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GENERALIZED SOLUTIONS OF IMPULSIVE
CONTROL SYSTEMS CORRESPONDING
TO CONTROLS OF BOUNDED VARIATION

CHANG EON SHIN

ABSTRACT. This paper is concerned with the impulsive control
problem

a(t) = f(t.x) +g(t,x)uit), t€[0,T]. x(0) =7,

where u is a possibly discontinuous control function of bounded
variation, f : R x R™ — R™ i3 a bounded and _ipschitz continu-
ous function, and g : R x K™ ~—» R™ is continuously differentiable
w.r.t. the variable r and satisties [g{t, ) — g(s, J)| < o(t) — &(s),
for some increasing function ¢ and every s < t. *Ne show that the
map u ~- r, is Lipschitz continuous when u ranges in the set of
step functions whose total variations are uniformly bounded, where
Ty is the solution of the impulsive control system corresponding to
u. We also define the generalized solution of the irapulsive control
system corresponding to a measurable control furnction of bounded
variation.

1. Introduction
Counsider the control system
(L.1)  &(t) = f(t,x) + g(t, v)a(r), tel0.T] =(0)=7€R",

where - = % Let f.¢ be maps from R x R to R" satisfying the
following conditions;
(1. there exists M > 0 such that for any (f.o) € R x R,

(12] 'f(l‘,l)' ‘E A[] and l(/(f.l). S\ 1’1[|,
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C2. there exists L > 0 such that for any (+,z),(#,7') € R x R",

(1.3) |f(t.a) = F(t'.)

<Lt =¥+ |z -2,

C3. for every t € R the map « — g(f.x) is a C' —map such that for any
teRandx,y e R,

(1.4) lg(t,2) = g(t y)| < Llz —yl.

C4. there exists an increasing and right-continuous function ¢ such that
for any t,s € R and = € R",

(L5) lglt,2) = gls,a)| < It — s| + 6() - o(s)].

If u is a C''—function, the solution of (1.1) is defined in the sense
of classical theory of ODE. However, if u is just integrable, the solu-
tion of (1.1) is interpreted as a distribution which is not unique. The
aim of this paper is to define the unique generalized solution of (1.1)
corresponding to a measurable function of bounded variation under
assumptions C1 ~ C4.

In [3], when f and g are C! and C? maps respectively, the map
® : u — &, from the set of bounded C!'—control functions assign-
ing the corresponding solution of (1.1) is Lipschits continuous in the
suitable L!—mnorms, so the map & can be continaously extended to
bounded integrable control functions and the solution of (1.1) corre-
sponding to a bounded integrable control function w is defined as the
limit of the solutions corresponding to C'! —control functions wu,, which
converge to u in L. For C'—maps ! and g, Bressar. [2] also defined the
generalized solution of (1.1) corresponding to a measurable function u
which describes the phenomenon o-curring at the »oint of jump.

To define the generalized solution of (1.1), in §2 it is assumed that

C5. for every t € R the map x — g(t,r) is a Cl-map such that ¢ satisfies

lg(t. x)—g(t', a") < L{Jt = #] + [~ 2']).

1.6 :
(L6) for any (t.2). (', 2') e R x R"

instead of C3 and C4, and the domain of ® is restricted to the set of
step functions whose total variations are uniformly bounded. Under
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the conditions C1. C2 and C5, the map @ is Lipschitz continuous, so
® can be continuously extended to a measurable function of bounded
variatiol.

In §3. it is assumed that f.¢ satisfies the conditions C1 ~C4. By
introducing an auxiliary function G satisfving C3 in the new time vari-
able f, the generalized solution of (1.1) corresponding to a measurable
function of bounded variation is defined in terms of the solution of the
new control system induced by /7. We end up this paper with the ex-
ample in which the generalized solution of (1.1) s uniquely determined
while the solutions of the integral equation incuced by (1.1) are not
unique,

2. Basic estimate in the case that g is Lipschitz continuous

Let f.g be maps satisfying "1, C2, C5, ani for M > 0. let Sy
be the set of all step functions from [0, T] to R whose total variations
are less than or equal to M. For v € Sy, denote the solution of (1.1)
corresponding to w by () anc define the map @ on Sy by Glu) =
(). If v € Say has juups at the points 0 < ¢, < -« < t,,, < T. then
x4, 1s the solution of

(2.1) = f{t.n). t#£ 1,

while at the points of jurp #,[2]

(2.2) r(ti+) = ((z(”(f'* ) '"“(""*))”(f""')) 2t

where ((3‘5»"("'")) & denotes the vatue at time f = ¢ of the solution to the
Cauchy problem

o dar(t) ) o ;
(2.3) ——— = gt (F}). 7(0) =: 7.
dt

=~

For any ¢ > () and o > 0, the control system [1.1) in the new time

variable 7 = ,—;:5 and the new space variable y = = changes to

1 oo duy, p :
(2.4) U flroy) + g(r ;z,)(—“-»——- 2(0)=r, 0< 7,

dr dre’ T
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where uq(7) = “aT) and f . g are some bounded Lipschitz continuous
maps in all the variables.

Thus we may assume that for sufficiently small ¢ > 0,
T=¢ and foranyueSprand0<t<T,|u(t) <e/2.

To prove the Lipschitz continuity of the map &, it is necessary that
some lemmas should be stated.

LEMMA 2.1. Let F(z) be a bounded Lipschitz continuous map from
R"™*! to R. Then there exists a sequence {F,,} of smooth maps such
that Fy,, converges uniformly to F' and || D, F,,,|| are uniformly bounded,

/ oF n
where z = (Z[),"' 7271)1 Dsz = [‘\%!;_:Z)Lv"' ﬂ%ﬁl—] and HDZFTVTH =
max{}%(z)l |i=0,---,n, zeR"M}

Proof. Let ¢ be a C*—function cn R"*! such that [o.,, w(z)dz =1
and p = 0 on {z € R"*! | |2] > 1}. For t > 0, deline the map ¢, on
Rn+1 by

- <
(2.5) pi(z) =t " N0(2)
and for any measurable function A from R"*! to R, put
(2.6) hxp(z) = /R bz = ety

Then F * ¢(z) converges uniformly to F(z) as t -» 0+ and the map
2z +— F % @;(2) is smooth.

For each m € IN, define the map F,,, by F,,(z) == F x @1 (z). Then
F,,, converges uniformly to F as m -- oo and for any m € IN the norm
I|D, Fin|| of the Jacobian matrix is uniformly bounded since

[En(z) — Fm(2)| = | F(z~y)— F(z2 - y)]@—l;(y)dyl
(27) Rnt+1 2
< Llz —z|.
where L is the Lipschitz constant of F. O

Denote by é3/7 the value at time t = s of the solution to the Cauchy
problem
da(t ‘ .
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LEMMA 2.2. There exists a constant C' > 0 such that for any |e;| <
g, lea] < e, and ¥ € R™

(2.8) 65628 5 — 28 =1l | <

6‘1523,
where g'(t,z) = g(0,z) and §%(t, ) = g(e1, x).
<

Proof. Let |e1] < g,|ea] < ¢ and ¥ € R". By lemma 2.1, there
exist sequences {f,} and {gm} of smooth maps such that f,, and g,,
converge uniformly to f and g respectively, and the gradients of f,,
and g,, are uniformly bounded. We claim that -here exists a constant
C1 > 0 such that for any m € IV,

(2.9) |54 fm e=20m 7 — e 2Tm = Sm 5| < C ey 2s),

where gl.(t,7) = gm(0,z) and §2,(t,7) = gm(c1,z). Adjoining the
variable xg =t to z, let X = (z¢,2) with z = (&, - ,1,).

Since the gradients of f,, and g, are uniformly bounded, there exists
M> > 0 such that for any m € IV,

O fm afm T
where Dx fr, = (8{160 3T 5{:) Jfm = (fm,la T ’fm,n.)l y gm = (gm,1,
-, gmm)T (vT represents the transpose of the vector v) and

1Dl = sup{| %92 (0. )

li=1,- n, j=0,---,n
(ro,2) € —e,e] x R"}.

For each m € IV, define the maps F,,,,GL /G2 : R x R — R x R™ by

1 0
. fm,l(-rOa .I‘) ~ gm,l(owm)
Fm(l‘o,.’ﬁ) = . vG}n(T(%T) = . ;
f'rn,n(xOp-T) gmm,(oy-/r’)
0
=5 gm,l(slam>\§
Gi (zo,x) = ) |

gm,n('sl , ) j
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Let # = (0,7). Then the inside of absolute value of the left-hand side

in (2.9) is the last n components of

Fon e 2(’ - 6’6)( m{ SN T

hizy.s9) = ¢°
z) the value at time # of the fundamental matrix

We denote by ®(+, F.
solution to the linear equation

B(t) = D E(F ) - v(t),
where ®(0. F. z) is the identity matrix. To apply Taylor's theorem,
compute the derivatives of h to ge
é)}l ~ B / I
i B (e Frer2Cii) =@ (05,G2, e )
oh ’ =3 = y
0:2 =& (5] N I’rn. (’bz(l”' T) . C;jn ( 2¢ ’”.[7) m
dh Py .
= Dx £, (e‘””'(“("" r) Ly ((3”1 met?

()
- (I) (52‘ G/Zn k) (351 Fo 5}\") : D Y lj’nz (C'El]’m i} -

I

o
~
~

P——

0°h
; 0 £q0(;
= = ©<q,hn(2rw) Dx G, (€260
=2
- Dx(:m ( Lz(',,, et £, G ((’;&'z(,,‘,, (,‘5;14,,,.,11) )
3t
- h
I)YF},(
()Al()~‘
1 el
G:” <(:”( ;1')
2 G2 el 52 e '>.

*h O0°h

Oh oh ,
l} = — - — T — = D -
s, Osy  J2,2 Jeo?
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and
0 0
9%h Z:IZI 6(5:1,‘1 Gm Z:):l l)gm : fm 7
051852 - B
St e Y %t fon
At (e1,29) = (0,0). the last n components of fa}‘—z is

G fm](0.7) = (Dy fin (0, %)) gm (0, %) — (D gim (0, 7)) fin(0,7),

where D, f(x) = (i 2Ly Since [fon gm](t, ) are uniformly

Or Y O,

] t} < e and x € R", by Taylor's theorem there
exists (', > 0 satisfying (2.9).

If necessary, by considering |=;] and |g5] instead of £, and e3 we
may assume that £y, > 0. Let z,,(f) be the colution of the Cauchy

problem

m (b, (), 0<t<e
(2.10)  #(t) = { {2 (ra(t)) ! Cox(0) =i
G (£, (2)), g1 <t< e+ e
and let y(#) be the solution of the Cauchy problem
i t,x (1)), 0<t<e . -
(2.11) w(t) = { sz( () ' . x(0) =1
ge(t, (1)), g1 <t<eg +e

Choose ny € IN such that

[f(t.r)— fn, (t, )] <ep and |g2(t, T) - gfll(t )| <&

for any (t.7) € R x R" For 0 <t < ey,

“/(f) 1”1 [f( ( ) f"x(" I'l )Id5
< /) (5, 0(s)) — F(5,0m, 8))]ds
JA
! (8,00, (8)) — [, (8, @y, (8))ds
+/ (52 rmy (8)) — fon (520 ()]s

t
L/ ‘l/(‘ Inl( ))IdS Feren
JO



588 Chang Eon Shin

and by Gronwall’s inequality,

ly(t) =, (H)] < e169e't

t s
() — 0 (8)] = [y(e0) + / g (s, u(s))ds

t
=y e) = [0 (s ()

£1

< lyler) = wn, (e1)] = / 19%(5,9(5)) ~ §°(5,:0n, () Ids

e

ot
+/ 9% (s, 20, (8)) — G2, (5, 0n,18))|ds

1

ot -1
<|y(e1) — apn, (e1)]| - / Liy(s) — a,., (8)|ds + / e1ds
Je Je
< epepett feiey + / Lly(s) — xn, (s)|ds,
Je
so by Gronwall’s inequality, 1
ly(er +22) — 1y, (51 + 2)| < (5152651L + ¢ 152)6521‘.
We thus have
212 =20 g S5 eezf’iféflj*"x 7|
= lyle1 +22) —an, (51 + £2)| < Caeyen
where Cy = elf1752)L 4 g2l T the same way, we get
(2.13) |1 629" F — 6515 o200 5| < Oy oo
Due to (2.9), (2.12) and (2.13), we have
|(?51f(’52~(’1 T - (szggéE‘f:ﬂ = 165820 5 g1 F20my §
4 eftSm (,5257,1,1 7o 6529'71 gty g
F o o den 615292(751-f:?'\
< (207 + Cy)es=a. O

Depending on the above lemma, we can prove Lipschitz continuity of
the map ® from Sy; to the set of mups on [0, 7] defined by ®(u) = x,,.
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THEOREM 2.3. Under assumptions C1, C2 and C5, there exists a
constant M > 0 such that for any u,v € Say and 7 € [0, 7).

|74 (1) — o (T)] < M [|u(0) — v(0)] + Ju(r) — v(7)|
2.14) T
(214, +/ lu(s) - v(s)

0

ds!.

J

Proof. Let u(t) = 37" a;x;,(t) and v(t) = 27 Bixs, (t) where
X7 is the characteristic function on the set I and I; is an inferval
which is one of the forms [a;_y,a,], (e;-1,a:], [ai_1,a;), (ai—1.a,). and
O0=ap <a < - <ap =T If 7 €I for some j, by considering
u(t) = 37/ aixs () and o(t) = 201y Bixir (t) where I' = I, for
i=1,,j—1land It = I;N[a._y, 7], we may assume that 7 = T.

Put

ki =1~ 8 =81 —0i ci=ag—0 fori=1,-- ,m-1

and

bi=a; —a;y, dy=n—0; fori-=1--- m.
Foreachi =1,--- ,m—1,|k| < ¢e,|d;] < e and |1,| <e. By (2.2), the
solution x,, of (1.1) corresponding to u satisfies

(215) .'[ju((]/,i—{») — (e(u(u,,+1——u(a,'—))g(a,;,v)) -"'»'n(ai,"')~

fori=1,---,m — 1. Thus the points x,(T) and x,(T) can be written
as
- -1 —f, AU S _
.177,,(71) — C[v,,..f(fkr.;,7~ 9 . efzfﬁkl 7 C[lf.'lf

and ) X
r,(T) = gl esmay coegfalenie gh f:;’

where ¢'(t,2) = g(a;,x), i =0,- - m. Let
Sm = /\”() — g() = (.
Fori=0,---,m — 1, by adding and subtracting
éf’mf(_,sm--l.q"'“léfv.. af .. esw—lgH'lé/in

(2.16)

om0 Fog' ST kg e f 5
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accepting that when i =m — 1, (2.16) is

m—1

gt fo=dn g™ 7t ghieng™ Vsl f kg g f 4

and when i = 0. (2.16) is
o ! m—1_y o1 a0
Cirufe‘smflg elmflf .. eS19 eflf(f d\g 7,

we have
| (T) — 2, (T)]

/ ‘(){nrf /‘m——lgmA1 b1 f eklglé[l.’r;f.

o =1 m—1 1
~f — . ~f . -7 -
e mfe dmg (’} m—19 C/ n Jf e Cklg (3£1f.[/-l

m—1
+ E Ef,,,f637,.--~19”" A1 L eSin g’ é/,‘uf_
=1
(2.17) ; iy i
e it ko' ghif Jhioig ~f'1—1f k1g (~’1f*

Y Y R LR

s,g"g,hf

,(551“97’ léfw—nf_

i1 ie1_ o0 e
. e.-rilg okiog ﬁf1—-1.f "‘EL]!] Gflf.'l'l

m—1 1 _¢ . U
+ I(,fmf Sme1g" T b f 819 g0 g 5
gt S esm—19" T gt f gt g0 S 5 .
The first two terms of the right-hand side of (2.17) are bounded since
by lemma 2.2

- . m=1 _p o1 _
(i['mf(:]‘ln'-lg e/rn—lf‘ _C/w!] (;flf.,l.

o f

— ¢ *dm!)”HI kooag” ~['m—lf 1‘] ~F1f }.|

[ €

‘(,<!my"' @ —dy g™ PO PAIE g glm—1f .. (le‘xyl el

,ﬁ (j[mfc"‘im!}mm ! ek e1g" "fm—lf kigt é £y f ’
” mo mo_g . -1 g f o
(218) S l(dmg e dmg e mf( kp1yg (jpm—l,f R (f}‘lg P lf‘,lr.

B P L U

+ ;(3 g™ S ] R P 1;,/”."1)‘ . C\'l!}l(fllf.’);

/"mf(;*d,.,g”'*' *'e.~-151"'71 Fn f 19 (hf l

-~ ¢

S dm 1/‘\[1 + Cwm dm |
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Observing that fori =1,--- 'm -1,
diyy = ¢ — 8, and di = ¢, — k;.
and for any x € R™,

e din g GRigt S6f L s e~ dig (“F:f‘,“

we have a bound for terms inside the summatior: of (2.17):

=1

)(jfmfcsmqg ¢ bt f Sulg glulf_

ey’ kg’ gl S Ar,“l_u"“‘éf,w 1 kg g f

e r

gl - il
(219) _(,’n.f Sm—-19 eh..—lf,__esurlg (31,,“f.
i1 il ~
59{J1f( d;g (jkz.r—ly e[:—lj_._( /1f |

< (/"dlél I(jL(A,I +'I').
The last two terms of the right-hand side of (2.17) are also bounded:

il sm19" T st o190t g S mdig”

[ € [

(2‘20) _ (':,[/mf(’)-"nz«lgmilé'["rnvvlf .. C’Sl'(]léiflf.'f‘,l

< My|dy|ePEHT)

since [¢ 49 F — 7| < My|dy|, S 6 =T, 3" |si) < M and g'. f
are Lipschitz continuous with constant L. By thc deﬁnitions of d; and
i Ju(0) — v(0)] = dy, |u(T) — v(T)| = d,, and ]0 lu(t) — o(t)ldt =
Z,,_l l(l/ . s0

| (1) — (T

< N[[)u(()) —v(O)] + [u(T) — v(T)
T
+ / [u(t) = v(t)|dt].
Jo

where M = (M) + C + 1)et(M+T1 0
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REMARK 2.4. Fori=1.---,m — 1, the point
(';ivrlfes'rrlflg”"_l éfnlAlf et 1gi+léf1:-+»1fe—di +1giekiyi

7. A Y g _
il ke ghify

can be reached by following x, —trajectory on [0, a;| and then following
T, —trajectory on (a;,T].

Inequality (2.14) makes it possible to extend the map ® continuously to
measurable functions of bounded variation and to define the generalized
solution of (1.1) corresponding to a measurable function u which is of
bounded variation.

DEFINITION 2.5. Let f, g satisfv C1, C2 and C5. Given an equiva-
lence class of a control function u of bounded variation with an initial
value u(0), a trajectory ¢t — x,(t) is a generalized solution of (1.1)
corresponding to w if there exists a sequence {vy} of control functions
in Sy for some M > 0 such that vg(0) = u(0),vx — u in L'(m),
and ., () tends to z,(t) for each t € [0,T], where m is the Lebesgue
measure.

For any measurable control function u with a total variation M,
there exists a sequence {v} of control functions in Sps such that v (0)
= u(0) and v, — w in L'(m). Thus there exists a set A/ of measure zero
such that vg(t) — u(#) for t € [0, T \N. By (2.14), there exists a map
1, on [0,7T] such that x,, (t) converges to z,(t) for each t € [0, T\N.
Hence the generalized solution of (1.1) corresponding to a measurable
control function u of bounded variation is unique up to m—a.e. We can
also define the trajectory z,(t) pointwise by the following procedure:
for 7 € [0, 7], choose a sequence {vx} in Sps such that v, (0) = u(0),
vr(7) = u(r) and vy — wu in L'(m), and then x,(7) is defined as the
limit of =, (7).

3. Estimate in the case that ¢ is not Lipschitz continuous

Let f,g be maps satisfying Cl-~ C4. To define an auxiliary time
variable #, define a function t(#) from [¢(0), ¢(T)] into [0,T] by

(3.1)  t(0) =mf{t€[0.7] | ot > 6} for 6 € [¢(0). &(T)],
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where ¢(t) = t + ¢(t). Then the function #(f) is nondecreasing, onto
and continuous. By right-contimiity of ¢ and the definition of #(8),

(3.2) d(HH) > 6  and &(t(9)~) <6,
so for 6y > #,,
(3.3) B, — 62 > t(6)) — 1(62).

Define the functions 8%,6~ from [0, 7] to [¢(0), &(T)] by

(3.4) 8% (1) = sup{a € [5(0), (T)] | t(c) =7}
and
(3.5) 67 (7) = inf{a € [(0), §(T)] | t(a) = 7}.

The functions #(-), 6% (-),8(-) satisfy the following properties.

LEMMA 3.1. Lett € [0,7] and 8 € [¢(0), $(T) . The following state-
ments hold.

(1) If 6 < ¢(f), then t(f) < #

(2) If o(F ) <@, thent < t(8 )

(3) 9“(7‘(~)) < 6 and 6% (t(f)) > 6

(4) 67(+(6)) = 6(t(A)~) and 8+ (+(6)) = (¢(6 ) .

(5) @ is continuous at t if and only if = (f) = 0+ (1).

Proof. (1). If § < ¢(f), then by the definition of t(8), t(f) = inf{t €
0.7] | 6(t) > 6} <

(2). If t(f) = 1, then (i) = o(t(0)) > 6 by (3.2). Suppose that
#(A) < . There exists a with t(f) < a < ¥ such that é(a) > 6. Since ¢
is increasing, ¢(f) > 6.

(3). By the definition of 6~ dnd 9+, 6= (+(6)) = inf{er | Ha) =
t(6)} < 6 and 6+ (1(9)) = sup{a | t{a) = +(f)} > 4.

(4). Let < t(f). We claim that <p( f) < 6~ (+:8)). For any 6; with
t(6h) = t(6),if B < (), then by ), > f(f)l) f(fi) which contradicts
the choice of f, so (91 > ¢(f) which implies that 8 “(+(8)) > $(#). Hence

6= ((6)) > (+(6)—
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Next, we show that ¢(t(A)—) > 07 (+(8)). Let 8~ (+(f)) > 6,. By
(3), 6 > fy and () > ). If t(6) = 1(f,). then 3~ (+(8)) = inf{a €
[6(0), 6(T)] | tHa) = +{A)} < By which contradicts “hat 6 (£(8)) > 6.
Hence

(3.6) tA) > t(6y).

Let £ € [0,t(8)). Suppose that ¢(f} < #3. Then by (2), f < #(6;) and
t(A) < t(#2) which contradicts (3.6). Hence there exists ¢ € [0,#(6))
such that gﬂ(?r) > 6, so gg(f(é)—) > 9. Since #5 is an arbitrary number
such that 8y < 07 (1(8)), ¢(t(8)—) >- 67 (+(8)).

By similar argument, we can show that 6% (#(¢ 9)) =
other hand, ¢(t(A+)) = &(t(#)), so 47 (1(8)) = o(t(f )
(5). Since the function f(()) is outo, for f € [() T there exists 8; €
[6(0), ¢(T)] such that #(8;) = f. By (4), ¢ is contintous at # if and only
if o= (¢ ) = 0t (1). O

6+)). On the

Since ¢ is increasing, by (1.5) the limits

gt+,x) = ,,12& g(s,x) and gt— x) = 13}1” g(s,x)

exist. Define the auxiliary function G(#,z) on [¢(0), o(T)] x R" by
(3.7) G(0,x) = g(t(8),2)

if 67 (1(0)) = 6~ (#(8)), while

(3.8) G(8,x) = Ag(t(f)+. 21+ (1 = Ng(t(# —. x)

if 8 = X071 (1(0)) + (1 — N)H~(+(H)) for some X € [0, 1].
Next lemma shows that G(6,r) 1s Lipschitz continuous.

LeEMMA 3.2, For anv @ € R™ and 6,. 0y € [(0), &(T)].

(39) 'G(F)l,ilf) - G(Hz()l § IHI — ()zl
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Proof. 1f 67(+(0)) = 6~ (#(9)). then by lemme 3.1 (5) g(H{0)+, z) =
g(t(8)—.x). so

g(t(#).x) = Ag(tH(B)-+,2) + (1 — \)g t(8)—. 1)

forany A € [0.1]. Let 61,62 € [¢(0), o(T)). We can write 8, = A0 (¢(6;))
+(1 =)™ (#(8:)) for i = 1,2 and for some A;, A, € [0.1]. Assume that
#1 > 0y and A; > Ay, (The case that A; < )\, car. be covered by replac-
ing Ay, Ay with 1 — Ay and 1 — X, respectively.) Then
(3.10)
161 — ba] = [MOF(1(0 )) (1= 207 (t(61))

= AT (H02)) + (1 = M) (1(6y))]
= (A7 (H(0 ) (1(92 )
+ (A1 — /\24(9+(f( (t(#2)))
+ (1= A (O7(HO)) ~ 67((62)))]
= M{o(H(61)) — o(t(0, ) (/\1 = X2)(DH(8a)) — o(1(B3)—))
+ (1= M)(D(H0) ~) = b(t(0)—) .
and
(3.11)

|G(~91"T) — G(f2, ’)[ - |)‘1J( l)‘hi’“) + (1 - )\1)9(7"(91)"“‘.17)
= Ag(H(02)+,7) = (1 = A2)g(t(6y)—, 7)]
(90 B1)+0) = gl () +, )
+ (A = A)(g(tH{Ba)4 . 2) — g(t(02)—, )
+ (1= M) (gl f<917)~.-r) — g(t(02)—. x)]
< )\1((>(fl(}1)) — p(t (62)))
+ (A = ) (@(H(02)) — 6(t(H2)—))
{1 = A (o0 =~ o(t(H2)-)).

= |A

From (3.10) and (3.11), lemuna is proved. O
For « € Syy. define a function U on [¢(0), @(1)] by

U#) = u(t(0)).
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Denote by x(U, -) the solution of the Cauchy problem

; dr(6) dt(9) du(e;
3.12 = f(#8), ) — - 0, x)——
312 S = pee).0 ) G
Since G is Lipschitz continuous and 0 < % < 1 m—a.e.. by defini-
tion 2.5 the solution of (3.12) for any Borel measurable function U of
bounded variation is unique. Moreover, by (2.14), we have the estimate

x(0) = 7.

|2(U.0) — 2(V.0)| < CLIU(0) = V(0)| + |U(6) — V(6)]
(3.13) 0
+ / |U(s) =V (s)|ds]
JO

where 8 € [¢(0), &(T)], u,v € Sy and V(8) = v(t(0)).

For any Borel measurable function « which is of bounded variation,
we define the trajectory z(u,t) = x(U,8%(t)). In fact, when u is a
smooth control function, x(u,t) is a solution of (1.1) in the sense of
classical theory of ODE.

The integral of (3.13) can be expressed as an iategral in terms of
original control functions u and v.

LEMMA 3.3. Let u be a u—integrable and Borel r1easurable function
on [0, T]. For any t € [0.T] with t =: t(6),

-6

(3.14) /(ju(@du(s) - [ vtsyas

where p is the Radon measure defined by p((a, b)) = ¢(b) — ¢(a) for
any 0 <a<b<T.

Proof. Let F={E C[0,T] [y xu(t6))df = [, xp(t)dt}.
From the fact that for 0 <a <b<T,

Xiap) (H(8)) = 1 if and only if da) < 6 < ¢(b),

F contains all the half-open intervals. We can easily show that F is
a o—algebra, so F contains all the Borel sets of [0, 7). For any Borel
measurable function u, approximating « by the simple functions which
are all Borel measurable, (3.14) holds. 0

Inequality (3.13) can be rewritten as in Theorem 3.4.
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THEOREM 3.4. Let f and g satisfy the assumptions Ci~C4. For
any u,v € Syr and 7 € [0,T).

lr(u, ) = a(o, 7| < M [[u(0) = v(0)] + [u(r) — v(7)]

—Jr“/ u(s) — vls)|du(s)].

0

(3.15)

Now, we can define the generalized solution of (1.1) under assump-
tions Cl~C4.

DEFINITION 3.5. Let f,g satisfy C1~C4. Given an equivalence
class with respect to the Radon measure p of a control function « of
bounded variation with an initial value 4(0), a trajectory t — x(u, t)
is a generalized solution of (1.1, corresponding to u if there exists a
sequence {uv} of controls in Sy, for some M > 0 such that vy (0) =
u(0), v — win L'(p), and r(vy 1) tends to a(u,t) for each t € (0,77
where 4 is the Radon measure defined by p((a b)) = é(b) ~ é(a) for
any 0 <a<h<T.

The above generalized solution x(u,t) is unique up to g—a.e. and
the trajectory x(u,t) can also be defined pointwise as in §2.

4. Example
Let
0 o<t <1,
glt.r) =
Tyt —1 ifl <t<2and|r] <2

We extend g(t,x) to [0,2] x R so that ¢ satisdes C1. (3. C4 with
&(t) =0for 0 <t <1land ¢(t) = 3v/F—1for 1 <t<2.

Consider the scalar impulsive control systern
a(t) = g(t,x)a(t), te0,2], =(0)=0

with w(t) = ¢ for 0 <t < 1, ( ) = f+ lfor 1 <7 <2
For any ¢ € R with 0 < ¢ < 2/¢3

0 0<t 1,
[(f) pring 4
(.’(32(!—1)7/3 1 Sfj

’
o
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is the solution of the integral equation [9, p.11]

x(t) = /0' g(s,z(s))du(s), t € 0.2].

For n € IN, let u,, be the step function on [0, 2] such that

U

% if%§f< "‘:'—"],k:(].-- n—1,
Wty =¢ 2+ % fl+Ect<1+8L =0 n-2
2+ 2=t ifl+= <<

Then f02 |u(t) — wn(t)|du(t) — 0 as n — oo and rhe solution x,, (f)
corresponding to the control function wu,(t) is identically zero. Thus
the only possible solution of the present paper is the trajectory for

> = 0.
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