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ABSTRACT FUNCTIONAL DIFFERENTIAL
EQUATIONS IN BANACH SPACES

JIN-GYO JEONG AND KI-YEON SHIN

ABSTRACT. The existence of a unique local generalized solution for
the abstract functional evolution problem of the type

(FDE:¢) () + Alt, x)z(t) 5 Gtoaxy), t e 10,77,

Ty = ¢

in a general Banach spaces is considered. It is shown that (FDE:¢)
could be considered with well-known fixed point theory and recent
results for the functional differential equations invoiving the opera-
tor A(t).

1. Introduction and preliminaries

Let X be a real Banach space with norm || - ||. We let C denote the
space of all continuous functions f : [-~r,0] — X for a fixed » > 0. For
feC lfllc =sup_,cocollF ()]

We consider the abstract nonlinear functional differential equation
of the type

2(t) + Altoz)e(t) 3 G(tay), te[0.T].

DE:
(F 2 T =¢, —r<t<0

in a general Banach space, where for a function f : [~r, T — X,
fi(s) = f(t+s), 1 €[0.T], s € [-r.0] with a positive constant T.
An operator A: D C X — 2% is called “accretive” if

oy — a2l < ey — 22 + Ay — y2)

|
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for every A > 0 and every [r1. 0], [xo, 2] € A Tt is called “m-
accretive” if it is accretive and R(I 4+ MA) = X forall A > 0. If A

Is m-accretive, we set

|Az| = l/\lﬁ} Az, x=e€X.

where Ay = (£ — J\)/X with Jy = (I + AA)~'. We also set
D={reX : |Ax| < oo},

It is known that D(A) C D(A) D(A). For other properities of these
operators, the reader is referred to Barbu [1], Crandall [2], Crandall
and Pazy [3] and Evans [4].

Tanaka [12] has recently obtained the existence of a unique limit
solution of the abstract nonlinear functional evolution equation of the
type

() + ADa(t) 3 Gt ry), te 0, 7], x9=0¢
in a general Banach space by constructing the “lines” which satisfy
certain approximate discrete scheme. The solution is obtained from
the uniform limit of the “lines”. Kartsatos and Parrott [10] also have
the similar results with different method. For tlie operator A(#,ry),
Kartsatos and Parrott [8], Kartsatos [7] have studied by use of fixed
point theory and Crandall and Pazy’s result (3]

The following conditions will be used in the sequel.
(A.1) For each (+,v) € [0,T] x C. A(t,w) : D(At,¢) C X — 2% g
m-accretive in X, where D(A(#,4)) is only depencent on t. We denote
D(A(t, ) = D(¢).
(A.2) For each t,s € 0,7], 1.9 € C, and v € A,
AX(E 91)v — Ax(s, )|
= Lo([lviDIt = sl(1 + 1Az (s, w2)vll) + oy — vol|c]

where Lo : Rt — Rt = [0, 00) is increasing, continuous function.
(A.3) For t,s € [0.T], and v, ¢y, 17 € C,

[G(t.1) = Gt 2] < Eillin — valle,
IG () — Gls. )]l < Ly(llle)lt - 5],
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where Ay is a positive constant and L; : Rt — R* is nondecreasing,
continuous function.

(A.4) ¢ is a given Lipschitz function with Lipschitz constant &y on
[—7,0].

By virtue of (A.2). it is known that D{A(, 7)) is independent of
(t.¢) € [0.T] x C. (See Evans [4].) We denote by D = D(A(t, ¥)).

The main purpose of this paper is to obtain a “generalized solution”
of (FDE:¢) with more simple method. When the functional term in
A and Gis fixed, (FDE:¢) is converted a very well known evolution
problem. Then we employ the Banach contraction principle to get a
local generalized solution.

We define a set E by

E={u:[-r.T] — X | u(t) is continuous, u(t) = ¢(t) for ¢ € [—7,0]
and |lu(f) —u(t)|| < Mty — ty] for #,¢; € [0. T},

where M > kg is a constant. Clearly, E # ¢ since the function u(t)
defined by w(t) = ¢(t) for t € [--r,0], and u(t) = ¢(0) for ¢ € [0, 7]
belongs to E. Moreover, the set F is a Banach space with supremum
norm. (cf. Ha, Shin and Jin [6]).

2. Main results

In the following discussion, we assume that the hypotheses (A1)~
(A4) hold and ¢(0) € D. Let u € E be arbitrary but fixed. We shall
first consider a more simple evolution problem which is converted from
(FDE:¢) by employing the above u ¢ E.

By fixing the functional term with «, we consider (EE:¢, u) from
(FDE:¢) by the type of

(EE : ¢, u) () ) (F ) (t) (t, )
g = @ﬁ(O)

te 0.7

For the simplicity, we put B(t) = A(t,u;) and g(t) = G(t,uy) for
t € [0,7]. Then our hypotheses (A.1)-(A.4) are converted as follows.

(B.1) For each t € [0.T], B(t) : D(t) C X — 2% is m-accretive.
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(B.2) For each t.s € [0,T] and v € X,
1Bx(t)v — Ba(s)vll < Lo(lvlD)]t = s|(1 + M)(1 + [|Bas)vl])

= Lo(llull)lt = s/(1 + [|Bx(5)]))

where Lo: Rt — Rt is again nondecreasing continuous function with
Lo(p) = (1 + M)Lo(p) and B,(t) is the Yosida approximation of B(t).
(B.3) For t,s € [0,T]

lg(t) = g(s)l < IG (. ue) = G(t us)| + Gt us) = Gs,uy)
< kallue — uslle -+ La(lluslle)]t = s
< (byM+ L c )|t — s
< (kM + Ly Dt = s|
=Li|t—s

where L 1 18 a constant.
By (B.1)~(B.3), it is easy to show that there exist constants C; =
C1(¢) and Cy = Cq(¢) such that for t € [0,T]
|B(#)3(0)] = [A(t,u)d(0)] < Cr. gl = |G u)li < Co

Let {#7}7_o be a partition of the interval [0,7] for fixed n, where
th = jT/n, j = 0,1,--- ,n. And we let g7 = g(¢7). When we put
xg = ¢(0), we construct a sequence {z} }7_, of elements of X satisfying

TT B T;l 1 ny,..n n . P )
TT B(fT)’I7 9(]?. ] :1,4‘,"' . n
Y -1

by m-accretiveness of B. The step function

Ty, t=0,
rn(t) = { :

al, te(t 17, j=12,-.n

is called an approximate solution of (EE:¢,u). If the approximate solu-
tion converge to some continuous function uniformly on [0,77}, we call
it the limit solution of (EE:¢,u) on [0,T].
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Since the conditions (B.1)~(B.3) satisfy the ccnditions (A) and (C.2
in Theorem 2 of Evans (4], we follow the steps to get constants R; =
Ri($), Ry = R(0) satisfying

wl -
sup{ max |[z7||} < Ry, and sup{ max ﬂ7—~~J—1—U} < R,
n 0<j<n ' 7

N n "
n 0<ji<n t7 - fj-l

for ¢(0) € D. Therefore, by similar method of Evans [4], we have
constant K = 2R, to show that

len(t) — zn(s)| < K(|t — sf+T/n)

for sufficiently large n. Consequently, in considering (EE:¢,u) for fixed
u € E, we note that our hypotheses (B.1)-(B.3) implies there exist
a limit solution () which is converged from approximate solutions
T, (t) uniformly on [0,T]. More precisely, we have the following theo-
rem.

THEOREM 1. (Evans [4]) Let (A.1)-(A.4) hold and ¢(0) € D. Then
there exist a limit solution x,,(t) of (EE:¢,u) on [0,T] for fixed u € E.
Moreover, ., is Lipschitz continuous with Lipschitz constant K on
[0,7].

Now we show the relation between the limit solutions of (EE:¢,u)
and (EE:¢,v) for u,v € E. Using this, we have the existence of a limit
solution for (EE:¢) by the Banach contraction principle.

THEOREM 2. Let x,(t) and y,(t) be the limir solutions of (EE:¢,u)
and (EE:¢.v) in Theorem 1, respectively. Then there exists a constant
Cy4 such that

e (1) = yo (D < Ml (7) - Yol T)|| + Ca Tl — vl

+/hﬂm—MMLﬂmWﬂJ—GMﬂMJhM

for0<r<t<T.
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Proof. Let x.,, y, be the limit solutions of (EE:¢,u), (EE:¢.v), re-
spectively. By the definition of the limit solution of (EE:¢,u), there
exists an approximate solution x, (/) such that

(21) .._].‘.._L. + 44({‘;1, 'lz‘rv)l ).T}I B) G(le 3 u';" )‘

T,(0) = 1y = &(0) and 2, (t) = . t € ol =12 .n
where h,, =17 —17 . Also, there exists an approximate solution y,, (t)
such that

mo_

s y ll\ - m m Y m

(2.2) P T A v ) 3 G ).

ym(o) - y(T]n = (D(O) and Um( ) = L/; te ( Sp—1> Sk] k=12, t,
where h,,, = s ~s; . Let 6 € (0,7/2) and assume that n and m are

sufficiently large such that max(h,. l:m) < 6. Then there is a positive
constant Cy such that for p € {0.1.... .n} and g€ {0.1,... ,m}

J k
H /" — 1/}(” H < ” I” l/:;'” + C"zl[)j,k' + Z é;”hﬂn + Z (S;nhm
(23) i=p j:q
bl (6 DT+ C(D, s+ 17— ™)

I [)
+ p(28) + Calhy + = o]}

for j =p,---.nand k = q,--- .m. Here the symbols used above are
J 7 I 3

defined by

é’;) — .”7 _ {/l (f’n) G(IU]), (lmr]l) — (;(f7)1~ (yl)ff)‘) A !

where [yl = A (|l + Ayl — |l for A > 0,

o = G sy ) = GOy M+ 31~ vl sl

p(t) "‘"*“p{ Hf/z ) = Yo ()]

(r (o), ) = Gt (g DIt r < F)
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and
Dy = {((t] —13) = (s7" = 7' 1) + (7 =t e + (s — s7) h,,,}z
+ { (f;' o f;;) (Sm . S(” ) + (fﬂ _ f")} + (Sk . Sm)hm}

First, we prove that (2.3) holds. we let o = h,, h,m/(hﬂ + hm). From
(2.1) and (2.2), we have

s N
At e )t 5 G g ) + Dmt 77
Ay, U )5 gt i
T
m
, Ui -1 Yk
mo, . ., mi
4(5}\ l”S;\:’ )(I/k =3 C S rn) -+ —— .
hm

Choose 0 < A < 1. Then, with the similar steps in the paper of Ha.,
Shin and Jin [6],

i n r"'“ -y )
.]g,\(f}].’ll,{';t)(:F}] + U)\(G(f‘.]-',u,,y) + L%)—*L)) =7,
, ‘ , ynL s g’n "
t]q/\(ﬁkﬁ.’ljs:')( i + UA(C( ey m) -+ —A-———;— k )) = k‘I

™
From (A.2) (A4)
[
i -l
0/\(7( ?11")(.’1,';-1' —f' O'A{G(f;',?lflll) + —7;1}}‘“_'\))
o , \ yﬂL l/m )
~ Jox(F e ) (Y + o MG (s vgpn) + ‘—;~—L N
’ "H

’ Cm LY

+ H]o'/\(f “t")(’yL + e A(G(s) VUspe ) A '_‘*_‘*“‘»
lfﬂ
F T m an : UZILI Jl:”
= Joalsy v ) (g o MG () v 4+ )|
}ITH
i -l
SN + o MG () ) + —Lo—1))
ha
T 1 Um" B y“
(R o MG(s) ) + —’“«} N
1’771

l/Lfl ~ Y

F oMLy + MG s ) + P Iy g e
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m Lo Yit1 YK
(L A (s v )Y + o AMG (s v ) + WT iy
+ e = veplle).
Let Aj s = |7 — y*|l. Then
h h
A kS . A',k + — 4 k
hn + hm ! : h’n =+ hm T
hnhm n
}}—-}T—{L()( 1-}-02 -t Rz)“ — S |
+ Lo(Ry)[luer —vspllc + [ — o R G e ) — Ve )|+
h"n ;]’WI
< —— Aj,k—‘l + _‘"_A**zllfl k
i}’ﬂ + }1771 }T"f), + h’m
h hm

———{Lo(R1)(1 4 Cp -+ Rp)|t? — s}
hy + b

+L(] )H’Hf — Vg l

(\' + (S'" + (S’ITL _+_ /)(If;] _ S’;{TI )}

by the fact that
[ = o G uey) = G v )]
< [0 = ), GO wes) = GO (9) )]
G sy ) = GO (o) g )l
NG (o)) — GO (yo) )

2 m k222 2 n
+ XHyk = yu(si)l + 5 HU’L(S ) =y ().
Since
17— ] < (8 = 57 — ]

§|(f";’~f,;) (sy' - sy ) hn[+|f —sg'| + s,
<Djax+ If;’ — 8y |+ hn,

Pl — 57 < é‘*p(T)(rf" —sP0) = ha) + p(26)
<87 p(TYD, 1 + [0 = 7)) + p(26),
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and

||'ufr; — Vg

o < Hu,; —ugp e+ flusy — vsp )
< MY = s+ Jlusp — vl

S A’[D]'__l.k + A/(|f;)l - Sgn‘ + A[}'T, -+ “’11,le - Us;‘f' ||C-,

we have
ha, hm
A_q,k < —rmAJ 1+ ———‘_A7 1.4
hy + b, by + By
h hm n em
+ T {(Ra + 8 ' p(T)) (D1 + |17 = £7])

by + hm

Fori=p+1,---,n

[
S Wn, (8w ) (27 ) + B G uen)) — T, (4 ugn )2 ||
F ln,, (7 wn )y — ap ||
< |laiiy = apll + R |G(#T wee )| + b, JART e )2,
< vy =yl + 2k, Cs 4 ho Lo(l|lzp DIt — th1(1 4+ Cs + M)
< Jaly = ol + B Cult? = £2] + Chy.
where C4 = max{2C3, Ry} with the bound C5 > ]A(t]":,uf?)ar;”|. If we
add this inequality for i = p+1,--- |, we have
J
lt — anll < Cahnli = p) + Cahn S 17 — 17
i=p--1
< Cahn(j —p) +Cy(G — p)2hy?
= Cylt} — 15|+ Cat]
< CaDjq

fnm2

Forp<j<mnandk =q,

Joy —anll < Cality — 2] + 167 = £7%)
< C4Dqu,
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which yields

[ =y < Ml = apll + Ny — ]
<oy -yl + CyD
Similarly, the above inequality also holds for j = p and g < k<m.

Next, let p+1 < j <nand g+ 1 < k < m, and suppose that (2.3)
holds for the pair (j — 1, k) and (j, & — 1). Since Ry < Cy, from (2.3),

k—1
h71 T n m
A71‘ <}——-— } {HI qu H'{'C1])}]‘-]+ E (S h7,+ E (5 hm
in + b
i=p (=]

+ jhn i(é“ /)(T) + C4)(I)J‘yk;1 i If;; — I‘A;n.) + C1hn + /)(20)
+ ijl““ — UHO&‘J} }

~ k—1
/
} ’:71}; {! 171 U:{’H"‘_(/tDJ 1k +Zénhn‘+ Z(STH -
In ‘m
i=p (e

= D [0 (T) + Ca) (D, vk + It = 17) + Cahy, + p(26)
1]t — ”'Hoo} }
}H}Am - T g T £
_h—)+'f"{(é (1) + Ca) (D, oy g + 18 = ) + Cahy, + p(20)
n 1771

+ 67 + O+ Cyllu — vl }

7 hn i’m
=l =yl 4 Co(—"—Dy o+ —T D,
by = ur'l (hmhm . B+ T )

S S 8 T O
(=34

+ Cihy + p(28) + Cyllu — v]| o |

<y D Y+ S,

= P=mqg
+ b, {87 p(T) + Ca) (D + |11 — £
+ Cahy + p(28) + Cy|lu — ’UHOO}
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Here we have used

Dy + D4 < Dy
}l,) + hm ’ }]7: + hT" ! '

Thus it turns out that (2.3) holds for the pair (j, 4 ). Hence, we conclude
that (2 3) holds for all p < j < w and g < k < .

Let 7€ (15 4] 0 (sgty sy and +oe (17 S0 (s sy Letting
n.m — oc in (,’) 3).

() = yo(8)]]

<l (7) = yo (7)] ~111nsup26"

(24\) LR S vl
k
+ hmsupZé g A+ Tp26) + CoTu — 0|0 -
YL X i q
Since
N .t
’”hil'rolc‘ Z o'h, = /, [0 (1) = yo(n). Gn. (:1,'“)7}1 - G(1. (/:l/l,}”)b‘{h]

1==p
and lim,, .. SF h”'f m = 0. letting 6 | 0in (2.4)

T Lwimmg

H[u(f) o 1/'“)” S ||51‘11<T) - !/'z!("' \)H + C\’47ﬁi

t—
-t
+ / () = ya(n). G, ('T”in) — G, (y,), )]A(h}
By letting A | 0 for the above inequality, we final v have desired result.
THEOREM 3. Let ¢(0) € D and (A1) -(A.4) hold. Then there exists

Ty € (0.7 such that (FDE:¢) has a limit solution on [0, 1],

Proof. Let Ty € (0. 77 be sufficiently small so that (Cy 4+ &7 < 1
and AW < M. max{ko.2(C) + C.)} < M. Then by Theorem 2. f()I
e 0.7]
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(1) = o (DIl < CaTiflu — v]]oo +/0 1G(, (zu),) = G0, (yo),,)ll dn

t
< CaTilu = v]joo '*’/ killTu = yolloo dn
0
< CyTh ”U - U”oo -+ leIH-Tu - yv“oo

Therefore, [|7,, — yyiloo < ||t — v||se. Moreover the limit solution
satisfies ||@y(t) — @ (s)|| < K|t —s| < M|t —s| for #,s € [-7,T1] and
for u € E. Therefore, x,, € E for all u € E. If we define an operator
F:E — E by ur z,, where x,(#) is the limit solution of (EE:¢,u),
then F'is a strict contraction on a complete metric space E. By the
Banach fixed point theorem, there is a unique fixed point of F in E,
say x(t) for t € [—r,T1]. Then, x(t) is the limit solution of (EE:¢)
which is Lipschitz continuous on [--r, T}].

REMARK 1. It is obvious from the proof of the above theorems that
the interval [0. T can be replaced by [T}, T]. Then the solution z(t) of
(EE:¢) exists beyond T). With this processing, we may conclude that
there exists a maximal interval of existence of solutions of (FDE:¢) on
[0,77.

REMARK 2. Using the result of Theorem 2, we may have similar
result of Ha, Shin and Jin [6] with the concept of integral solution
defined by Benilan. It is quite interested in investigating the relation
between two evolution operators generated by operators in (EE:¢) with
different second terms. Also, for a just continuous perturbation G(t, -),
we may apply the method in the paper of Kartsatos and Shin [11].
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