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TIME-OPTIMAL BANG-BANG TRAJECTORIES
USING BIFURCATION RESULT

CHANG EoN SHIN

ABSTRACT. This paper is concerned with the control problem
#(t) = F(x) +u(t)G'x), te[0,T], =r(0)=0,

where F' and G are smooth vector fields on R, and the admissible
controls u satisfy the constraint |u(t)| < 1. We provide the sufficient
condition that the bang-bang trajectories having different switching
orders intersect.

1. Introduction

Consider the control system
(1.1) (t) = F(r) +u(t)G(z), t€[0,T], =z(0)=0,

where the vector fields F and ¢ are smooth on R™ and admissible
controls u are measurable functions taking values in [~1,1]. The aim
of this paper is to investigate the optimality of bang-bang trajectories
steering the above system from the origin to a given point in R" in
minimum time.

We now review the main definitions and notations which will be
used in this paper. If u(?) = 1 almost everywhere(a.e.) on an interval
I, then the corresponding trajectory is called an X —arc on I, while if
u(t) = —1 a.e., the corresponding trajectory is called a Y —arc on I,
where X = F'+ G and Y = F - G. A trajectory is called bang-bang
if it is a concatenation of X —arcs and Y —arcs. We say that a control
and its corresponding trajectory are extremal if they satisfy Pontrya-
gin’s Maximum Principle, whicl: provides a necessary condition for a
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trajectory to be optimal. For a small time optimeal control problem,
several authors have investigated thie optimality of bang-bang trajec-
tories in R3[2],[7],[11] and in R*[7] under the generic assumptions for
the structures of X, Y and Lie brackets of X and Y showing that they
lose optimality at third switching points in R? and at fourth switching
points in R If we can show that any two extrema bang-bang trajec-
tories of (1.1) having different switching orders reach a point at a same
total time and those points formi a (v — 1 )—dimensional manifold . then
they are not optimal from the point of intersection.[9] In this paper, we
provide the sufficient condition for in existence of & surface consisting
of those points. We call this surface by a cut-locus. We prove the main
theorem by means of an application of general bifurcation theory from
the simple eigenvalue.

We can develop the above prograin to the general bifurcation prob-
lem derived from a differential equation. Let Xg, -- . X, be smooth
vector fields in R™. Denote lengths of time intervals by s;,¢; and 79 =
0.77 =58+ +s;, T =7,. Consider the (n + 1)—dimensional system

(@) o
(1.2) $(s, t) = (@1(8, ()> =0ecR" ",
where
(13) @0(S,f) = [Sl + -4+ ,‘:,,] - [f() 4+ fr,,v,.,l}.
(1.4) D (s, 1) = S X et X (0) — et 1 X »<3f“X“(())A

Here, ¢"Z(p) denotes the value at time 7 of the solution to the Cauchy
problem

glt) = Z(y(t)). y(0) =p.

System (1.2) have trivial solution branch:
th = sy, =0, # =s;. fori=1,--- ,1n—1

If it occurs that there are solutions to (1.2) which branch off from
the trivial solution, then by substituting X for X{. X3.---, and Y
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for Xg, X5, -+, we can confirm cptimality of bang-bang trajectories of
(1.1) having n switchings.

We define the usual Lie bracket [F,G](x) o’ smooth vector fields
F.G in a given local coordinate by

(D.G(x))F(1) — (D, F(x))G ).

The main result of this paper is:

THEOREM 1. When s,, =0,ts =0 ands; = fori=1,--- . n—1,
if there exists an adjoint vector p{-) (refer to §2) such that
at some point (s, ,Sp-1) = {81, - . 8n-1),

Al) the equations
p(7i) [Xip (2(m)) = Xi(2im))] = 0, i=0,--,n—2

determine the nonzero n-dimensional vector p(T') uniquely up
to a scalar multiplication and the vector p(T") satisfies

()X, (x(T)) — X, 0 («(T))] = 0 and

A2) p(T) [Xn -1, Xu](x(T)) # 0,
where x(t) is the solution of the Cauchy problem

w(t) = X;(1), on|r_1.7nl(i=1---.1), x(0)=0,

then the point (sy. - ,sn-1) = (81, -+ ,8n-1) Is the bifurca-
tion point for ®.

2. Bifurcation result

Let A, U and W be Banach spaces. Consider the equation
(2.1) U(o 1) =0,
where ¥ : A x U — W. We assume that ¥ € C*(A x U. W) and that

(2.2) U(r,0) =0 Vv e A
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If there is a sequence (vy,, p,) € Ax U with p,, # 0 such that (v, 1)
= 0 and (vp,py,) — (7,0), then the point v is called the bifurcation
point for ¥. Clearly, if v = pis a bifurcation point, bty the implicit func-
tion theorem, the partial derivative E)%—(z?,()) is not invertible, where
7

ov , , . o ov,
—,)-w(ll()) = W,(r.0) is the matrix of the first derivatives —(2,0).
op 15

Let © be a poiut in A and we assume that

v=( o) €A=RY = (- pm) €L =R™ W = R™.
We set

ov J ov
3= 0. A =22"w0. j-1....N
B n (7,0) A, . (7.0), j:==1, . N,

which are m X m matrices. In a neighborhood of (7, 0), we expand ¥
in Taylor approximation, by writing

N
(2.3) Vv, u) =V(w,0)+ Bu+ Z(l/] ~ ) A+ N, ),

j=1

where

r

N(v,0) =0, arnid C,),—A{(D,O) =9
ou

since ¥(v,0) =0 for any v € A.

THEOREM 2. The point U is a bifurcation point for ¥ in (2.1) pro-
vided that

Bl) dim(ker B) =1. and

B2) for some f. Range(B) & [A¢ - ker(B)] = W.

Proof. By assumption B1), there exists iy € U such that ker(B) is
spanned by the element g By B1) and B2). the spaces U and W can
be decomposed as

U=Uyd U, W =W,s W,

where Ug = ker(B) = span{uo}, W, = Range(B), Wy = A, - ker(B)

and Uy is the topological complement of Uy in U. Notice that for any
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p € U, there exist ¢y € U, and r € R suct that u = Ty + .
Let’s denote the projections from W onto Wo end Wy, by my and 75,
respectively. It is obvious that equation (2.1) is equivalent to

(2.4) To(Wir, p)) =0,
and
(2.5) (W 1)) = 0.

Rewriting (2.3) as W(v, ) = Bu+ ¢(v, 1), equarion (2.5) is equivalent
to

(2.6) By +miotv, rpg + py) = 0.

W(v.ropn) = B + my (p(v, rpg -~ 1)),

Differentiating ¢ with respect t¢ puy at (v, r, 1) = (7.0,0). we get the
map

W, (2.0,0) s w - Bw + 7 (¢ (7.0))w.

It is clear that from (2.3), ¢,,(#,0) is the zero map and ¢, (7,0,0) = B.
Since the restriction of B to Uj is bijective onto Wy, by the implicit
function theorem, equation (2.5) can be solved uniquely for f1 in a
neighborhood U of (v.r) = (1, 0), 1.c.,

= pilv,r).

By the uniqueness of y; on U satisfying (2.5), ui(r,0) = 0 for any

v,0) € Y. We can substitute pfiv, r) for 4 in (2.6) to get
J 1 g

-~

(2.7) By (v,r) + mio(,rug + i (v,r)) = 0.

Differentiating (2.7) with respect to r at (v,r) = (#,0). we have

* *

0 ; . oyt
B ;Ll (v, 0)r +m <(ﬁ#(l7,}LI(&.(]),)[NU + ;11 r}) =0 foranyreR.

o Or
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Since uj(7,0) = 0 and ¢,(7,0) is the zero map,

-

B

,;l] (7.0)r =0 for any r € R.
or

d *
Hence, - (Hl
oy

Next, we consider equation (2.4) which is equivalent to

(v.0)r € Uy NU, = {0} for any » € R. In other words,

(7,0) is the zero map from R to U;.

N
o[ B(rio + pi(vor)l+ Y (vs = 05) Ay (rp + pi (vor))+
7=l

N(Grnrpg + pi(v.r))] = 0.

(2.8)

Setting Wo(v. 1) = mo(¥(v, 1)) = mo (v, rpo+ui(v.r))). ¥y € C% and
Yo (v,0) = 0 since ¥(r,0) = 0 for any v. Hence, we can define the map
G:AxR—> Wy by

r~ 1y, ) if r #£0,

Glv,r) = oV,

ar

Then, G(v,r) € C! and notice that

(1.0) ifr = 0.

owv ov ous ‘
2 (1,0) = m (DT( 0o + (v 0>l>

or or

and oG ) Ov \

. (

7, 0) = ——(7,0

01/, (1/ ) 0 <r)l/,n ()/l (V )/l()/
. ouy . . . o
since (7,0) is the zero map. Assumption B2) implies that
T

9G
() Ly

(7.0) = mo(Aepo) # 0.

By the implicit function theorem, the equation (/(v.r) = 0 can be
solved for vy in a neighborhood V of (0, -+ Doy, Vg1, -+ .. 0),

ie. ve=uvi (v, Ve Vi uNLT)OD V.
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Observe that vy = vf(0y.--+ D¢ 1. 41, -, Un.0) and by shrinking
V, we may assume that for (vy,- - vy vy un, ) €V
(v, v oy EU

Taking into account that
To(W(v.p)) =0 if and only if G v, r) =0,

there exist nontrivial solutions of ¥{w, u) = 0.

Ve = Vi (U1, Lo Ve g JUNLT),
* *
pr o= pi{ve, - o vf  ua ).

where (vy,- - vp vpgr. - va ) € Voand for (v, ove o vegrs

Lun. ) E DV,

(1. v iun ) EU

Therefore v = v is a bifurcation point. OJ

In (L.2). ety = sy pingr = to.py = 8, - #; and v = s, + 1,

for i = L.---.n — 1. The trivial branch of ® in (1.2) is u, = 0 for
t=1,--+,n+ 1 By replacing variables s;,f, in 11.2) by v,.p,, we can
regard ® as a map from R""! x R"*! to R"*! with variables v, and
1. We can explicitly compute matrix B to get

. - 1 -1
B=1{ e, . oo, _ov |-
BRI ey, [2JTS
Define the intervals I; by [r;_1 ;] j = 1.--- »n. The union of the

time intervals I,’s is [()T] Call p(+) the adjoint vector satisfying the
equation

pt) = —p(t)D . X;(x(t)) on I,

where «(#) is the trajectory in Theorem 1. Let M (t.s) be the funda-
mental matrix solution of the variational equaticn

o(t) = D, X, o(t)e(t) on

with AI(f.f) being the identity n.atrix.
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3. Proof of theorem 1

When p; =0 for i =0, -+ ,n+ |, the matrix B is

( L 1 ~1 )
M(T. )X (x(1)) - Xu(z(r)) —MI(T,0)X,(0) )"

We claim that the matrix B satisfies conditions B1) and B2). Let
p=1(0,---,0). Observing that

p(T)M(T, ) Xi(x(7;)) = p(r:) Xi(z(ry)  and

M(T, )X, (2(7;)) = M(T, 7,-1) X (x(7i_1)) for i=1,--- ,n,

by assumption (A1), we obtain that
p(T) . A[(T, 7'1;+1)X.,j+1(513<7',j+1)) = p(T) . A[(jw, T;;)XZ' (.’L‘(Ti))

fori =0, --,n~1.

Setting po = —p(T") - M(T, ) X1(x(m1)) and p = (po,p(T)), p- B =0
and by the uniqueness of p(7’), dira(ker B) = 1 and condition B1) is
satisfied.

Next. we claim that Range(B) & [A,, _; - ker(B)] = W. Observe that
vector Ax = (A, -+, Ary,yy) € ker(B) if and only if

(3.1) Ary+ -+ Az, — Azpyq =0,

and

— M(T,0)Xo(x(0)Axpgy + M(T, )X (2 (7)) Axy + -

(3.2) + M(T. 11 )) X1 (x(mn 1)) ATy + X (x(m)) Az, = 0.

To compute - +—, extend the length of interval I,, | by ¢ so that
dl/n—l a/l

the terminal point becomes T' + ¢ instead of T, and 7; are unchanged
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fori =0,--- , 72 If Ax € kertB), then by (3.2)

v, On Ax = gli% ;EM[(T Fe, T)( = M(T 0)Xo(2(0)) Az +

+ ]\[(T, T,,,l)X,l_l(.’IT(T,,,,,l))AZI,'”* 1)
')(n( (’n +- ))A-T‘nl

Cd
= g% d—[Xﬂ(m( T +€))

— M(T + ¢ T)X,(x(1n))] Lo,
= (D X (2(T)) X1 (2(T))
— D, Xn 112(1) X, (x(T))]| Az,
= (Xn-1. Xp](@T))Az,,.

Since for any v €Range(B), p-v =0, if

—Ax =p(T) - [Xpo1, Xp (0 T)) Az, # 0,

then A, _; - Ax ¢ Range(B) and Range(B) & [A4,,—, - ker B] = W. By
assumption A2), we only have to show that Arx,, # 0. Write

w; = M(T, 1) X (2(7:)),

and

UV = Wi — Wi fori =1, ,n.

By the definition of matrix M(¢.s), we obtain
M(T, ) X;(x(7)) =« M(T,7-1)Xi(x(1-1)),
and therefore
vi = M(T,7;1)[Xi(e(1i21)) — Xie1 2(1i1)))-

If (Axy,-+ ,Axny1) € ker(B), Az, = Ary+---+Ax, and the last
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n components of BAX is

Wy Ay + wy Ay +wy 9 Ax, g+ -+ wi by
—wolAxy + -+ Ax,,
= (W, — Wy )Ax, +wy, (A, + Axy, )
+ 0y, AT,
+ w1 Ary — wo(Azy + -+ Axy,)

= (“771 - Wn—1 )A-T'n + (UJ7 ~1 U"n~2)(A:I n+ A-Tnf]) + -
+(wy —wy ) (Azg + - + Awp) + w (Axy + -+ Ay,
—wolAxy + -+ Awx,, -

i
= E oy,

i=1

where a; = Ar; + - + Aw,,.

Thus Zozw, = 0 if and only if (Axy,---  Aw,, Az, y1) € ker(B).
1=1
By the uniqueness of p(T') such that p(T) - v; =0 fori=1.--- . n,

dim span{v,.-- v, } =n — 1.

Observing that «,, = 0 if and only if v, ¢ spar{vy.--- v, }. if
a, = 0,
dimspan{vy, - v, |} =n —2

and the equations
()X, m(e(m)) = Xl () =0 fori=0.--.n—-2
do not determine p(7") uniquely up to a scalar mulsiplication.

By assumption Al), Ar, = a,, ¢ 0. Hence v = 7 is the bifurcation
point for system (1.2).
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4. Example.

Let F, G be smooth vector fields on a four-dimensional manifold A
with F(pg) = 0. Consider the control system

(4.1) a(t) = F(e(t) + aG(x(t),  x(0) = po.

where the control u is a measurable function taking values in [—1,1].
It is assumed that

the vectors G, |G, F]. [[G. F]. F| end |G, [G, F]] are linearly independent

at Po-

By performing a suitable rescaling of time and space coordinates 1]

(4.1) takes the form

k]

(4.2) (1, dp dg.dy) = (u, 0y, 0,25 /2) + h(x),  2(0) =0,

where the vector field h plays the role of a small perturbation. In the
special case h = 0. we apply Theorem 1 to system (4.2).

Let x(f) be the solution of (1.2) and p(#) tte adjoint vector with
p(s1+ sy + s3) = p = (p1, P2, Py. pa) corresponding to the control u(t)
having the values 1 on [0, s1)U[sy +s2. 81 +82+s3] and —1 on [$1,81+52).
Hence p(t) = (pi(t), p2(t). pa(t),4(1)) satisfies that

pi(t) = =py — pyy,

p2ll) = —p3,
]);f) == O,
pat) = 0.

We can explicitly compute x(¢) and [X. Y] :

t 11 [(),Hl),
r(t) = —t +2¢;  on [sl,sl + 89).
b 25y on [s) + 2,8 F 8§23 + s3).
0
(XY 2
[ ] 0

2.’1'1
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Due to
2
0
Y-X= 0
0
assumption Al) implies that p(7;) = 0 for i = 0.1,2, where 7, =

sg + -+ ;. Since p1(73) =0, p; := 0. When p, =0,

= o2 el
P3s3 | Pasi

(4.3) Pi(T2) = Pas3 + Pas183 - Pasasy + 5 5

S0 o9
~ _ 53 8- 248
p1(m) =pase + PasiS2 + {32_2 i 12 2

~ 2 a2
P38y +I‘483

+ P83 4 Pas18s + P3S2sy
(4.4)

2 2

—~ P4Sy83 +

(4.5)
pL(0) =[2P2(s) + 52 + 53) + Pa(s? -+ 25189 + 85 + 25153 + 28253 + 83)
+ Py (ef + 25189 — 85 + 28,83 — 28983 + 523 1/2.

In (4.3), we can solve for ps to get

53 D353 /
_— = ")2.

'::—yk,. _3‘-{,_‘_
P2 7)1(91 82 2) D)

Szlﬁg( So + .5';) + [34(53 — 53)]

Replacing po by ph, p1(m) = 5 = ( and
s = Pals3 - 52 ) = !
3 59 4 53 3-
. - pa(—5182 + 82 — 8183 + 8283 - 83
When p3 = ph. p) = Palzsisz t s 189+ 283 0 55) = p}y and

Nt 83

13,15 | b‘2<81 - 83)
m(0) = - — ——— 2
pil0) S2 + 83
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If s; = s3, then there exists nonzero vector

2 9.2
- .85 - 28% 83 — 89
P = (‘O‘ v2 w__-}" — 1
S2b sy s2 4 sy

which is unique up to a scalar multiplication.
In this case,

(X.Y](x(7m3)) = (0,2,0, =28y + 4s3),

- . 25‘)8-3
- X, Yo (r = —
P XY (m3)) o

which does not vanish if sy # 0 or s3 # 0. If p1(0) = py (1)) = pi{72) =
0. (p1(73) = 0 is excluded), and &, = s3, then we have

254 9425
s3P3 + 385P,4

- 83824,
2

(4.6) pi(T2) = Py + s3py -

N ) N S3 + 8 2 .
pi(m1) =py + (s3+ s9)py + (—-§——)—p3

4.7 . ‘
(47) 25§ - sj -
+
, . s2
p1(0) =Py + (255 + s20P2 + (285 + 25385 + “2%:'133
(4.8)

45‘% - sﬁ -

Pa.

and direct computation yields that the equations
P X1 (0(n) = Xpwe(mi))] =0, i=0.1.2,
where X| = X3 = X and Xy = X, =Y, determine

é§ - 28% 83 — 89

f) - (O - 3 3
S24 83 82+ 83
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uniquely up to a scalar multiplication.
Hence, for small s4 > 0, there exist t,(i = 0,1,2 3) satisfying (1.3)-
(1.4) for the system (4.2), but t; may be a negative number which is

. . as.
not acceptable. In the following computation, we show that 71 > (),
0
when s, = t;,84 = 0,19 = 0 for i = 1.2,3. Assume that

$1+ 89483+ 94 = 1.

Let ut(#) and v (t) be the controls such that

(1) { -1 on [0.tg) U [to + 1, L — t2),

u(t) = ‘

1 on [![),fo+f1)U[1 -- f,g,u,

1 on (0,8 ) Ul — 83 — 84,1 — 34
'u,+(t):{ [ ) [1 =83 = s4, 1)
—1  on sy, —s3—s4)U[l —s4,1],

and let zt(t) = (xf (1), 25 (), 23 (#1, 25 (#)) and =~ (t) = (z7 (1), x5 (1),
x5 (t), 27 () be the trajectories corresponding to the controls u* and
u~, respectively. By direct computation, at t = 1,

i = ~1+4 251 + 2s3,

1 . .
2 2
T; ——§+251~~$1—{—s3+2535;,
1 g3 4 g3 .
. 2, 5 3 2 2
.T§-——+51 -~ 87+ - + 8384 -+ 8387,

6 3

.’Ti— =1+ 2?‘1 -+ 2f2,

1 )
T2 =75 + 2ty - gty — 1] + 12,

1 . . S A
Ty = =g+ 2ot + 2t — 12 4 tot? L2

3

Solving the equations
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for s,’s and computing the derivative of s; with respect to tg at tg = ().
we obtain

Osy  20ta(1 = 19)(2 1) — ty)(1 = 1] — )

(4.9, : > 0.
4-9) Oto L1
S0 1o 1s positive while s4 > 0.
Hence at s; = s3, bifurcation occurs and when b = 0. any bang-

bang trajectory of (4.2) loses optimality at or before fourth switching
point if the cut-locus forms 3—diinensional man fold.
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