CLIFFORD L^2-COHOMOLOGY ON THE COMPLETE KÄHLER MANIFOLDS

JIN SUK PAK AND SEOUNG DAL JUNG

0. Introduction

In the study of a manifold M, the exterior algebra Λ^*M plays an important role. In fact, the de Rham cohomology theory gives many informations of a manifold. Another important object in the study of a manifold is its Clifford algebra $Cl(M)$, generated by the tangent space. It carries an intrinsic first order elliptic operator D, the Dirac operator. There is a canonical vector (but not algebra) bundle isomorphism $\Lambda^*(M) \to Cl(M)$. In $\Lambda^*(M)$, the Dirac operator D is $D \cong d + \delta$, where d is the exterior differential and δ is the adjoint operator of d. Therefore many results of the Clifford theory yield the results of the de Rham theory([8]). Moreover the calculus of the pair $Cl(M)$, D carries over formally to bundles of modules over $Cl(M)$. On Kähler manifolds, we obtain operators D and \bar{D} such that $D^2 = \bar{D}^2 = 0$, $D + \bar{D} = \frac{1}{2}D$ and \bar{D} is the formal adjoint of D. Using these operators, M. L. Michelsohn([10]) studied the Clifford and spinor cohomology theory and proved some vanishing theorems on compact Kähler manifold. In this paper, we study the Clifford L^2-cohomology theory, the decomposition theorem for the L^2-Clifford algebra $L^2(Cl^{p,q}(M))$ and prove some vanishing theorems on complete Kähler manifold.

1. Preliminaries

Let M be a $2n$-dimensional Kähler manifold with almost complex
structure J and with connection ∇. Let $\text{Cl}(M)$ be the Clifford bundle generated by the tangent bundle TM. Now we define a derivation $\mathcal{J}_0 : \text{Cl}(M) \to \text{Cl}(M)$ induced by J as follows:

\begin{equation}
\mathcal{J}_0(v_1 \cdots v_k) = \sum_{j=1}^{k} v_1 \cdots Jv_j \cdots v_k
\end{equation}

for $v_1, \ldots, v_k \in TM$, where "\cdot" is the Clifford multiplication. If it is clear from the context which multiplication is meant, we omit the Clifford multiplication "\cdot". To study \mathcal{J}_0 effectively we consider the complexification $\mathbb{C} \text{l}(M) = \text{Cl}(M) \otimes_{\mathbb{R}} \mathbb{C}$. This algebra has a natural basis given as follows: Let $e_1, \cdots, e_n, Je_1, \cdots, Je_n$ be an orthonormal basis of T_xM. Let $T^{1,0}_x$ (resp. $T^{0,1}_x$) be the i eigenspace (resp. $-i$ eigenspace) of J in $T_xM \otimes \mathbb{C}$. Put

$$
\xi_k = \frac{1}{2} \{e_k - iJe_k\}, \quad \bar{\xi}_k = \frac{1}{2} \{e_k + iJe_k\}.
$$

Then ξ_1, \cdots, ξ_n (resp. $\bar{\xi}_1, \cdots, \bar{\xi}_n$) is the basis of $T_x^{1,0}$ (resp. $T_x^{0,1}$). And $\{\xi_k, \bar{\xi}_k\}$ has the following properties:

\begin{equation}
\xi_k \bar{\xi}_\ell + \bar{\xi}_k \xi_\ell = \xi_k \bar{\xi}_\ell + \bar{\xi}_\ell \xi_k = -\delta_{k\ell}, \quad \xi_k \xi_\ell = -\xi_\ell \xi_k, \quad \bar{\xi}_k \bar{\xi}_\ell = -\bar{\xi}_\ell \bar{\xi}_k.
\end{equation}

Denote $\xi_{K\bar{\xi}_I} = \xi_{k_1} \cdots \xi_{k_r} \bar{\xi}_{\ell_1} \cdots \bar{\xi}_{\ell_s}$, where K and I range over all strictly ascending multiindices from $\{1, \cdots, n\}$. For convenience we set $\mathcal{J} = \frac{1}{i} \mathcal{J}_0$. Then by the derivation property, we have

\begin{equation}
\mathcal{J}(\xi_{K\bar{\xi}_I}) = (|K| - |I|)\xi_{K\bar{\xi}_I},
\end{equation}

where $|K|, |I|$ denote the lengths of K and I. This gives a decomposition

$$
\text{Cl}(M) = \bigoplus_{p=0}^{n} \text{Cl}^p(M),
$$

where $\text{Cl}^p(M) = \{\phi \in \text{Cl}(M) \mid \mathcal{J}\phi = p\phi\}$.

We now introduce two intrinsically defined linear maps $\mathcal{L}, \bar{\mathcal{L}} : \text{Cl}(M) \to \text{Cl}(M)$ as follows; For any $\varphi \in \text{Cl}(M)$, set

\begin{equation}
\mathcal{L}(\varphi) = -\sum_{k=1}^{n} \xi_k \varphi \bar{\xi}_k, \quad \bar{\mathcal{L}}(\varphi) = -\sum_{k=1}^{n} \bar{\xi}_k \varphi \xi_k.
\end{equation}
These operators are independent of the Hermitian basis chosen to define them. We consider the operator \(\mathcal{H} = [\mathcal{L}, \mathcal{L}] \). Then they satisfy the following relations:

\[
[\mathcal{L}, \mathcal{L}] = \mathcal{H}, \quad [\mathcal{H}, \mathcal{L}] = 2\mathcal{L}, \quad [\mathcal{H}, \mathcal{L}] = -2\mathcal{L}.
\]

Hence they define a representation of \(\mathfrak{sl}(2, \mathbb{C}) \), the Lie algebra of \(SL(2, \mathbb{C}) \), on \(\text{Cl}(M) \). Since each of the operators \(\mathcal{L}, \mathcal{L} \) and \(\mathcal{H} \) commutes with \(\mathcal{J} \), we can define the subspaces

\[
\text{Cl}^{p,q}(M) = \{ \varphi \in \text{Cl}(M) \mid \mathcal{H}\varphi = q\varphi, \ \mathcal{J} = p\varphi \}
\]

and obtain a decomposition([10])

\[
\text{Cl}(M) = \bigoplus_{p,q} \text{Cl}^{p,q}(M).
\]

Proposition 1.1([10]). For each \(\xi \in T^{1,0}(M) \), one has that \(\xi \cdot \text{Cl}^{p,q} \subseteq \text{Cl}^{p+1,q+1} \) and \(\bar{\xi} \cdot \text{Cl}^{p,q} \subseteq \text{Cl}^{p-1,q-1} \). Furthermore, if \(\xi \neq 0 \), the sequences

\[
\ldots \xrightarrow{\lambda_\xi} \text{Cl}^{p-1,q-1} \xrightarrow{\lambda_\xi} \text{Cl}^{p,q} \xrightarrow{\lambda_\xi} \text{Cl}^{p+1,q+1} \xrightarrow{\lambda_\xi} \ldots
\]

\[
\ldots \xleftarrow{\lambda_\xi} \text{Cl}^{p-1,q-1} \xleftarrow{\lambda_\xi} \text{Cl}^{p,q} \xleftarrow{\lambda_\xi} \text{Cl}^{p+1,q+1} \xleftarrow{\lambda_\xi} \ldots,
\]

where \(\lambda_\xi \) denotes left Clifford multiplication by \(\xi \), are exact.

Moreover, these subspaces \(\text{Cl}^{p,q} \) have the following properties: If \(q - s \neq p + r \), then \(\text{Cl}^{p,q} \cdot \text{Cl}^{r,s} = \{0\} \). Otherwise, \(\text{Cl}^{p,q} \cdot \text{Cl}^{r,q-p-r} \subseteq \text{Cl}^{p+r,q-r} \). In particular, \(\text{Cl}^{p,q} \cdot \text{Cl}^{p,q} \subseteq \text{Cl}^{p,q} \), \(\text{Cl}^{k,k} \cdot \text{Cl}^{k,-k} \subseteq \text{Cl}^{k,k} \) and \(\text{Cl}^{0,0} \cdot \text{Cl}^{0,0} \subseteq \text{Cl}^{0,0} \).

2. Clifford cohomology group

We recall some facts from [3]: Consider Hilbert spaces \(H_i \) \((0 \leq i \leq N)\), \(H_{N+1} := 0 \) and closed operators \(D_i : H_i \rightarrow H_{i+1} \), with \(D_i^* \) the adjoint operator. Let \(\text{dom}D_i \) be the domain of \(D_i \) and \(\text{ran}D_i \) the range of \(D_i \). We then assume that

\[
\text{ran}D_i \subset \text{dom}D_{i+1} \quad \text{and} \quad D_{i+1} \circ D_i = 0.
\]
Thus we obtain a complex

\[(2.1) \quad 0 \longrightarrow \text{dom} D_0 \xrightarrow{D_0} \text{dom} D_1 \xrightarrow{D_1} \cdots \xrightarrow{D_{N-1}} \text{dom} D_N \longrightarrow 0\]

in the sense of homological algebra with additional functional analytic structure, which is called a Hilbert complex. We will abbreviate the complex (2.1) as \((\text{dom} D, D)\).

Lemma 2.1([3]). (The Weak Hodge Decomposition). Let \((\text{dom} D, D)\) be a Hilbert complex. Then for each \(i\), we have an orthogonal decomposition

\[(2.2) \quad H_i = \hat{\mathcal{H}}_i \oplus \overline{\text{im} D_{i-1}} \oplus \overline{\text{im} D_i^*}\]

where \(\hat{\mathcal{H}}_i := \text{Ker} D_i \cap \text{Ker} D_{i-1}^*\).

Put \(\Delta_i := D_i D_i^* + D_i^* D_i\). Then we have

Lemma 2.2([3]). \(\hat{\mathcal{H}}_i = \text{Ker} \Delta_i\).

Now, let \(E_i \to M\) \((0 \leq i \leq N)\) be hermitian vector bundles over a Riemannian manifold \(M\) and \(d_i := \Gamma_{\text{cpt}}(E_i) \to \Gamma_{\text{cpt}}(E_{i+1})\) differential operators such that \(d_i \circ d_{i-1} = 0\). Denote the formal adjoint \(d_i^t\) by \(d_i^t\). Then \(d_i\) has a closed extension \(d_{i, \text{max}}\) in the Hilbert space \(H_i := L^2(E_i)\) given by

\[d_{i, \text{max}} := (d_{i, \text{min}})^*,\]

where \(d_{i, \text{min}}\) is the minimal extension or the closure of \(d_i\). Then we have

Lemma 2.3([3]). If \((\Gamma_{\text{cpt}}(E_i), d_i)\) is an elliptic complex, then

\[\cdots \longrightarrow \text{dom} d_{i-1, \text{max}} \xrightarrow{d_{i-1, \text{max}}^{-1}} \text{dom} d_{i, \text{max}} \xrightarrow{d_{i, \text{max}}} \text{dom} d_{i+1, \text{max}} \longrightarrow \cdots\]

is a Hilbert complex.

Suppose now that \(M\) is a complete Kähler manifold. We introduce two differential operators \(D, \bar{D} : \Gamma\text{Cl}(M) \to \Gamma\text{Cl}(M)\) by the formulas

\[(2.3) \quad D = \sum_j \xi_j \nabla \tilde{\xi}_j, \quad \bar{D} = \sum_j \tilde{\xi}_j \nabla \xi_j,\]

where \(\nabla\) is the canonical connection. Since \(\nabla\) preserves the subbundles \(\Gamma\text{Cl}^{p,q}(M)\), we have

\[D(\Gamma\text{Cl}^{p,q}) \subset \Gamma\text{Cl}^{p+1,q+1}, \quad \bar{D}(\Gamma\text{Cl}^{p,q}) \subset \Gamma\text{Cl}^{p-1,q-1}\]

for all \(p\) and \(q\). Then we have the following well known fact:
THEOREM 2.4([10]). The operators D and \bar{D} are formal adjoints of one another on $\Gamma_{cpt} \mathcal{C}l(M)$, the set of all sections with the compact support. And they satisfy

$$D^2 = \bar{D}^2 = 0.$$

Furthermore, the complex

$$\ldots \overset{D}{\rightarrow} \Gamma \mathbb{C}^{p-1,q-1} \overset{D}{\rightarrow} \Gamma \mathbb{C}^{p,q} \overset{D}{\rightarrow} \Gamma \mathbb{C}^{p+1,q+1} \overset{D}{\rightarrow} \ldots$$

is elliptic.

Now we set

(2.4) \[\Delta := D\bar{D} + \bar{D}D. \]

Then Δ is a formally self-adjoint elliptic operator. To understand Δ we introduce two “real” operators on $\mathcal{C}l(M)$:

(2.6) \[D = \sum_j \{ e_j \nabla e_j + (Je_j) \nabla Je_j \}, \quad D^c = \sum_j \{ e_j \nabla Je_j - (Je_j) \nabla e_j \}. \]

The first operator is called the Dirac operator. Then we can easily see that

(2.7) \[D = \frac{1}{4} (D + iD^c), \quad \bar{D} = \frac{1}{4} (D - iD^c). \]

Since $D^2 = 0$, we have that $D^2 = (D^c)^2$ and $DD^c + D^cD = 0$. It follows that

(2.7) \[\Delta = \frac{1}{4} D^2. \]

Since D is essentially self-adjoint, we have

(2.8) \[\text{Ker} D = \text{Ker} D^2 = \text{Ker} \Delta. \]

Now, we consider the usual inner product

(2.9) \[\langle \varphi_1, \varphi_2 \rangle := \int_M < \varphi_1, \varphi_2 > \]
for any $\varphi_1, \varphi_2 \in \Gamma_{cpt} Cl(M)$. Let $L^2(Cl^{p,q}(M))$ be the completion of $\Gamma_{cpt} Cl^{p,q}$ with respect to \ll , \gg. We recall that the operators \mathcal{D} and $\bar{\mathcal{D}}$ are formal adjoint to one another with respect to \ll , \gg. Then \mathcal{D} and $\bar{\mathcal{D}}$ have closed extensions in $L^2(Cl^{p,q}(M))$ defined by

$$
(2.10) \quad \mathcal{D}_{\text{max}} := (\bar{\mathcal{D}}_{\text{min}})^*, \quad \bar{\mathcal{D}}_{\text{max}} := (\mathcal{D}_{\text{min}})^*.
$$

where $\bar{\mathcal{D}}_{\text{min}}$ (resp. \mathcal{D}_{min}) is a minimal extension of $\bar{\mathcal{D}}$ (resp. \mathcal{D}) and $(\)^*$ is the adjoint operator of $(\)$ with respect to \ll , \gg. Since Δ and \mathcal{D} are essentially self-adjoint, we have $\mathcal{D}_{\text{max}} = \mathcal{D}_{\text{min}}$ and $\bar{\mathcal{D}}_{\text{max}} = \bar{\mathcal{D}}_{\text{min}}([3])$. And hence we denote the closed extensions as the same symbols. Consequently, from Lemma 2.3 and Theorem 2.4, we obtain the Hilbert complexes

$$
(2.11) \quad \ldots \xrightarrow{\mathcal{D}} L^2(Cl^{p-1,q-1}(M)) \xrightarrow{\mathcal{D}} L^2(Cl^{p,q}(M)) \xrightarrow{\mathcal{D}} L^2(Cl^{p+1,q+1}(M)) \xrightarrow{\mathcal{D}} \ldots ,
$$

$$
\ldots \xleftarrow{\bar{\mathcal{D}}} L^2(Cl^{p-1,q-1}(M)) \xleftarrow{\bar{\mathcal{D}}} L^2(Cl^{p,q}(M)) \xleftarrow{\bar{\mathcal{D}}} L^2(Cl^{p+1,q+1}(M)) \xleftarrow{\bar{\mathcal{D}}} \ldots .
$$

Now, we put

$$
(2.12) \quad L^2H^{p,q} := \text{Ker}\mathcal{D}/\text{Im}\bar{\mathcal{D}} \cap L^2(Cl^{p,q}(M)),
$$

$$
(2.13) \quad L^2\mathcal{H}^{p,q} := \text{Ker}\mathcal{D} \cap \text{Ker}\bar{\mathcal{D}} \cap L^2(Cl^{p,q}(M)),
$$

$$
(2.14) \quad L^2H^{p,q} := \text{Ker}\Delta \cap L^2(Cl^{p,q}(M)).
$$

Here $L^2H^{p,q}$ and $L^2H^{p,q}$ are called the Clifford L^2-cohomology group and L^2-harmonic space, respectively. Then we have

Corollary 2.5. Let M be a complete Kähler manifold. Then we have

$$
L^2(Cl^{p,q}(M)) = L^2\mathcal{H}^{p,q} \oplus \text{Im}\bar{\mathcal{D}} \oplus \text{Im}\mathcal{D},
$$

and

$$
L^2H^{p,q} \simeq L^2\mathcal{H}^{p,q} \simeq L^2H^{p,q}.
$$

Proof. The first follows from Lemma 2.3 and Lemma 2.4. The second is obvious from [3, Lemma 3.2].
Remark ([10]). We study the relationship between Dolbeault cohomology and Clifford cohomology. First, we prepare the some facts: Let $\Lambda^{r,s}(M)$ be the standard Dolbeault decomposition of $\Lambda^*(M) \otimes \mathbb{C}$. Then there are operators

$$\partial : \Gamma \Lambda^{r,s} \longrightarrow \Gamma \Lambda^{r+1,s}, \quad \bar{\partial} : \Gamma \Lambda^{r,s} \longrightarrow \Gamma \Lambda^{r,s+1}$$

given by the formulas;

$$\partial = \sum_j \bar{\xi}_j \wedge \nabla \xi_j, \quad \bar{\partial} = \sum_j \xi_j \wedge \nabla \bar{\xi}_j,$$

where ∇ is the Kähler connection and $\{\xi_j, \bar{\xi}_j\}$ is as before. The formal adjoints of ∂ and $\bar{\partial}$ are given respectively by

$$\partial^* = -\sum_j i(\xi_j) \nabla \bar{\xi}_j, \quad \bar{\partial}^* = -\sum_j i(\bar{\xi}_j) \nabla \xi_j,$$

where $i(\cdot)$ denotes the interior product. It is well known that under the isomorphism $\mathbb{C}l(M) \cong \Lambda^*(M) \otimes \mathbb{C}$, we have $\mathcal{D} \cong \bar{\partial} + \partial^*$ and $\bar{\mathcal{D}} \cong \partial + \bar{\partial}^*$. Note that the (p,q)-decomposition of $\mathbb{C}l(M)$ constructed above does not directly correspond to the Dolbeault decomposition. In fact,

$$\mathbb{C}l^{p,*}(M) \cong \bigoplus_{s-r=p} \Lambda^{r,s}(M),$$

where $\mathbb{C}l^{p,*}(M) = \bigoplus_q \mathbb{C}l^{p,q}(M)$. Moreover,

$$H^{s-r,n-r-s}(M) \cong H^{r,s}_{Dol}(M),$$

where $H^{r,s}_{Dol}(M) = H \cap \Lambda^{r,s}(M)$, H is the harmonic space. The relations (2.17) and (2.18) hold for the space of L^2 sections.

3. Vanishing theorems

In this section, we shall prove some vanishing theorems under various curvature conditions. Let M be a Kähler manifold and consider a hermitian vector bundle $S \rightarrow M$ of left modules over $\mathbb{C}l(M)$ with a hermitian metric $<\cdot,\cdot>$ such that:
(1) Module multiplication by unit tangent vectors is unitary, i.e.,
\begin{equation}
\langle \xi \cdot \phi, \psi \rangle + \langle \phi, \bar{\xi} \cdot \psi \rangle = 0,
\end{equation}
for any $\phi, \psi \in \Gamma(S)$ and $\xi \in \Gamma(TM) \otimes \mathbb{C}$.

(2) With respect to the canonical hermitian connection, covariant differentiation is a derivation of module multiplication. That is, for $\phi \in \Gamma(\mathcal{Cl}(M))$ and $s \in \Gamma(S)$, we have
\begin{equation}
\nabla (\phi \cdot s) = (\nabla \phi) \cdot s + \phi \cdot (\nabla s).
\end{equation}

Now, we recall some basic results from [10]. For each j, we set $\omega_j = -\xi_j \bar{\xi}_j$, $\bar{\omega}_j = -\bar{\xi}_j \xi_j$. To each (possibly empty) subset $I = \{i_1, \ldots, i_p\} \subseteq \{1, \ldots, n\}$ with complementary subset $\{j_1, \ldots, j_{n-p}\}$ we set $\omega_I = \omega_{i_1} \cdots \omega_{i_p} \bar{\omega}_{j_1} \cdots \bar{\omega}_{j_{n-p}}$ and we denote $|I| = p$. Then we have
\begin{equation}
1 = \prod_{j=1}^{n} (\omega_j + \bar{\omega}_j) = \sum_{r=1}^{n} \pi_r,
\end{equation}
where $\pi_r = \sum_{|I|=r} \omega_I$. Moreover, we have an orthogonal decomposition of the bundle
\begin{equation}
S = \bigoplus_{r=0}^{n} S^r, \quad S^r = \pi_r \cdot S.
\end{equation}

Then the complex
\begin{equation}
0 \to \Gamma_{cpt}(S^0) \xrightarrow{\mathcal{D}} \Gamma_{cpt}(S^1) \xrightarrow{\mathcal{D}} \cdots \xrightarrow{\mathcal{D}} \Gamma_{cpt}(S^n) \to 0
\end{equation}
is elliptic. By Lemma 2.3, its completion becomes a Hilbert complex. Similarly with Corollary 2.5, we have
\begin{equation}
L^2 \mathcal{H}^r(M, S') \cong L^2 \mathcal{H}^r(M, S) \cong L^{2r} \mathcal{H}^r(M, S).
\end{equation}

Now, we define invariant operators on $\Gamma(S)$ by
\begin{equation}
\nabla^* \nabla = -\sum_j \nabla_{\xi_j, \xi_j}, \quad \bar{\nabla}^* \bar{\nabla} = -\sum_j \nabla_{\bar{\xi}_j, \bar{\xi}_j},
\end{equation}
\begin{equation}
\mathcal{R} = \sum_{j, k} \xi_j \bar{\xi}_k R_{\xi_j, \xi_k}, \quad \bar{\mathcal{R}} = \sum_{j, k} \bar{\xi}_j \xi_k R_{\bar{\xi}_j, \bar{\xi}_k},
\end{equation}
where $R_{V, W} = \nabla_{V, W} - \nabla_{W, V}$ is the curvature tensor and where $\nabla_{V, W} = \nabla_V \nabla_W - \nabla_{\nabla_V W}$ is the invariant second covariant derivative. Then we have the following result([10]):
PROPOSITION 3.1. For any two sections \(s_1, s_2 \in \Gamma(S) \), at least one of which has compact support, the following holds:

\[
\int_M \angle \nabla^* \nabla s_1, s_2 \rangle = \int_M \langle \nabla s_1, \nabla s_2 \rangle,
\]

where \(\angle \nabla s_1, \nabla s_2 \rangle = \langle \nabla_{\xi}, s_1, \nabla_{\xi}, s_2 \rangle \). Hence \(\nabla^* \nabla \) is a formally self adjoint, nonnegative operator. Similarly, this holds for \(\bar{\nabla}^* \bar{\nabla} \). Moreover, the zero order operators \(R \) and \(\bar{R} \) are self-adjoint.

Moreover, by the straight calculation, we obtain the Bochner-Weitzenböck type formula([10]);

(3.8) \[\bar{D}D + \bar{D}D = \nabla^* \nabla + R = \bar{\nabla}^* \bar{\nabla} + \bar{R}. \]

From this formula, we obtain the first important consequence

THEOREM 3.2. For any \(s \in \text{dom} \bar{D}D \cap \text{dom} \bar{D}D \), we have

(3.9) \[\|D\| s \|^2 + \|\bar{D}s\|^2 = \|
abla s\|^2 + \angle R, s \rangle = \|
abla s\|^2 + \angle \bar{R}, s \rangle, \]

where \(\|
abla s\|^2 = \angle \nabla_{\xi}, s, \nabla_{\bar{\xi}}, s \rangle \) and \(\|
abla s\|^2 = \angle \nabla_{\xi}, s, \nabla_{\bar{\xi}}, s \rangle \).

Proof. First we consider a function \(\omega_\ell \) such that \(0 \leq \omega_\ell(x) \leq 1 \) for any \(x \in M, \text{supp} \ \omega_\ell \subset B(x_0, 2\ell) \), \(\omega_\ell(x) = 1 \) for any \(x \in B(x_0, \ell) \), \(\lim_{\ell \to \infty} \omega_\ell = 1 \) and \(|d\omega_\ell| \leq C/\ell \) almost everywhere on \(M \), where \(C \) is a positive constant independent of \(\ell \in \mathbb{R}_+ \), \(x_0 \in M \) and \(B(x_0, r) \) is the Riemannian open ball with radius \(r \) and center \(x_0 \).

For any \(s \in L^2(S) \), we calculate \(\angle D\bar{D}s + \bar{D}Ds, \omega_\ell^2 s \rangle \) on \(B(2\ell) \). We choose \(\{\xi, \bar{\xi}\} \) such that \(\langle \nabla \xi \rangle_x = \langle \nabla \bar{\xi} \rangle_x = 0 \). By the definition of \(\bar{D} \) and (2.2), we get

\[\angle D\bar{D}s, \omega_\ell^2 s \rangle = 2 \langle \omega_\ell Ds, \bar{\xi}(\nabla \xi, \omega_\ell)s \rangle + \|\omega_\ell \bar{D}s\|^2. \]

Using (3.1) and \(\bar{\xi} \xi + \xi \bar{\xi} = -\|\xi\|^2 \), we obtain

\[\|\xi \cdot s\|^2 + \|\bar{\xi} \cdot s\|^2 = \|\xi\|^2 \|s\|^2. \]

Hence we get \(\|\xi \cdot s\| \leq \|\xi\| \|s\| \) for any \(\xi \in TM \otimes \mathbb{C} \). Therefore, by this inequality and Schwarz inequality, we have

\[|\langle \bar{D}s, \bar{\xi}(\nabla \xi, \omega_\ell)s \rangle| \leq \|\bar{D}s\| \|\bar{\xi}(\nabla \xi, \omega_\ell)s\| \leq \|\bar{D}s\| \|\nabla \xi, \omega_\ell\| \|s\| \leq \frac{C}{\ell} \|\bar{D}s\| \|s\|. \]
Since \(\|s\| \) and \(\|\mathcal{D}s\| \) are finite, letting \(\ell \to \infty \), we have \(<\mathcal{D}s, \varepsilon_j (\nabla \varepsilon_j \omega_{\ell})s > \to 0 \). This implies that \(<\mathcal{D}\mathcal{D}s, s > = \|\mathcal{D}s\|^2 \). Similarly, we get \(<\mathcal{D}\mathcal{D}s, s > = \|\mathcal{D}s\|^2 \). On the other hand, by Proposition 3.1 and (3.2), we have

\[
<\nabla^* \nabla s, \omega_{\ell}^2 s > = 2 <\omega_{\ell} \nabla s, \nabla \omega_{\ell} \cdot s > + \|\omega_{\ell} \nabla s\|^2.
\]

By similar method, we have \(|<\omega_{\ell} \nabla s, \nabla \omega_{\ell} \cdot s > | \to 0 \) as \(\ell \to \infty \). Hence we have \(<\nabla^* \nabla s, s > = \|\nabla s\|^2 \). Hence we complete the proof of the first equation of (3.9). For the second part, the proof is similar. \(\square \)

From Theorem 3.2, we have

\[
2(\|\mathcal{D}s\|^2 + \|\mathcal{D}_{\bar{s}}s\|^2) = \|\nabla s\|^2 + \|\mathcal{D}_{\bar{s}}s\|^2 + <(\mathcal{R} + \mathcal{\bar{R}})s, s >.
\]

Hence for any \(s \in \text{Ker} \mathcal{D} \cap \text{Ker} \mathcal{D}_{\bar{s}} \), if \(R = \mathcal{R} + \mathcal{\bar{R}} \) is non-negative, then we have \(\|\nabla s\| = \|\mathcal{D}_{\bar{s}}s\| = 0 \). This implies that \(s \) is a parallel section. In addition, if \(R \) is positive at some point, then \(s = 0 \). Hence we have

Theorem 3.3. Let \(M \) be a complete Kähler manifold and let \(S \) be any hermitian vector bundle of modules over \(\text{Cl}(M) \). If \(R \) is non-negative and positive at some point of \(M \), then the Clifford \(L^2 \)-cohomology group is trivial. This is,

\[
L^2 \mathcal{H}^r(M, S) = \{0\}, \quad \text{for any } r = 0, 1, \cdots, n.
\]

Moreover, on \(TM \subset \text{Cl}(M) \), we have ([8])

\[
\mathcal{R} + \mathcal{\bar{R}} = \frac{1}{2} \text{Ric}.
\]

Thus, from (3.6) and Theorem 3.3, we have

Corollary 3.4. On the complete Kähler manifold, if the Ricci curvature is non-negative and positive at some point, then every \(L^2 \)-harmonic 1-form is necessary zero.

Now, we shall consider some special cases of Theorem 3.3. To begin, we suppose that \(M \) is a Kähler spin manifold, i.e., we assume that
there exists a principal Spin-bundle, \(P_{\text{Spin}}(M) \rightarrow M \), with a \(\text{Spin}_{2n} \)-equivalent map \(\tau : P_{\text{Spin}}(M) \rightarrow P_{\text{SO}}(M) \), to the bundle of real oriented orthonormal frame on \(M \). The bundle of spinors, \(S \), is then defined to be vector bundle associated to the unitary representation \(\Delta \) of \(\text{Spin}_{2n} \) given by the unique irreducible complex representation of \(Cl_{2n} \), i.e., \(S = P_{\text{Spin}} \times_{\Delta} \mathbb{C}^{2^n} \). This bundle is naturally a bundle of modules over \(\mathbb{C}l(M) \) and carries a canonical connection induced from the lift of the riemannian connection on \(P_{\text{SO}}(M) \). Since \(M \) is Kähler, this bundle \(S \) is naturally holomorphic and its connection is hermitian. On this bundle \(S \), the curvature tensor \(R^S \) is given by

\[
R^S_{V,W} = \frac{1}{4} \sum_{\alpha, \beta = 1}^{2n} < R_{V,W} X_\alpha, X_\beta > X_\alpha X_\beta,
\]

where \(X_1, \ldots, X_{2n} \) is any real orthonormal basis of the tangent space. Choosing a basis \(e_1, \ldots, J e_n \), we can write \(R^S \) as

\[
R^S_{V,W} = 2 \sum_{j,k=1}^{n} < R_{V,W} \xi_j, \bar{\xi}_k > \xi_j \bar{\xi}_k + \sum_{j=1}^{n} < R_{V,W} \xi_j, \bar{\xi}_j > .
\]

Hence we have

\[
\mathcal{R}^S = \sum_{j,k=1}^{n} \xi_j \bar{\xi}_k R^S_{\xi_j, \xi_k}
= \sum_{i,j,k=1}^{n} < \mathcal{R}_{\xi_i, \bar{\xi}_i, \xi_j, \xi_k} > \xi_j \bar{\xi}_k
= -\frac{1}{2} \sum_{j,k=1}^{n} \text{Ric}(\xi_j, \xi_k) \xi_j \bar{\xi}_k,
\]

where \(\text{Ric} \) is Ricci tensor on \(M([10]) \). Since \(\text{Ric} \) is hermitian symmetric, we may choose our basis so that \(\text{Ric}(\xi_j, \xi_k) = 1/2 \lambda_j \delta_{jk} \), where \(\lambda_j = \text{Ric}(e_j, e_j) = \text{Ric}(Je_j, Je_j) \), for \(j = 1, \ldots, n \), are the eigenvalues. Then we have

\[
\mathcal{D} \mathcal{D} + \mathcal{D} \mathcal{D} = \nabla^* \nabla + \frac{1}{4} \sum_{j=1}^{n} \lambda_j \omega_j = \bar{\nabla}^* \bar{\nabla} + \frac{1}{4} \sum_{j=1}^{n} \lambda_j \bar{\omega}_j.
\]
We note that $\tilde{\nabla}^* \nabla + \tilde{\nabla}^* \tilde{\nabla} = \frac{1}{2} \tilde{\nabla}^* \tilde{\nabla}$ where

\begin{equation}
\tilde{\nabla}^* \tilde{\nabla} = - \sum_j (\nabla_{e_j, e_j} + \nabla_{J e_j, J e_j})
\end{equation}

is a self-adjoint, elliptic operator whose kernel is the space of parallel sections. We note that the scalar curvature κ of M is given by

\begin{equation}
\kappa = \text{trace}_H(\text{Ric}) = 2 \sum_j \lambda_j.
\end{equation}

Hence we get

Theorem 3.5([10]). On the spinor bundle S, we have

$$4(\mathcal{D} \mathcal{D} + \mathcal{D} \mathcal{D}) = \tilde{\nabla}^* \tilde{\nabla} + \frac{1}{4} \kappa,$$

where κ is the scalar curvature of M.

Summing up Theorem 3.3 and Theorem 3.5, we have

Theorem 3.6. Let M be a complete Kähler spin manifold. If $\kappa \geq 0$ for all $x \in M$ and $\kappa > 0$ for some point $x_0 \in M$, then there are no non-trivial L^2-harmonic spinors.

References

Jin Suk Pak
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea

Seoung Dal Jung
Department of Mathematics
Cheju National University
Cheju 690-756, Korea