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EXTENSIONS OF THE BORSUK-ULAM THEOREM
IN-S00K KM

ABSTRACT. In this paper we give a generalizatior. of the well-known
Borsuk-Ulam theorem and its extensions to countably many prod-
ucts of spheres.

1. Introduction

Borsuk’s antipodal theorem which was conjectured by Ulam has
equivalent formulations in great variety. In the present paper it is nat-
ural to investigate the Borsuk-Ulam theorem on more general condi-
tions, by replacing odd map by equivariant map with respect to group
actions on the spheres.

This observation is motivated by the almost periodicity of orbits as
a generalization of the periodicity. In contrast to actions of compact
Lie group, a new result on Z-actions is of considerable practical im-
portance. Furthermore, our result is extended to finitely as well as
countably many products of spheres, where the idea lies in the approx-
imation theorem for almost periodic functions, see [4]. In particular,
we show that this extension holds for the case of rationally indepen-
dent numbers. We know that there is a close relationship between
Borsuk-Ulam theoremn and index theory for group actions, see [7], [10].
Therefore, we here provide an appropriate framework for an index the-
ory. This kind of application is one of the main reasons to study a
Z-version of the Borsuk-Ulam theoremn.

2. Preliminaries

From elementary observations we will see tha: the approach to the
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Borsuk-Ulam theorem can be extended to other group actions, for in-
stance Z4- or Z-actions.

To present these facts, we introduce the concept of equivariance.

DEFINITION 1. Let «; be a real number and It k; [; be natural
numbers for j = 1,---.n and & = (e?™1 ... 27y A map
ho=(hi, -  hp): ST x §%n—l 0 G2hi—1 5 G20n=1 i)
be called equivariant with respect to &, if

h ( C27r,i,o¢, Ty, CQWia.,, -T'n) - (527”01}],1 (."IT), o 827\"/1(1,, h/n(.'IT))

for every x = (21, - ,2p) € 821 L ... x §2%1 In this case we
write h i (S2F71x o x §2Raml gy o (S%h—lx .o x Sl ).
The classical Borsuk-Ulam theorem says that given a continuous
map h: S™ — R", there exists an © € S™ such that h(r) = h(—=x). It
was well-known that this result is equivalent to the following theorem.

THEOREM 2. For every n,m € N with n > m there is no continuous
odd map h : 8" — S™.

For the proof we refer to Bredon [3].

The following result which we will need later can be deduced from
the so-called Borsuk-Ulam theorem.

THEOREM 3. Let o € RZ. For every k,l € N with k > [ there is no
continous equivariant map (S?~1 2™} . (§F 1 eZmia)

Proof. For o« € Q\Z the theorem is well-known, see [5]. Now let
a € R\Q. Suppose that there is a continuous equivariant map h :
(S%vl, eQm‘a) — (‘521‘-»17 e‘zma) for k.1 € N. Since {627r11na 'n € Z}

= S, there exists a sequence (n;) of integers such taat lim e*™™® =
j—o00

—1. As b is continuous and equivariant, we have that for every z €

SQk‘—l

h(—z) = h(lim €*™™%z) = lim ™™ %h(z) = —h(z).
300 j =00
Therefore, it follows from Theorem 2 that & <L O

Thus Theorem 3 is a generalizaction of the Borsuk-Ulam theorem.
The basic idea is to use the fact that {e2™> :n € Z} = S' if a is an
irrational number. It will be shown in Theorem 10 more generally.
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3. Extensions to finitely many products

By modifying Theorem 3, we can now obtain the following results
on finitely many products of spheres. For j = 1,--. ,n, let k; 1 be

natural numbers, let J = {j € {1,---,n}: k, > l i} # 0, and let

Pj,q; be nonzero integers such that p—’ is in red uced form and g; # 1.
J

THEOREM 4. Let a; = L}L be in reduced form for j = 1,--- n.
Suppose that there is a jo € J such that the number ‘1]0 does not divide
the least common multiple of {qy. - - - 9io—1-%0+1-"** »qn}. Then there
is no continuous equivariant map

hoe (St xx SHe=lo) —s (§2h=1 % ... x Sl Gy,
where ¢ = (QQWial e 762’”1‘04,,,)'

Proof. Suppose that there is a continuous equivariant map h. Let

= lem{qy, -+ 5,1, G041, . qn}. Hence, for every z = (zy,---
n) S§21-=1 o §2kn=1  wo obtain
h(Zl* T Zu—1 E?Qﬂ—jca’mzjm Lo+l Zﬂ)
— h( eQ‘n’icalzl‘ . 7e?wico MZ]}” . ’627”'(:0“ Zn)
(627r1'(:a1 hl(z), . cham h (Z), ,327\'1',(:&,L hn<2))
= (hl2).- - Ry (2), €00 by (2) hy 41 (2). - b (2)).

Let a; € S*571 be fixed for each j € {1, - ,n}\{jo}. Define
i) : SZkJu“'I — S.‘HJU—‘I by

N
h(T) = hj()<a1' BRI IR R ES W 0y
for x € 5**i =1 Then h is continuous and equivariant, because
L[ . 2mico, . 2micay X
h((’ -”’.F) = e J"hj(‘((ll,"' yQgy—1: Ly Qg g1, ,(ln>
= 2™ ().

for every x € S*"0~1. Since g;, does not divide ¢, by Theorem 3, this
contradicts the fact that j, € 7. O

We now turn our attention to the case when 1, , ey are taken
as rational and irrational numbe-s together.
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THEOREM 5. Suppose a;,, j1 = {1,---.n}, Is the only one irra-
. Y - . .
tional number and o = %L Je {1l ,n}\{J1}, are rational munbers
- bl
in reduced forni.

(1) If jy € J, then there is no continuous equivariant map
e e . 9 I -
B (Sl §FFam 5y (82T e 52 gy

(2) If j € J and if the number q;, does not d-vide the least com-
mon multiple of {q1,--- .qn} \ {q5,, 05, } with jo € [J, then the
same conclusion holds.

Proof. For simplicity, we may suppose that ) i+ an irrational num-
ber and .-+ ., are rational numbers. There are two cases to con-
sider.

Case 1 : 1 € J: that i1s &, > 1. Assume that there is a contimious
equivariant map h. Since a; € R\Q, there exists a sequence (ny) of
integers such that

M 2 ¥, Ly .2[
limn e27inagz eaon . 2Trcn

R0

Furthermore, ¢2™7xd24nes =1 for j = 2,--- 1 and for all k& € N.
Since h is continuous and equivariant, it follows that

BTN 2y gz ) = (€7 Dy (2) ha(z). - h(2))
for all z = (21, ,z,) € Sk 0 x §2F =1 Hener the func-
tion hy ¢ STl G2t g e h(aag, - L), for fixed a, €

Skl =2 ... . is continuous and equivariant. By Theorem 3,
this contradicts the fact that &y > . Thus the proof of the statement
(1) is complete.

Case 2: 1 € 7. Without loss of generality we may suppose that 2 € J:
that is k» > {5, Assume that there is a continuous equivariant map h.
Let ¢ be the least common multiple of {gs, -+, ¢, } such that ¢, does
not divide ¢. Hence there exists a sequence (ng ) of integers such that

2T gy

my o= clgang + 1) anl lim ¢ = 1.

ks o
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It follows that

2T IMkas — 2micay and eI — 1 for 7=3,--.n.
Therefore, for all 2 = (z;,-++ ,2,) € §%"1 71 x ... x S2kn—1 " we have
}7(31»(32ﬂlca222723:"' -Z'n)

= (h1(2),e"™ 2 hy(2), ha(2), - hn(2))

which, as in the proof of Theorern 4, leads to a contradiction to ky > Is.
This proves the statement (2). O

Theorem 5 can be formulated in more general situation as follows.

THEOREM 6. Let «; be a real number for 7 = 1,--- 'n. Suppose
that for some jo € J, there exists a sequence (my) of integers such
that

lim ()zﬂivnkaj ez‘maj() 7& L for '} - ]0
koo L for je{l, - .n}\{jo}

Then there is no continuous map
h - S.Zkl—l N, SQk,, -1 5211~1 X e X SZl"AI

such that h is equivariant with respect to a.

Proof. Without loss of generality we may suppose that j, = 1.
Assume that there is a continuous equivariant map h. Then, for all
z={(z1,  ,2,) € ST x ... x §%ka—1  we obtain

2mi
h (e 2y 29,00, 2,)

= h ( lim eQTr?,Tnket\ Ziacee hHl 62171,771,,‘.(1,1 Zn)
k00 k—o00
= lim (2™ (z), .-, eFT TRy ()

k—00

= (™R (2), ho(2). -+ . hn(2)).

As in the proof of Theorem 5, a similar argument leads to a contadic-
tion, and the proof is complete. W]
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REMARK. In fact, there is no sequence (my) of ntegers such that

QAo 270,y 2mimy o
— o 1 KOz

lim e and lim e

k-—oc k—oc
if a;,0p € R\Q have the property cia; + eyxe € Q@ for some
cr,c2 € Q\{0}.

We are now in position to study when there exists a sequence to
satisfy the condition of Theorem t. First, Remark leads us to the
following definition.

DEFINITION 7. The n real numbers cvy, -+ -, a,, will be called ratio-
nally independent if any relation of the form ¢y 4+ --+cpa, = 0 with
rational numbers ¢;.--- , ¢, implies that ¢ = -+ = ¢,, = 0. Countably
many real numbers «;.---  a,,--- will be called rationally indepen-
dent if any finitely many numbers which belong t¢ {a,, : n € N} are
rationally independent.

Next, the following result is based on the main theorem of Kronecker.

LeEMMA 8. Let o, -+ ,a,, 81, , 83, be real numbers. If the num-
bers 1., -, oy, are rationally independent, then the system of the

7 inequalities
|y apq —a; — 3,1 < ¢ forj=1---,n

has solutions xy,--- , 1,4 € Z for any ¢ > 0.
A proof of this lemma can be found in Perron [9].

Using Lemma &8, we can prove a result which gives a sufficient con-
dition for the existence of a sequence stated in Throrem 6. It is also
useful for a classification of the type of orbits, see [7].

THEOREM 9. Let 1.o,---,«, be rationally independent. Then,
for every (si.--- .s,) € (S')", there exists a sequence (my) of integers
such that
2mimyc;

lim e

85 for j=1,---.n.
k—oc '

Moreover, {(e?™imes ... ¢2mmany . meZ} = (§h)n,
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Proof. Let (sy.-++.sn) € (§')". Then therc is a 3, € [0, 1] with
s, =¥ forj=1,---.n. For every positive integer k there exists
an € > 0 such that for all € R with |z — 3;] <. ¢, mod 1 we have

| 2Tl 2Tl | < 27k for y=1,--- n.
By Lemma 8, there are integers my, Yk1, " , Yk such that
ke =y — 85 < e for j=1,--- ,n.
For j = 1..--.n. since |e?™m=a — 278, | - 9=k e conclude
that
lim ehﬂm;caj — ehrzﬁJ "’)*
k-—00 ’

4. An extension to countably many products

The following result is an analogue of Theorem 6 for countably many
products of spheres.

THEOREM 10. Let «; be a real number and #;,1; natural numbers
for every j € N. Suppose that for some jo € {7 eN: k; > 1}, there
exists a sequence (ny) of integers such that

J2Tide P
lim e?™mre; et A1 for j = Jjo .
k—soc 1 for 7 € N\{jo}

Then there is no continuous map
h- H Skt H g2
jeN JEN
which is equivariant with respect to & = (€271 ... e2may s ).
Proof. As in the proof of Theorem 6, a similar argument establishes

the result for countably many products. (]

We can make a modification of Theorem 9 witl: the aid of a diagonal
process.
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THEOREM 11. Let «;,3; be real numbers for every j € N. If
L,ay,-- ,a;, - are rationally independent, then there is a sequence
(ng) of integers such that

lim e?™nres = p2mid for all j € N.
ko 0

Proof. Let 1,cxp, -+ ,«j, - be rationally independent. By Lemma
8, for every n € N, there is a sequence (m,, ) of integers such that

I(JZW'i'rr:",;\.a_,- L2Tif3 | < ) ke

— € 2 for j=1,---.n.

We now consider the sequence (m, ;) on the diagonal. Then, for all
k € N, we have

. 1 . Dara f PR .
{CZ’N'L"UC,};(XJ _ C,,mdj | < 9 k for j = 1"__ ,/s?

which implies that lim €™Mk = 278 for all j € N, O

koo

Here we have seen that the Borsuk-Ulam theorem is preserved un-
der certain conditions related to the number theory. The generalized
Borsuk-Ulam theorem is fundamental in measuriny complexity of al-
most periodic orbits.

5. Application

In this section we give a definition of a Z-index induced by a home-
omorphism of a compact space. Then a Z-version of the Borsuk-Ulam
theorem plays a fundamental role in an index theory for Z-actions.
Moreover, an index theory for greup actions is important from the
viewpoint of applications to differential equations, see [1], [2], [6] and
18]

Given a continuous action 7 : G x X — X of a topological group G
on a topological space X, we denote

Y(X.G):={AC X : Ais G-invariznt}.
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A G-index is a mapping
i S(X.G) — NU{0. 00}

which has the following properties
(1) i(A) =0 if and only if 4 = 0.
(2) f A,B e 3(X.G) and 4 : A — B is a continuous equivariant
map, then i(A) <i(B).
(3) If A€ X(X,G) is a closedl set, then therc exists an open neigh-
borhood U € ¥(X,G) of A such that i(A) = i(U).
(4) If A, B € ¥(X.G) are closed sets, then i(AUB) < i(A)+i(B).

We consider a compact topological space X end a homeomorphism
f X = X such that
(1) {f" :n e Z} is uniformly equicontinuous; and
(2) there is an irrational number o € [0,1] such that for every
r € X there exists a homeomorphism @ : O(x) — S! with the
property

O(f(u)) =™ 0(u) for all u e O(r)

where O(x) denotes the closure of O(x) = {f"(x):n € Z}.

In this framework we define the Z-index i(A) of an invariant subset
A of X as the smallest integer 4 such that there exist an m € N and
a continuous map @ : A — S?* =" gatisfying the following equivariance
property
D(f(u)) =T B(u) forall 1€ A

In [7] we show that this is an index in the sense of the above definition.
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