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AN INEQUALITY OF SUBHARMONIC FUNCTIONS

CHANGSUN CHOI

ABSTRACT. We prove a norm inequality of the form el < (r —
Dlfullp, 1 < p < oo, between a non-negative subkarmonic function
« and a smooth function v satisfying |v(0)] < u(0}, |Ve] < |Vu] and
|Av| < alu, where a is a constant with 0 < a < i. This inequality
extends Burkholder’s inequality where a = 1.

1. Introduction

Let 7' = {z € C : |z] = 1} and g be the normalized Lebesgue
measure on T, that is, u(7) = 1. Let 1 < p < oc. For each f € LP(u)
one can consider its conjugate function g defined by the following steps:

(a) First solve the Dirichlet problem to get a harmonic function «
on the unit disk D = {z € C: |z| < 1} such that

lin u(-t) = f(t)

for almost all + € T and

lim / fu(rt) - f(O)|Pdu(t) = ).
Jr

rT1

(b) Find the conjugate harmonic function v of « on D: that is, u+ v
is analytic on D and v(0) = 0.

(¢) It is well known that v(rt) has radial limit for almost all t € T
We write

limv(rt) = g(t).
imv(it) = gt)
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For the basic facts of harmonic analysis used in the above one may
refer to [7].

In the beginning of the 20th century it was a hot issue whether or
not g € LP(u). The question was answered by M. Riesz:

THEOREM 1.1. (Riesz, [5]) For 1 < p < oo there is a constant ¢,

such that _ i
/ lg(t)|P du(t) < (,:p/ [f(O)P duit)
T T

whenever f € LP(u) and g is the conjugate function of f.

Later Burkholder studied the conjugate functions in terms of har-
monic functions. The following is a special case of Burkholder’s in-
equality. For 1 < p < oo we set p* = max{p,.p/(p--1)}.

THEOREM 1.2. Let 1 < p < oo and p > 1. If u and v are harmonic
functions on the disk D, = {z € C: |z| < p} such that

(i) [w(0)] < [u(0)],
(ii) |Vo| < |Vu| on D,

then )
A

It i1s simple to check that Theorem 1.2 implies Theorem 1.1. Indeed,
let 1 <p< oo, feLP(u) and u, v and g be as in (a), (b) and (c). For
each 0 < r < 1 we consider harmouic functions u, and v, on the disk
{z € C:|z] <1/r} given by u, = u(rz) and v,(z) = v(rz). Clearly u,
and v, satisfy (i) and (ii); in fact, the Cauchy-Riernann equations give
|IVv,| = |Vu,|. Thus from Theoreni 1.2 we get

W(DIP dp(t) < (p* — 1)P /T ()P ().

/ lo(rt)|P du(t) < (p / [u(rt)]” du(t).

Now let » T 1 and use the facts froin (a) and (c), Fatou’s lemma to get
the Riesz inequality in Theorem 1.1 with ¢, = (p* — 1)”.

In order to consider Burkholder's inequality in its full generality we
consider an open set () in R™, where n is a positive integer, and a
bounded domain D such that 0 € D and D C . Assume that 9D
admits the harmonic measure p with respect to 0.
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THEOREM 1.3. (Burkholder, [1]) Let 1 < p < oo. If u and v are
harmonic functions on § with values in a Hilbert space and

(i) [0(0)] < [1(0)
(i1) Vo] < [|Vu| on

then i .
/ ol dp < (" —1)7 / |ul" dp.
oD Job

Burkholder also considered the case that u is & non-negative smooth
subharmonic function and v is simply smooth. For 1 < p < oo we set

* %

p** =max{2p,p/(p — 1)}

THEOREM 1.4. (Burkholder, [2]) Let 1 < p < oo. If u is a non-
negative smooth subharmonic function on Q, v is a smooth function
on ) with values in R where v s a positive integer and

bl

(1) |v(0)] < w(0),

(ii) Vo] < |Vul on

(1ii) |Av] < Auw on 0,
then

/ lo|P dp < (" — 1)P / fu|” dye.
Jop Jop

In this paper we want to generalize Theorem 1.4. We replace the
assuription (iii) by |Av| < o Awu, where 0 < o < 1 is a constant. Also,
we assume that v has value in a Hilbert space.

2. A norm inequality

Let €2 be an open subset of R” where n is a positive integer. Let D
be a bounded subdomain of 2 w:th 0 € D and &éD C Q. Let pu be the
harmonic measure on 90 with respect to 0. Let H be a Hilbert space
over R. For z,y € H we denote by -y the inner product of 2 and y and
put |x]* = r-r. We consider two smooth functions v and v on ; that
15, v and v have continuous partial derivatives up to the second order.
Here, u is real-valued and v is H-valued. By Vu we denote the gradient
of u and by Au, the Laplacian of «. Write u; for the partial derivative
of w with respect to the i-th variable. Thus, Vv = (vy,- - ,v,) € H".
the standard product Hilbert space. Let « and p be constants with
O<a<landl <p<oc. Setr —rl{a.p)=max{(a+ 1)p.p/(p—1)}.
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THEOREM 2.1. If u is a non-negative subharmonic function on )
and

(i) 0(0)] < u(0),
(i1) Vo] < |Vu| on Q,
(iii) |Av] < alAu on
then

/ P dp < (r - 1)7’/ |ulP dye.
oD oD

3. Technical lemmas

Put § = {(x,y) : = > 0 and y € H with |y| > 0}. Define two
functions U and V on S by

{ Ulz,y) = (Jyl = (r - l)m) (T + |y )pﬁl.

Vie,y) = ylP = (r = 1)Pa?.

LeEmMA 3.1. There is a constant ¢ > 0 such that V < cU on S.
Proof. Put ¢ = p(1 —1/r)P~!. We want to show that V' — cU < 0

on S. By the homogeneity we may consider only those (x,y) € S with
x + |y| = 1. Thus, with

Flo)y=(1—-2) = (1 — 1)P2? —¢(1 -- rx),

we need to show that F(r) <0if 0 <x < 1.
Observe that F' is continuous on [0, 1] and smooth on the open in-
terval (0,1). Thus, for 0 < < 1, we have

Flir) = ~p<(1 —x)P 4 (r = l)pmp'"') + re,
F'(x) = p(p - 1)((1 — )% (r— 1)”.77”"2).

Notice that 0 < 1/7 < 1. One can check that F(1/r) = F/(1/r) = 0.
We divide the rest of the proof into three cases.
In case p = 2 we have F”' = 2(1 — (r ~ 1)?) < 0 on (0, 1) because
r > 2 . Hence F' has the maximum over [0, 1] at # =: 1/r, which implies
that F < 0 on [0,1].
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Now let 1 < p < 2. From the formula of F”” we see that F"'(z) < 0 if
and only if & < * where 1 /2 = 14 (r — 1)?/??"2) Here 0 < 1/r < 2.
Thus, F' < 0 on [0, 2*] for the same reason as in the previous case. On
the interval [*,1] the function F is convex. Hence it suffices to check
F(1) < 0. For this we use the concavity of loga to get

(p=1Dlog(p—1)+(2—p)logp <logl, or (p—1)’"1<pr-2
Hence we have 71 > (p/(p — ]))7,_.1 =pp"2/(p—1)?"! > pand
F(l)==(r—=17"+p(r—1)(1 - l./‘r)”‘1 = (r— l:)”rl‘”’(p‘ r”“l) < 0.

The case p > 2 is proved similarly. This tiine one needs to check
F(0) <0 for which the inequality (p — 1)P~! > p?~2 could be used.

Basic facts about convex functions can be fomd in [6]. tJ

LEMMA 3.2 U(x,y) <0if (r,y) € S and x > |y|.

Proof. Since r > 2, we have & — (r — 1)|y| < r — |y|. Hence Lemma
3.2 follows. O

LEMMA 3.3, U, +a|U,| <0 on S.

Proof. Using the chain rule, we get
’ : y—2
Uela.y) = ((P =) lyl) = o= 1) (e + )"

. \ p-2 Y

Uy(r,y) = (p(-'f+ lyl) - r(p— 1)-7*) (= +y))’ R

By the homogeneity of U, and U, the inequality in Lemma 3.3 is
reduced to the inequality that L < 0 on (0, 1), where

Liz)=p—-r)—r(p— 1z + aip —(p— ],):r".

For this recall that (a+1)p <7 0 < «a <1 and 1< p < oo. Hence, if
0 <2 <1 then

Lir) <(a+1Lp—r+{(a—Lr(p- 1)ax <0.
This proves Lemma 3.3. £
Differentiation of vector functions can be found, for example, in [4].

In the following we view U, (x,) as a vector in H and Uz, y) as a
linear operator on H.
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LEMMA 3.4. Ifh € R, k € H and (z,y) € S, then
Urr (i, y)h? + 2y (. y) - Bk + Uy (0, 00K - &
. y y—2
< (kP = n%)r(p = 1) (= + |y))’

Proof. Put I ={teR:x+th>0and |y+tk| >0}. Observe that
0 €I and I is an open set. Define o function G on I by

G(t) =U(x -~ th.y +tk).
Observe that (0 € [ and [ is an open set. From the chain rule we have
G"(0) = Upr (@, y)b* + 2UL, (z,y) - bk 4+ U, (x,9)k - k.
Thus it suffices to show

G"(0) < (k2 = h2)r(p — 1) (e + Jyl)" "

For this we define more functions K, Q@ and Ron I by K = K(t) =
x+th, Q@ =|y+tk] and R = K + Q. We omit the argument t ¢ [
in the following computations. Differentiation gives QQ' = k- (y +
th) and QQ" = |k|*—(Q’)?, hence, by the Caucky-Schwarz inequal-
ity, we have Q|Q'| = |QQ’| < |k| |y + tk| = |k|Q. Thus, |Q'| < |k| and
R" = Q// > 0.

Writing G = RP — rK RP™!, we compute

G =pR'RP™' —rhRP™! — r(p - I)A’R’R””z,
G" =pR'RF ' +p(p - 1)(R)?R" 2 - 2r(p— 1)hkR'RP—?
~r(p—1)KR'R' 2 —r(p-1)(p — 2)K(R)?RP~3.

Thus, putting 1/H = (p — 1)RP™, noting ~rKR"R = —rR"R* +
rRQR", and inserting terms rR(R’)? — rR(R’)?, we have

HG" = ( L - r) R'R* + “R(QR" — 2hR'+ (R')?)
D=

([)R—Hi’—rp )K)(R')2
rR(KE = 12) + (0 = 1)@+ (p— rip ~ V) K )(R')?
PR — 1)
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because R > (),’p/{\'p = 1) <r{a+Lp <r, R = h+@Q and
QR" =QQ" = [k[* - (Q")?. Wken t = 0, we have

S0 (K = B rp = D) (o y)"

This finishes the proof of Len:na 3.4. C

4. Proof of the inequality in Theorem :.

We may assume

full, < oc. And we may further assume that

(iv) w>0 and jo|>0 o
Indeed, for each e > 0, the functions v + ¢ and {v.e), where (v, ¢)
has value i the standard prodict Hilbert space [ x &, satisfv this
extra assumption as well as the assumptions of the theorem. Now. the
inequahty
vields, as ¢ — 0. the inequality iy Theorem 2.1.

Let the functions U/ and V" be as in the previous section. By the
assumption (iv) we have (uw.v) ¢ S on 0. The ‘nequality in Theorem

2.1 is equivalent to
/ Vi, eidp < 0.
Jobn

According to Lemma 3.1, it sutfices to prove

/ U vydp < 0.
Jon

Also, Lemma 3.2 and the asswuption (i) imply U (u«(0),v(0)) < 0.
Hence the proof is complete if wo show

/ Uu,vydu < U(u(()), v(0))
Jap

which follows from the superharmonicity of U (w. v).

Put w = U(u. v). In order to show that w is superharmonic on (2 it
suffices to check Aw < 0on Q. For 1 <i < n we use the chain rule to
get.

wi = "r.r ("1“ v ) 1+ [”YI/{ u. “) vy awl wy; = («"rr (“ , U ) i+ (“[l’/ (. v) Vit Al



550 Changsun Choi

where
A, = U (u, v)u,,;z + 22U, (v, v) - v, + Uyy(u, v)v; - v,
Thus
Aw = Uy (u,v)Au + U, (w,v) - Av + }: Ai.
i=1

From Lemma 3.3, the assumption (iii), the Cauchy-Schwarz inequality
and the assumption that w« is subharmonic we get

Up(u,0)Au+ Uy (u,v) - Av <U,(u,v)Au+ U, (u,v)

Al
< (Ualu,v) + a}C@,iu,z;)I)A?t < 0.

Fix1 <i<nandputz = u. h =wu;, y=1v and k = v;. The
assumption (iv) and Lemma 3.4 imply

Use (1, v)u,:Q + 22Uy (1, v) - 0 4+ Uy (u v)v; - vy
< (o2 = w2y r(p — D+ o) "2

Hence

n

DA< (Ve — [Vul)r(p = D(u+ )" <0

7=21

by the assumption (ii). This proves that Aw < 0 on  and finishes the
proof of the inequality.
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