 - Sy + §y2 = Sk. If 5k is not an
integer, this has no integral solution. If 5k is an integer, this is of the
form we have discussed.

Before ending this section, we will talk about finding §. Sup-
pose, as in Case 3, that $) passes through (:t\/%,()). To find §, we

substitute each integer in the range [— \/E, \/H into the z slot of
bz? — abry + ay? = k and solve for y. For Case 6, the x coordi-

. s . 2 - . [ ak
nate for the intersection of the line y = 2 with 9 is i\/4fayb. So we
av , 4 ; L k [ _ak
have only to substitute integers in the range [~\/ oo \/ 74r] to find

all integral points of $ lying in . It should now be obvious as to what
should be done for other cases. For Case 6, we can actually show that

ﬁ’;b < “g’k, so that in all cases a bound for the number of integers to

be checked in order to find §, proportional to V/|§l or y/|%|, can be
given.
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REMARK. The approach in (1] also reduces finding all integral so-
lutions of a binary form to finding them in some fundamental region.
Complete integral solution is then generated by applying to them all
proper integral automorphs of the binary form. In that approach, both
the fundamental region and the finding of proper integral automorphs
involves finding a fundamental unit. So our method is much more
explicit and requires much less work in finding all integral solutions.

4. Application to Solving the Pell’s equation

In this section, we apply our results to solving the Pell’s equation,
X2 —dY? =1, when d is of the form p? — ¢ > 0 with p.q € 2%, q|2p,
and ¢ # 1.

1 —p
0 1
is 1, so that solving the above Pell's equation is equivalent to solving

We use the linear transformation P = ) Its determinant

(x —py)® —dy* = 1.
Substituting d = p? — ¢, this is just
T? — 2pry + qut =1,

or equivalently, \
@mz - 4LT'I; +2py? = 2—p
q q q
Considering each of the eight cases, we find cases 1,4,6, and 7 not ap-
plicable and § = {(+£1,0)} in all the other cases. We use the Theorem
and apply the matrix P to the resulting set. After some calculations,
we are able to write the complete solution to X? — dY? =1 as,

1 1
{(:i:—(a” +8"),+—=(a" - [j")) ‘n € Z}A
2 2vid
Here, o and 3 are the two roots of 72 — (32—2- -2z +1=0.
We summarize this as:

PRroPOSITION 3. The minimal solution of X% --dY?2 = 1 ford =

p? —q > 0 with q|2p and q # 1 is given by (gqﬁ -1, %”)
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REMARK. (a) The result of this section, along with some other sim-
ilar results, has been obtained by Richaud [4], but he has left no proof.

(b) Under some conditions, for example ¢ < —1, it is possible to
show that X? — dY? = —1 has 1o solution, so that (22’—2 -1+ %ﬁﬁ
is actually a fundamental unit.
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