ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

JIN-GYO JEONG AND KI-YEON SHIN

ABSTRACT. The existence of a unique local generalized solution for the abstract functional evolution problem of the type

(FDE:
$$\phi$$
) $x'(t) + A(t, x_t)x(t) \ni G(t, x_t), \ t \in [0, T], \ x_0 = \phi$

in a general Banach spaces is considered. It is shown that $(FDE:\phi)$ could be considered with well-known fixed point theory and recent results for the functional differential equations involving the operator A(t).

1. Introduction and preliminaries

Let X be a real Banach space with norm $\|\cdot\|$. We let C denote the space of all continuous functions $f:[-r,0]\to X$ for a fixed r>0. For $f\in C$, $\|f\|_C=\sup_{-r< s<0}\|f(s)\|$.

We consider the abstract nonlinear functional differential equation of the type

(FDE:
$$\phi$$
)
$$x'(t) + A(t, x_t)x(t) \ni G(t, x_t), \quad t \in [0, T],$$
$$x_0 = \phi, \quad -r \le t \le 0$$

in a general Banach space, where for a function $f:[-r,T] \to X$, $f_t(s) = f(t+s), t \in [0,T], s \in [-r,0]$ with a positive constant T.

An operator $A:D\subset X\to 2^X$ is called "accretive" if

$$||x_1 - x_2|| \le ||x_1 - x_2 + \lambda(y_1 - y_2)||$$

Received May 16, 1995.

¹⁹⁹¹ Mathematics Subject Classification: 34K30, 47H20, 34L20.

Key words and phrases: m-accretive operator, method of lines, generalized solution, contraction mapping.

for every $\lambda > 0$ and every $[x_1, y_1], [x_2, y_2] \in A$. It is called "maccretive" if it is accretive and $R(I + \lambda A) = X$ for all $\lambda > 0$. If A is m-accretive, we set

$$|Ax| = \lim_{\lambda \downarrow 0} ||A_{\lambda}x||, \quad x \in X,$$

where $A_{\lambda} = (I - J_{\lambda})/\lambda$ with $J_{\lambda} = (I + \lambda A)^{-1}$. We also set

$$\hat{D} = \{ x \in X : |Ax| < \infty \}.$$

It is known that $D(A) \subset \hat{D}(A) \subset \overline{D(A)}$. For other properities of these operators, the reader is referred to Barbu [1], Crandall [2], Crandall and Pazy [3] and Evans [4].

Tanaka [12] has recently obtained the existence of a unique limit solution of the abstract nonlinear functional evolution equation of the type

$$x'(t) + A(t)x(t) \ni G(t, v_t), \quad t \in [0, T], \quad x_0 = \phi$$

in a general Banach space by constructing the "lines" which satisfy certain approximate discrete scheme. The solution is obtained from the uniform limit of the "lines". Kartsatos and Parrott [10] also have the similar results with different method. For the operator $A(t,x_t)$, Kartsatos and Parrott [8], Kartsatos [7] have studied by use of fixed point theory and Crandall and Pazy's result [3].

The following conditions will be used in the sequel.

(A.1) For each $(t, \psi) \in [0, T] \times C$, $A(t, \psi) : D(A(t, \psi)) \subset X \to 2^X$ is m-accretive in X, where $D(A(t, \psi))$ is only dependent on t. We denote $D(A(t, \psi)) = D(t)$.

(A.2) For each $t, s \in [0, T], \psi_1, \psi_2 \in C$, and $v \in X$,

$$||A_{\lambda}(t, \psi_{1})v - A_{\lambda}(s, \psi_{2})v||$$

$$\leq L_{0}(||v||)[|t - s|(1 + ||A_{\lambda}(s, \psi_{2})v||) + ||\psi_{1} - \psi_{2}||_{C}]$$

where $L_0: \mathcal{R}^+ \to \mathcal{R}^+ = [0, \infty)$ is increasing, continuous function. **(A.3)** For $t, s \in [0, T]$, and $\psi, \psi_1, \psi_2 \in C$,

$$||G(t, \psi_1) - G(t, \psi_2)|| \le k_1 ||\psi_1 - \psi_2||_C,$$

$$||G(t, \psi) - G(s, \psi)|| \le L_1(||\psi||_C)|t - s|,$$

where k_1 is a positive constant and $L_1 : \mathcal{R}^+ \to \mathcal{R}^+$ is nondecreasing, continuous function.

(A.4) ϕ is a given Lipschitz function with Lipschitz constant k_0 on [-r,0].

By virtue of (A.2), it is known that $\hat{D}(A(t, \psi))$ is independent of $(t, \psi) \in [0, T] \times C$. (See Evans [4].) We denote by $\hat{D} \equiv \hat{D}(A(t, \psi))$.

The main purpose of this paper is to obtain a "generalized solution" of $(FDE:\phi)$ with more simple method. When the functional term in A and G is fixed, $(FDE:\phi)$ is converted a very well known evolution problem. Then we employ the Banach contraction principle to get a local generalized solution.

We define a set E by

$$E = \{u : [-r, T] \to X \mid u(t) \text{ is continuous, } u(t) = \phi(t) \text{ for } t \in [-r, 0]$$
 and $||u(t_1) - u(t_2)|| \le M|t_1 - t_2| \text{ for } t_1, t_2 \in [0, T]\},$

where $M \geq k_0$ is a constant. Clearly, $E \neq \phi$ since the function u(t) defined by $u(t) = \phi(t)$ for $t \in [-r, 0]$, and $u(t) = \phi(0)$ for $t \in [0, T]$ belongs to E. Moreover, the set E is a Banach space with supremum norm. (cf. Ha, Shin and Jin [6]).

2. Main results

In the following discussion, we assume that the hypotheses (A.1)–(A.4) hold and $\phi(0) \in \hat{D}$. Let $u \in E$ be arbitrary but fixed. We shall first consider a more simple evolution problem which is converted from (FDE: ϕ) by employing the above $u \in E$.

By fixing the functional term with u, we consider $(\text{EE}:\phi,u)$ from $(\text{FDE}:\phi)$ by the type of

(EE:
$$\phi, u$$
) $x'(t) + A(t, u_t)x(t) \ni G(t, u_t), \quad t \in [0, T],$
 $x_0 = \phi(0).$

For the simplicity, we put $B(t) \equiv A(t, u_t)$ and $g(t) \equiv G(t, u_t)$ for $t \in [0, T]$. Then our hypotheses (A.1)–(A.4) are converted as follows.

(B.1) For each $t \in [0, T]$, $B(t) : D(t) \subset X \to 2^X$ is m-accretive.

(B.2) For each $t, s \in [0, T]$ and $v \in X$,

$$||B_{\lambda}(t)v - B_{\lambda}(s)v|| \le L_{0}(||v||)|t - s|(1 + M)(1 + ||B_{\lambda}(s)v||)$$

$$\equiv \tilde{L}_{0}(||v||)|t - s|(1 + ||B_{\lambda}(s)v||)$$

where $\tilde{L}_0: \mathcal{R}^+ \to \mathcal{R}^+$ is again nondecreasing continuous function with $\tilde{L}_0(p) = (1+M)L_0(p)$ and $B_{\lambda}(t)$ is the Yosida approximation of B(t). **(B.3)** For $t, s \in [0,T]$

$$||g(t) - g(s)|| \le ||G(t, u_t) - G(t, u_s)|| + ||G(t, u_s) - G(s, u_s)||$$

$$\le k_1 ||u_t - u_s||_C + L_1(||u_s||_C)|t - s|$$

$$\le (k_1 M + L_1(||u_s||_C))|t - s|$$

$$\le (k_1 M + L_1(||\phi||_C + MT))|t - s|$$

$$\equiv \tilde{L}_1 |t - s|$$

where \tilde{L}_1 is a constant.

By (B.1)-(B.3), it is easy to show that there exist constants $C_1 = C_1(\phi)$ and $C_2 = C_2(\phi)$ such that for $t \in [0, T]$

$$|B(t)\phi(0)| = |A(t, u_t)\phi(0)| \le C_1, \quad ||g(t)|| = ||G(t, u_t)|| \le C_2.$$

Let $\{t_j^n\}_{j=0}^n$ be a partition of the interval [0,T] for fixed n, where $t_j^n = jT/n, \ j = 0,1,\cdots,n$. And we let $g_j^n = g(t_j^n)$. When we put $x_0^n = \phi(0)$, we construct a sequence $\{x_j^n\}_{j=0}^n$ of elements of X satisfying

$$\frac{x_j^n - x_{j-1}^n}{t_j^n - t_{j-1}^n} + B(t_j^n) x_j^n \ni g_j^n, \qquad j = 1, 2, \dots, n$$

by m-accretiveness of B. The step function

$$x_n(t) = \begin{cases} x_0^n, & t = 0, \\ x_j^n, & t \in (t_{j-1}^n, t_j^n], \ j = 1, 2, \dots, n \end{cases}$$

is called an approximate solution of $(EE:\phi,u)$. If the approximate solution converge to some continuous function uniformly on [0,T], we call it the limit solution of $(EE:\phi,u)$ on [0,T].

Since the conditions (B.1)–(B.3) satisfy the conditions (A) and (C.2) in Theorem 2 of Evans [4], we follow the steps to get constants $R_1 = R_1(\phi)$, $R_2 = R_2(\phi)$ satisfying

$$\sup_{n} \{ \max_{0 \le j \le n} \|x_{j}^{n}\| \} \le R_{1}, \text{ and } \sup_{n} \{ \max_{0 \le j \le n} \frac{\|x_{j}^{n} - x_{j-1}^{n}\|}{t_{j}^{n} - t_{j-1}^{n}} \} \le R_{2}$$

for $\phi(0) \in \hat{D}$. Therefore, by similar method of Evans [4], we have constant $K=2R_2$ to show that

$$||x_n(t) - x_n(s)|| \le K(|t - s| + T/n)$$

for sufficiently large n. Consequently, in considering (EE: ϕ ,u) for fixed $u \in E$, we note that our hypotheses (B.1)–(B.3) implies there exist a limit solution $x_u(t)$ which is converged from approximate solutions $x_n(t)$ uniformly on [0,T]. More precisely, we have the following theorem.

THEOREM 1. (Evans [4]) Let (A.1)-(A.4) hold and $\phi(0) \in \hat{D}$. Then there exist a limit solution $x_u(t)$ of (EE: ϕ,u) on [0, T] for fixed $u \in E$. Moreover, x_u is Lipschitz continuous with Lipschitz constant K on [0, T].

Now we show the relation between the limit solutions of $(EE:\phi,u)$ and $(EE:\phi,v)$ for $u,v\in E$. Using this, we have the existence of a limit solution for $(EE:\phi)$ by the Banach contraction principle.

THEOREM 2. Let $x_u(t)$ and $y_v(t)$ be the limit solutions of $(\text{EE}:\phi,u)$ and $(\text{EE}:\phi,v)$ in Theorem 1, respectively. Then there exists a constant C_4 such that

$$||x_{u}(t) - y_{v}(t)|| \leq ||x_{u}(\tau) - y_{v}(\tau)|| + C_{4}T||u - v||_{\infty}$$
$$+ \int_{\tau}^{t} [x_{u}(\eta) - y_{v}(\eta), G(\eta, (x_{u})_{\tau}) - G(\eta, (y_{v})_{\eta})]_{+} d\eta$$

for $0 \le \tau \le t \le T$.

Proof. Let x_u , y_v be the limit solutions of (EE: ϕ ,u), (EE: ϕ ,v), respectively. By the definition of the limit solution of (EE: ϕ ,u), there exists an approximate solution $x_n(t)$ such that

(2.1)
$$\frac{x_j^n - x_{j-1}^n}{h_n} + A(t_j^n, u_{t_j^n}) x_j^n \ni G(t_j^n, u_{\varepsilon_j^n}),$$

 $x_n(0) = x_0^n = \phi(0)$ and $x_n(t) = x_k^n$, $t \in (t_{j-1}^n, t_j^n]$, $j = 1, 2, \dots, n$, where $h_n = t_j^n - t_{j-1}^n$. Also, there exists an approximate solution $y_m(t)$ such that

(2.2)
$$\frac{y_k^m - y_{k-1}^m}{\hat{h}_m} + A(s_k^m, v_{s_k^m}) y_k^m \ni G(s_k^m, v_{s_k^m}),$$

 $y_m(0) = y_0^m = \phi(0)$ and $y_m(t) = y_k^m$, $t \in (s_{k-1}^m, s_k^m]$, $k = 1, 2, \dots, m$, where $\hat{h}_m = s_k^m - s_{k-1}^m$. Let $\delta \in (0, T/2)$ and assume that n and m are sufficiently large such that $\max(h_n, \hat{h}_m) < \delta$. Then there is a positive constant C_4 such that for $p \in \{0, 1, \dots, n\}$ and $q \in \{0, 1, \dots, m\}$

$$||x_{j}^{n} - y_{k}^{m}|| \leq ||x_{p}^{n} - y_{q}^{m}|| + C_{4}D_{j,k} + \sum_{i=p}^{j} \delta_{i}^{n} h_{n} + \sum_{i=q}^{k} \hat{\delta}_{i}^{m} \hat{h}_{m} +$$

for $j=p,\cdots,n$ and $k=q,\cdots,m$. Here the symbols used above are defined by

$$\delta_j^n = \left[x_j^n - y_v(t_j^n), G(t_j^n, u_{t_j^n}) - G(t_j^n, (y_v)_{t_j^n}) \right]_{\lambda},$$

where $[x, y]_{\lambda} = \lambda^{-1}(\|x + \lambda y\| - \|x\|)$ for $\lambda > 0$,

$$\hat{\delta}_{k}^{m} = \|G(s_{k}^{m}, u_{s_{k}^{m}}) - G(s_{k}^{m}, (y_{v})_{s_{k}^{m}})\| + \frac{2}{\lambda} \|y_{k}^{m} - y_{v}(s_{k}^{m})\|,$$

$$\rho(\hat{t}) = \sup\{\frac{2}{\lambda} \|y_{v}(t) - y_{v}(r)\| + \|G(r, (y_{v})_{r}) - G(t, (y_{v})_{t})\| : |t - r| \le \hat{t}\}.$$

and

$$D_{j,k} = \{ ((t_j^n - t_p^n) - (s_k^m - s_q^m))^2 + (t_j^n - t_p^n)h_n + (s_k^m - s_q^m)\hat{h}_m \}^{\frac{1}{2}} + \{ ((t_j^n - t_p^n) - (s_k^m - s_q^n))^2 + (t_j^n - t_p^n)h_n + (s_k^m - s_q^m)\hat{h}_m \}.$$

First, we prove that (2.3) holds. we let $\sigma = h_n \hat{h}_m / (h_n + \hat{h}_m)$. From (2.1) and (2.2), we have

$$A(t_{j}^{n}, u_{t_{j}^{n}})x_{j}^{n} \ni G(t_{j}^{n}, u_{t_{j}^{n}}) + \frac{x_{j-1}^{n} - x_{j}^{n}}{h_{n}},$$

$$A(s_{k}^{m}, v_{s_{k}^{m}})y_{k}^{m} \ni G(s_{k}^{m}, v_{s_{k}^{m}}) + \frac{y_{k-1}^{m} - y_{k}^{m}}{\hat{h}}.$$

Choose $0 < \lambda < 1$. Then, with the similar steps in the paper of Ha, Shin and Jin [6],

$$J_{\sigma\lambda}(t_{j}^{n}, u_{t_{j}^{n}}) \left(x_{j}^{n} + \sigma\lambda \left(G(t_{j}^{n}, u_{t_{j}^{n}}) + \frac{x_{j-1}^{n} - x_{j}^{n}}{h_{n}}\right)\right) = x_{j}^{n},$$

$$J_{\sigma\lambda}(s_{k}^{m}, v_{s_{k}^{m}}) \left(y_{k}^{m} + \sigma\lambda \left(G(s_{k}^{m}, v_{s_{k}^{m}}) + \frac{y_{k-1}^{m} - y_{k}^{m}}{\hat{t}_{m}}\right)\right) = y_{k}^{m}.$$

From (A.2)-(A.4),

$$||x_i^n - y_k^m||$$

$$\leq \|J_{\sigma\lambda}(t_{j}^{n}, u_{t_{j}^{n}})(x_{j}^{n} + \sigma\lambda(G(t_{j}^{n}, u_{t_{j}^{n}}) + \frac{x_{j-1}^{n} - x_{j}^{n}}{h_{n}}))$$

$$- J_{\sigma\lambda}(t_{j}^{n}, u_{t_{j}^{n}})(y_{k}^{m} + \sigma\lambda(G(s_{k}^{m}, v_{s_{k}^{m}}) + \frac{y_{k-1}^{m} - y_{k}^{m}}{\hat{h}_{m}}))\|$$

$$+ \|J_{\sigma\lambda}(t_{j}^{n}, u_{t_{j}^{n}})(y_{k}^{m} + \sigma\lambda(G(s_{k}^{m}, v_{s_{k}^{m}}) + \frac{y_{k-1}^{m} - y_{k}^{m}}{\hat{h}_{m}}))$$

$$- J_{\sigma\lambda}(s_{k}^{m}, v_{s_{k}^{m}})(y_{k}^{m} - \sigma\lambda(G(s_{k}^{m}, v_{s_{k}^{m}}) + \frac{y_{k-1}^{m} - y_{k}^{m}}{\hat{h}_{m}}))\|$$

$$\leq \|(x_{j}^{n} + \sigma\lambda(G(t_{j}^{n}, u_{t_{j}^{n}}) + \frac{x_{j-1}^{n} - x_{j}^{n}}{h_{n}}))$$

$$- (y_{k}^{m} + \sigma\lambda(G(s_{k}^{m}, v_{s_{k}^{m}}) + \frac{y_{k-1}^{m} - y_{k}^{m}}{\hat{h}_{m}}))\|$$

$$+ \sigma\lambda L_{0}(\|y_{k}^{m} + \sigma\lambda(G(s_{k}^{m}, v_{s_{k}^{m}}) + \frac{y_{k-1}^{m} - y_{k}^{m}}{\hat{h}_{m}})\|)[|t_{j}^{n} - s_{k}^{m}|$$

$$(1 + \|A_{\sigma\lambda}(s_k^m, v_{\hat{t}_k^m})(y_k^m + \sigma\lambda(G(s_k^m, v_{s_k^m}) + \frac{y_{k-1}^m - y_k^m}{\hat{h}_m})\|)$$

$$+ \|u_{t_j^n} - v_{s_k^m}\|_C].$$

Let $A_{j,k} = ||x_j^n - y_k^m||$. Then

$$\begin{split} A_{j,k} &\leq \frac{h_n}{h_n + \hat{h}_m} A_{j,k-1} + \frac{\hat{h}_m}{h_n + \hat{h}_m} A_{j-1,k} \\ &+ \frac{h_n \hat{h}_m}{h_n + \hat{h}_m} \{ L_0(R_1) (1 + C_2 + R_2) | t_j^n - s_k^m | \\ &+ L_0(R_1) \| u_{t_j^n} - v_{s_k^m} \|_C + [x_j^n - y_k^m, G(t_j^n, u_{t_j^n}) - G(s_k^m, v_{s_k^m})]_+ \} \\ &\leq \frac{h_n}{h_n + \hat{h}_m} A_{j,k-1} + \frac{\hat{h}_m}{h_n + \hat{h}_m} A_{j-1,k} \\ &+ \frac{h_n \hat{h}_m}{h_n + \hat{h}_m} \{ L_0(R_1) (1 + C_2 + R_2) | t_j^n - s_k^m | \\ &+ L_0(R_1) \| u_{t_j^n} - v_{s_k^m} \|_C + \delta_j^n + \hat{\delta}_k^m + \rho(|t_j^n - s_k^m|) \} \end{split}$$

by the fact that

$$\begin{aligned} &[x_{j}^{n}-y_{k}^{m},G(t_{j}^{n},u_{t_{j}^{n}})-G(s_{k}^{m},v_{s_{k}^{m}})]_{+} \\ &\leq [x_{j}^{n}-y_{v}(t_{j}^{n}),G(t_{j}^{n},u_{t_{j}^{n}})-G(t_{j}^{n},(y_{v})_{t_{j}^{n}})]_{\lambda} \\ &+\|G(s_{k}^{m},u_{s_{k}^{m}})-G(s_{k}^{m},(y_{v})_{s_{k}^{m}})\| \\ &+\|G(s_{k}^{m},(y_{v})_{s_{k}^{m}})-G(t_{j}^{n},(y_{v})_{t_{j}^{n}})\| \\ &+\frac{2}{\lambda}\|y_{k}^{m}-y_{v}(s_{k}^{m})\|+\frac{2}{\lambda}\|y_{v}(s_{k}^{m})-y_{v}(t_{j}^{n})\|. \end{aligned}$$

Since

$$\begin{split} |t_{j}^{n} - s_{k}^{m}| &\leq |(t_{j}^{n} - s_{k}^{m}) - h_{n}| - h_{n} \\ &\leq |(t_{j}^{n} - t_{p}^{n}) - (s_{k}^{m} - s_{q}^{m}) - h_{n}| + |t_{p}^{n} - s_{q}^{m}| + h_{n} \\ &\leq D_{j-1,k} + |t_{p}^{n} - s_{q}^{m}| + h_{n}, \\ \rho(|t_{j}^{n} - s_{k}^{m}|) &\leq \delta^{-1}\rho(T)(|t_{j}^{n} - s_{k}^{m}|) - h_{n}) + \rho(2\delta) \\ &\leq \delta^{-1}\rho(T)(D_{j-1,k} + |t_{p}^{n} - \hat{t}_{q}^{m}|) + \rho(2\delta), \end{split}$$

and

$$\begin{aligned} \|u_{t_{j}^{n}} - v_{s_{k}^{m}}\|_{C} &\leq \|u_{t_{j}^{n}} - u_{s_{k}^{m}}\|_{C} + \|u_{s_{k}^{m}} - v_{s_{k}^{m}}\|_{C} \\ &\leq M|t_{j}^{n} - s_{k}^{m}| + \|u_{s_{k}^{m}} - v_{s_{k}^{m}}\|_{C} \\ &\leq MD_{j-1,k} + M|t_{n}^{n} - s_{q}^{m}| + Mh_{n} + \|u_{s_{k}^{m}} - v_{s_{k}^{m}}\|_{C}, \end{aligned}$$

we have

$$A_{j,k} \leq \frac{h_n}{h_n + \hat{h}_m} A_{j,k-1} + \frac{\hat{h}_m}{h_n + \hat{h}_m} A_{j-1,k}$$

$$+ \frac{h_n \hat{h}_m}{h_n + \hat{h}_m} \{ (R_4 + \delta^{-1} \rho(T)) (D_{j-1,k} + |t_p^n - \hat{t}_q^m|)$$

$$+ R_4 h_n + \delta_j^n + \hat{\delta}_k^m + \rho(2\delta) + R_4 ||u - v||_{\infty} \}.$$

For $i = p + 1, \dots, n$,

$$\begin{split} \|x_{i}^{n} - x_{p}^{n}\| \\ & \leq \|J_{h_{n}}(t_{i}^{n}, u_{t_{i}^{n}})(x_{i-1}^{n} + h_{n}G(t_{i}^{n}, u_{t_{i}^{n}})) - J_{h_{n}}(t_{i}^{n}, u_{t_{i}^{n}})x_{p}^{n}\| \\ & + \|J_{h_{n}}(t_{i}^{n}, u_{t_{i}^{n}})x_{p}^{n} - x_{p}^{n}\| \\ & \leq \|x_{i-1}^{n} - x_{p}^{n}\| + h_{n}\|G(t_{i}^{n}, u_{t_{i}^{n}})\| + h_{n}|A(t_{i}^{n}, u_{t_{i}^{n}})x_{p}^{n}| \\ & \leq \|x_{i-1}^{n} - x_{p}^{n}\| + 2h_{n}C_{3} + h_{n}L_{0}(\|x_{p}^{n}\|)|t_{i}^{n} - t_{p}^{n}|(1 + C_{3} + M) \\ & \leq \|x_{i-1}^{n} - x_{p}^{n}\| + h_{n}C_{4}|t_{i}^{n} - t_{p}^{n}| + C_{4}h_{n}, \end{split}$$

where $C_4 = \max\{2C_3, R_4\}$ with the bound $C_3 \ge |A(t_j^n, u_{t_j^n})x_p^n|$. If we add this inequality for $i = p + 1, \dots, j$, we have

$$||x_{j}^{n} - x_{p}^{n}|| \leq C_{4}h_{n}(j - p) + C_{4}h_{n} \sum_{i=p-1}^{j} |t_{i}^{n} - t_{p}^{n}|$$

$$\leq C_{4}h_{n}(j - p) + C_{4}(j - p)^{2}h_{n}^{2}$$

$$= C_{4}|t_{j}^{n} - t_{p}^{n}| + C_{4}|t_{j}^{n} - t_{p}^{n}|^{2}$$

$$\leq C_{4}D_{j,q}.$$

For $p \leq j \leq n$ and k = q,

$$||x_j^n - x_p^n|| \le C_4(|t_j^n - t_p^n| + |t_j^n - t_j^n|^2)$$

$$\le C_4 D_{j,n},$$

which yields

$$||x_j^n - y_k^m|| \le ||x_j^n - x_p^n|| + ||x_p^n - y_q^m||$$

$$\le ||x_p^n - y_q^m|| + C_4 D_{j,q}.$$

Similarly, the above inequality also holds for j=p and $q \leq k \leq m$. Next, let $p+1 \leq j \leq n$ and $q+1 \leq k \leq m$, and suppose that (2.3) holds for the pair (j-1,k) and (j,k-1). Since $R_4 \leq C_4$, from (2.3),

$$\begin{split} A_{j,k} &\leq \frac{h_n}{h_n + \hat{h}_m} \big\{ \|x_p^n - y_q^m\| + C_4 D_{j,k-1} + \sum_{i=p}^j \delta_i^n h_n + \sum_{i=q}^{k-1} \hat{\delta}_i^m \hat{h}_m \\ &+ j h_n \big[(\delta^{-1} \rho(T) + C_4) (D_{j,k-1} + |t_p^n - \hat{t}_q^m|) + C_4 h_n + \rho(2\delta) \\ &+ C_4 \|u - v\|_\infty \big] \big\} \\ &+ \frac{\hat{h}_m}{h_n + \hat{h}_m} \big\{ \|x_p^n - y_q^m\| + C_4 D_{j-1,k} + \sum_{i=p}^j \delta_i^n h_n + \sum_{i=q}^{k-1} \hat{\delta}_i^m \hat{h}_m \\ &+ (j-1) h_n \big[(\delta^{-1} \rho(T) + C_4) (D_{j-1,k} + |t_p^n - \hat{t}_q^m|) + C_4 h_n + \rho(2\delta) \\ &+ C_4 \|u - v\|_\infty \big] \big\} \\ &+ \frac{h_n \hat{h}_m}{h_n + \hat{h}_m} \big\{ (\delta^{-1} \rho(T) + C_4) (D_{j-1,k} + |t_p^n - \hat{t}_q^m|) + C_4 h_n + \rho(2\delta) \\ &+ \delta_j^n + \hat{\delta}_k^m + C_4 \|u - v\|_\infty \big\} \\ &= \|x_p^n - y_q^m\| + C_4 \Big(\frac{h_n}{h_n + \hat{h}_m} D_{j,k-1} + \frac{\hat{h}_m}{h_n + \hat{h}_m} D_{j-1,k} \Big) \\ &+ \sum_{i=p}^j \delta_i^n h_n + \sum_{i=q}^k \hat{\delta}_i^m \hat{h}_m + j h_n \big\{ |\delta^{-1} \rho(T) + C_4 \big) (D_{j,k} + |t_p^n - \hat{t}_q^m|) \\ &+ C_4 h_n + \rho(2\delta) + C_4 \|u - v\|_\infty \big\} \\ &\leq \|x_p^n - y_q^m\| + C_4 D_{j,k} + \sum_{i=p}^j \delta_i^n h_n + \sum_{i=q}^k \hat{\delta}_i^m \hat{h}_m \\ &+ j h_n \big\{ (\delta^{-1} \rho(T) + C_4) (D_{j,k} + |t_p^n - \hat{t}_q^m|) \\ &+ C_4 h_n + \rho(2\delta) + C_4 \|u - v\|_\infty \big\} \end{split}$$

Here we have used

$$\frac{h_n}{h_n + \hat{h}_m} D_{j,k-1} + \frac{\hat{h}_m}{h_n + \hat{h}_m} D_{j-1,k} \le D_{j,k}.$$

Thus it turns out that (2.3) holds for the pair (j, k). Hence, we conclude that (2.3) holds for all $p \le j \le n$ and $q \le k \le m$.

Let $\tau \in (t_{p-1}^n, t_p^n] \cap (s_{q-1}^m, s_q^m]$ and $t \in (t_{j-1}^n, t_j^n] \cap (s_{k-1}^m, s_k^m]$. Letting $n, m \to \infty$ in (2.3),

$$|x_{u}(t) - y_{v}(t)||$$

$$\leq ||x_{u}(\tau) - y_{v}(\tau)| + \limsup_{n \to \infty} \sum_{i=p}^{j} \delta_{i}^{n} h_{\gamma}$$

$$+ \limsup_{m \to \infty} \sum_{i=q}^{k} \hat{\delta}_{i}^{m} \hat{h}_{m} + T\rho(2\delta) + C_{4}T ||u - v||_{\infty}.$$

Since

$$\lim_{n\to\infty}\sum_{i=p}^{j}\delta_{i}^{n}h_{n}=\int_{\tau}^{t}[x_{u}(\eta)-y_{v}(\eta).G(\eta,\left(x_{u}\right)_{\eta})-G(\eta,\left(y_{v}\right)_{\eta})]_{\lambda}d\eta$$

and $\lim_{m\to\infty} \sum_{i=q}^k \hat{\delta}_i^m \hat{h}_m = 0$, letting $\delta \downarrow 0$ in (2.4)

$$||x_{u}(t) - y_{v}(t)|| \leq ||x_{u}(\tau) - y_{v}(\tau)|| + C_{4}T||u - v||_{\infty}$$
$$+ \int_{\tau}^{t} [x_{u}(\eta) - y_{v}(\eta), G(\eta, (x_{u})_{\eta}) - G(\eta, (y_{v})_{\eta})]_{\lambda} d\eta$$

By letting $\lambda \downarrow 0$ for the above inequality, we finally have desired result.

THEOREM 3. Let $\phi(0) \in \hat{D}$ and (A.1)-(A.4) hold. Then there exists $T_1 \in (0, T]$ such that (FDE: ϕ) has a limit solution on $[0, T_1]$.

Proof. Let $T_1 \in (0,T]$ be sufficiently small so that $(C_4 + k_1)T_1 < 1$ and $K \leq M$, $\max\{k_0, 2(C_1 + C_2)\} < M$. Then by Theorem 2, for $t \in [0,T_1]$

$$||x_{u}(t) - y_{v}(t)|| \leq C_{4}T_{1}||u - v||_{\infty} + \int_{0}^{t} ||G(\eta, (x_{u})_{\eta}) - G(\eta, (y_{v})_{\eta})|| d\eta$$

$$\leq C_{4}T_{1}||u - v||_{\infty} + \int_{0}^{t} k_{1}||x_{u} - y_{v}||_{\infty} d\eta$$

$$\leq C_{4}T_{1}||u - v||_{\infty} + k_{1}T_{1}||x_{u} - y_{v}||_{\infty}.$$

Therefore, $||x_u - y_v||_{\infty} < ||u - v||_{\infty}$. Moreover, the limit solution satisfies $||x_u(t) - x_u(s)|| \le K|t - s| \le M|t - s|$ for $t, s \in [-r, T_1]$ and for $u \in E$. Therefore, $x_u \in E$ for all $u \in E$. If we define an operator $F: E \to E$ by $u \mapsto x_u$, where $x_u(t)$ is the limit solution of $(\text{EE}:\phi,u)$, then F is a strict contraction on a complete metric space E. By the Banach fixed point theorem, there is a unique fixed point of F in E, say x(t) for $t \in [-r, T_1]$. Then, x(t) is the limit solution of $(\text{EE}:\phi)$ which is Lipschitz continuous on $[-r, T_1]$.

REMARK 1. It is obvious from the proof of the above theorems that the interval [0,T] can be replaced by $[T_1,T]$. Then the solution x(t) of $(\text{EE}:\phi)$ exists beyond T_1 . With this processing, we may conclude that there exists a maximal interval of existence of solutions of $(\text{FDE}:\phi)$ on [0,T].

REMARK 2. Using the result of Theorem 2, we may have similar result of Ha, Shin and Jin [6] with the concept of integral solution defined by Benilan. It is quite interested in investigating the relation between two evolution operators generated by operators in $(EE:\phi)$ with different second terms. Also, for a just continuous perturbation $G(t,\cdot)$, we may apply the method in the paper of Kartsatos and Shin [11].

References

- V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noorhoff Int. Publ., Leyden (The Netherlands), 1976.
- [2] M. G. Crandall, A generalized domain for semigroup generators, Proc. Amer. Math. Soc. 37 (1973), 434-440.
- [3] M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57–94.
- [4] L. C. Evans, Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math. 26 (1977), 1–42.

- [5] K. S. Ha and K. Shin, Solutions of nonlinear functional differential equations in L^p spaces, Comm. Kor. Math. Soc. 9 (1994), 303-315.
- [6] K. S. Ha, K. Shin and B. J. Jin, Existence of solutions of nonlinear functional integro-differential equations in Banach spaces, Differential and Integral Eqs. 8, 553-566.
- [7] A. G. Kartsatos, The existence of bounded solutions on the real line of perturbed nonlinear evolution equations in general Banach spaces, Nonl. Anal. TMA 17 (1991), 1085-1092.
- [8] A. G. Kartsatos and M. E. Parrott, Existence of solutions and Galerkin approximations for nonlinear functional evolution equations, Tohoku Math. J. 34 (1982), 509-523.
- [9] A. G. Kartsatos and M. E. Parrott, A method of lines for a nonlinear abstract functional evolution equation, Trans. Amer. Math. Soc. 286 (1984), 73-89.
- [10] A. G. Kartsatos and M. E. Parrott, The weak solution of functional differential equation in a general Banach space, J. Diff. Eqs. 75 (1988), 290-302.
- [11] A. G. Kartsatos and K. Shin, Solvability of functional evolutions via compactness methods in general Banach spaces, Nonl. Anal. TMA 21 (1993), 517-536.
- [12] N. Tanaka, On the existence of solutions for functional evolution equations, Nonl. Anal. TMA 12 (1988), 1087-1104.
- [13] K. Yosida, Functional analysis 2nd Ed., Springer-Verlag, Berlin and New York, 1968.

Department of Mathematics Pusan National University Pusan 609–735, Korea

E-mail: kyshin@hyowon.cc.pusan.ac.kr