A NONLINEAR BEAM EQUATION WITH NONLINEARITY CROSSING AN EIGENVALUE

Q-HEUNG CHOI¹ AND HYEWON NAM

ABSTRACT. We investigate the existence of solutions of the non-linear beam equation under the Dirichlet boundary condition on the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$ and periodic condition on the varible t, $Lu + bu^+ - au^- = f(x,t)$, when the jumping nonlinearity crosses the first positive eigenvalue.

0. Introduction

In this paper, we investigate multiplicity of solutions u(x,t) for a piecewise linear perturbation $-(bu^+-au^-)$ of the beam operator L under the Dirichlet boundary condition on the interval $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and periodic condition on the variable t,

(0.1)
$$Lu + bu^{+} - au^{-} = f(x, t) \qquad \text{in } (-\frac{\tau}{2}, \frac{\pi}{2}) \times \mathbf{R},$$
$$u(\pm \frac{\pi}{2}, t) = u_{xx}(\pm \frac{\pi}{2}, t) = 0,$$
$$u(x, t) = u(-x, t) = u(x, -t) = u(x, t + \pi),$$

where L denote the beam operator $Lu = u_{tt} + u_{xxxx}$. The eigenvalues of L under the Dirichlet boundary condition and periodic condition on the variable t are given by $\lambda_{mn} = (2n+1)^4 - 4m^2(m, n=0, 1, 2, \cdots)$.

Let Q be the square $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and H be the Hilbert space defined by

$$H = \{u \in L^2(Q) \mid u \text{ is even in } x \text{ and } t\}.$$

Then equation (0.1) is represented by

$$(0.2) Lu + bu^+ - au^- = f in H.$$

Received January 27, 1997.

1991 Mathematics Subject Classification: 35B10, 35Q40.

Key words and phrases: eigenvalue, beam equation, multiplicity of solutions.

¹Research supported in part by Inha Univ. fund and BSRI-96-1436.

In [2,10], Choi and McKenna investigated multiplicity of solutions of a semilinear equation (0.2) when the nonlinearity $-bu^+$ crosses an eigenvalue λ_{10} and the forcing term f is supposed to be $1 + \varepsilon h(\parallel h \parallel$). In [5], Choi and Jung investigated multiplicity of solutions of a semilinear equation (0.2) when the nonlinearity $-(bu^+ - au^-)$ crosses two eigenvalues λ_{00} , λ_{10} and the source term f is generated by ϕ_{00} and ϕ_{10} , and when the nonlinearity $-(bu^+ - au^-)$ crosses an eigenvalue λ_{10} and the source term f is generated by ϕ_{00} and ϕ_{10} .

Our concern is to investigate multiplicity of solutions of (0.2) when -17 < a < -1 < b < 3 and the source term f is generated by two eigenfunctions ϕ_{00}, ϕ_{10} . In particular, we investigate multiplicity of solutions of (0.2).

In Section 1, we suppose that the nonlinearity $-(bu^+ - au^-)$ crosses the eigenvalue λ_{00} and the source term f is generated by ϕ_{00} and ϕ_{10} . And we use the variational reduction method to reduce the problem from an infinite dimensional one to a finite dimensional one. Let $Q = (-\frac{\pi}{2}, \frac{\pi}{2}) \times (-\frac{\pi}{2}, \frac{\pi}{2})$ and V be the subspace of $L^2(Q)$ spanned by ϕ_{00} and ϕ_{10} . Let P be the orthogonal projection $L^2(Q)$ onto V. Then the beam equation (0.1) is reduced to a equation in V.

In Section 2, we define a map Φ by

$$\Phi(v) = Lv + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}), \qquad v \in V$$

and we investigate the properties of the map Φ and we reveal a relation between multiplicity of solutions and source terms in equation (0.2) when f belongs to the two-dimensional space V. We also determine the region of source terms in which (0.2) has no solution.

1. A variational reduction method

We consider the beam equation under the Dirichlet boundary condition on the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$ and periodic condition on the varible t

$$u_{tt} + u_{xxxx} + bu^{+} - au^{-} = f(x,t) \qquad \text{in } (-\frac{\pi}{2}, \frac{\pi}{2}) \times \mathbf{R},$$

$$(1.1) \qquad u(\pm \frac{\pi}{2}, t) = u_{xx}(\pm \frac{\pi}{2}, t) = 0,$$

$$u(x,t) = u(-x,t) = u(x,-t) = u(x,t+\pi).$$

Here we suppose that $-\lambda_{41} = -17 < a < -\lambda_{00} = -1 < b < -\lambda_{10} = 3$. Let L be the differential operator $Lu = u_{lt} + u_{xxxx}$. Then the eigenvalue problem

(1.2)
$$Lu = \lambda u \qquad \text{in } (-\frac{\pi}{2}, \frac{\pi}{2}) \times R,$$
$$u(\pm \frac{\pi}{2}, t) = u_{xx}(\pm \frac{\pi}{2}, t) = 0,$$
$$u(x, t) = u(-x, t) = u(x, -t) = u(x, t + \pi)$$

has infinitely many eigenvalues λ_{mn} and corresponding eigenfunctions $\phi_{mn}(m, n \geq 0)$ given by

$$\lambda_{mn} = (2n+1)^4 - 4m^2,$$

 $\phi_{mn} = \cos 2mt \cos(2n+1)x \qquad (m, n = 0, 1, 2, \dots).$

Let Q be the square $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and H be the Hilbert space defined by

$$H = \{ u \in L^2(Q) \mid u \text{ is even in } x \text{ and } t \}.$$

Then the set $\{\phi_{mn} \mid m, n = 0, 1, 2, \cdots\}$ forms an orthogonal set in H. Equation (1.1) is equivalent to

(1.3)
$$Lu + bu^{+} - au^{-} = f \quad \text{in } H,$$

where we assume that $f = s_1 \phi_{00} + s_2 \phi_{10} (s_1, s_2 \in R)$.

Theorem 1.1. If $s_1 < 0$, then (1.3) has no solution.

Proof. We rewrite (1.3) as

$$(L - \lambda_{00})u + (b + \lambda_{00})u^{+} - (a + \lambda_{00})u^{-} = s_1\phi_{00} + s_2\phi_{10}$$
 in H .

Multiply across by ϕ_{00} and integrate over Q. Since L is self-adjoint and $(L - \lambda_{00})\phi_{00} = 0$, $((L - \lambda_{00})u, \phi_{00}) = 0$. Thus we have

$$\int_{Q} \{(b + \lambda_{00})u^{+} - (a + \lambda_{00})u^{-}\}\phi_{00} = (s_{1}\phi_{00} + s_{2}\phi_{10}, \phi_{00})$$
$$= s_{1} \int_{Q} \phi_{00}^{2}$$
$$= \frac{\pi}{2}s_{1}.$$

We know that $(b+\lambda_{00})u^+ - (a+\lambda_{00})u^- \ge 0$ for all real valued function u. Also $\phi_{00} > 0$ in Q. Therefore $\int_Q \{(b+\lambda_{00})u^+ - (a+\lambda_{00})u^-\}\phi_{00} \ge 0$. Hence there is no solution of (1.3) if $s_1 < 0$.

Let V be the subspace of H spanned by $\{\phi_{00}, \phi_{10}\}$ and W be the orthogonal complement of V in H. Let P be the orthogonal projection of H onto V. Then every $u \in H$ can be written as u = v + w, where v = Pu and w = (I - P)u. Hence equation (1.3) is equivalent to a system

(1.4)
$$Lw + (I - P)(b(v + w)^{+} - a(v + v)^{-}) = 0,$$

(1.5)
$$Lv + P(b(v+w)^{+} - a(v+w)^{-}) = s_1\phi_{00} + s_2\phi_{10}.$$

LEMMA 1.2. For a fixed $v \in V$, (1.4) has a unique solution $w = \theta(v)$. Furthermore, $\theta(v)$ is Lipschitz continuous in v.

Proof. Let $\delta = \frac{a+b}{2}$. Rewrite (1.4) as

$$(1.6) \qquad (-L - \delta)w = (I - P)(b(v - w)^{+} - a(v + u)^{-} - \delta(v + w)),$$

or equivalently,

$$w = (-L - \delta)^{-1} (I - P) g_v(w),$$

where

$$g_v(w) = b(v+w)^+ - a(v+w)^- - \delta(v+w).$$

Since

$$|g_v(w_1) - g_v(w_2)| \le \max\{|b - \delta|, |\delta - a|\}|w_1 - w_2|,$$

we have

$$||g_v(w_1) - g_v(w_2)|| \le \max\{|b - \delta|, |\delta - a|\}| ||w_1 - w_2||.$$

The operator $(-L-\delta)^{-1}(I-P)$ is a self-adjoint compact linear map from W into itself. Its eigenvalues in W are $(-\lambda_{mn}-\delta)^{-1}$, where $\lambda_{mn} \neq 1$. Therefore its L^2 norm is $\max\{\frac{1}{|-17-\delta|},\frac{1}{|3-\delta|}\}$. Since $\max\{|b-\delta|,|\delta-a|\}<\min\{|-17-\delta|,|3-\delta|\}$, for fixed $v\in V$, the right hand

side of (1.6) defines a Lipschitz mapping of W into itself with Lipschitz constant $\gamma < 1$.

By the contraction mapping principle, for each $v \in V$, there is a unique $w \in W$ which satisfies (1.4).

By the standard argument principle, $\theta(v)$ is Lipschitz continuous in v.

By Lemma 1.2, the study of the multiplicity of solutions of (1.3) is reduced to that of an equivalent problem

(1.7)
$$Lv + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}) = s_1\phi_{00} + s_2\phi_{10}$$
 defined on V .

PROPOSITION. If $v \ge 0$ or $v \le 0$, then $\theta(v) = 0$.

Proof. Let $v \geq 0$. Then $\theta(v) = 0$ and equation (1.4) is reduced to

$$L0 + (I - P)(bv^+ - av^-) = 0$$

because $v^+=v, v^-=0$ and (I-P)v=0. Similarly if $v\leq 0$, then $\theta(v)=0$.

Since $V = span\{\phi_{00}, \phi_{10}\}$ and ϕ_{00} is a positive eigenfunction, there exists a cone C_1 defined by

$$C_1 = \{ v = c_1 \phi_{00} + c_2 \phi_{10} \mid c_1 \ge 0, |c_2| \le c_1 \}$$

so that $v \geq 0$ for all $v \in C_1$, and a cone C_3 defined by

$$C_3 = \{ v = c_1 \phi_{00} + \epsilon_2 \phi_{10} \mid c_1 \le 0, |c_2| \le |c_1| \}$$

so that $v \leq 0$ for all $v \in C_3$. Thus $\theta(v) \equiv 0$ for $v \in C_1 \cup C_3$. Now we set

$$C_2 = \{ v = c_1 \phi_{00} + c_2 \phi_{10} \mid c_2 \ge 0, |c_1| \le c_2 \}$$

$$C_4 = \{ v = c_1 \phi_{00} + c_2 \phi_{10} \mid c_2 \le 0, |c_1| \le |c_2| \}.$$

Then the union of C_1 , C_2 , C_3 , and C_4 is the space V. We define a map $\Phi: V \longrightarrow V$ by

$$\Phi(v) = Lv + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}), \quad v \in V.$$

Then Φ is continuous on V and we have the following lemma.

LEMMA 1.3. $\Phi(cv) = c\Phi(v)$ for $c \ge 0$ and $v \in V$.

Proof. Let $c \geq 0$. If v satisfies

$$L\theta(v) + (I - P)(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}) = 0,$$

then

$$L(c\theta(v)) + (I - P)(b(cv + c\theta(v))^{+} - a(cv + c\theta(v))^{-}) = 0$$

and hence $\theta(cv) = c\theta(v)$. Therefore

$$\Phi(cv) = L(cv) + P(b(cv + \theta(cv))^{+} - a(cv + \theta(cv))^{-})$$

= $L(cv) + P(b(cv + c\theta(v))^{+} - a(cv + c\theta(v))^{-})$
= $c\Phi(v)$

 \Box

We investigate the image of the cones C_1, C_3 under Φ . First, we consider the image of C_1 . If $v = c_1\phi_{00} + c_2\phi_{10} \ge 0$,

$$\Phi(v) = Lv + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-})$$

$$= c_{1}\phi_{00} - 3c_{2}\phi_{10} + b(c_{1}\phi_{00} + c_{2}\phi_{10})$$

$$= (b+1)c_{1}\phi_{00} + (b-3)c_{2}\phi_{10}.$$

Thus images of the rays $c_1\phi_{00} \pm c_1\phi_{10}(c_1 \ge 0)$ are

$$(b+1)c_1\phi_{00} + (b-3)c_1\phi_{10}$$
 $(c_1 \ge 0).$

Therefore Φ maps C_1 onto the cone

$$R_1 = \left\{ d_1 \phi_{00} + d_2 \phi_{10} \mid d_1 \ge 0, |d_2| \le \frac{-b+3}{b+1} d_1 \right\}.$$

Second, we consider the image of C_3 . If $v = -c_1\phi_{00} + c_2\phi_{10} \le 0$ $(c_1 \ge 0, |c_2| \le c_1)$,

$$\Phi(v) = Lv + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-})$$

$$= -c_{1}\phi_{00} - 3c_{2}\phi_{10} + a(-c_{1}\phi_{00} + c_{2}\phi_{10})$$

$$= (-a - 1)c_{1}\phi_{00} + (a - 3)c_{2}\phi_{10}.$$

Thus images of the rays $-c_1\phi_{00} \pm c_1\phi_{10}(c_1 \ge 0)$ are

$$(-a-1)c_1\phi_{00} \pm (a-3)c_1\phi_{10}$$
 $(c_1 \ge 0)$.

Therefore Φ maps C_3 onto the cone

$$R_3 = \left\{ d_1 \phi_{00} + d_2 \phi_{10} \mid d_1 \ge 0, |d_2| \le \frac{a-3}{a+1} d_1 \right\}.$$

We have three cases $R_1 \subsetneq R_3$, $R_3 \subsetneq R_1$, and $R_1 = R_3$. The relation $R_1 \subsetneq R_3$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b > \frac{a+3}{a-1}$. The relation $R_3 \subsetneq R_1$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b < \frac{a+3}{a-1}$. The relation $R_1 = R_3$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b = \frac{a+3}{a-1}$.

2. Multiplicity results

We consider the restrictions $\Phi|_{C_i}(1 \le i \le 4)$ of Φ to the cones C_i . Let $\Phi_i = \Phi|_{C_i}, \ i.e., \ \Phi_i : C_i \longrightarrow V$.

First, we consider Φ_1 . It maps C_1 onto R_1 . Let l_1 be the segment defined by

$$l_1 = \left\{ \phi_{00} + d_2 \phi_{10} \mid |d_2| \le \frac{-b - 3}{b + 1} \right\}.$$

Then the inverse image $\Phi_1^{-1}(l_1)$ is the segment

$$L_1 = \left\{ \frac{1}{b+1} (\phi_{00} + c_2 \phi_{10}) \mid |c_2| \le 1 \right\}.$$

By Lemma 1.3, $\Phi_1: C_1 \longrightarrow R_1$ is bijective.

Second, we consider Φ_3 . It maps C_3 onto R_3 . Let l_3 be the segment defined by

$$l_3 = \left\{ \phi_{00} + d_2 \phi_{10} \mid |d_2| \le \frac{a-3}{a+1} \right\}.$$

Then the inverse image $\Phi_3^{-1}(l_3)$ is the segment

$$L_3 = \left\{ \frac{1}{a+1} (\phi_{00} + c_2 \phi_{10}) \mid |c_2| \le 1 \right\}.$$

By Lemma 1.3, $\Phi_3: C_3 \longrightarrow R_3$ is bijective.

2.1 The nonlinearity
$$-(bu^+ - au^-)$$
 satisfies $b > \frac{a+3}{a-1}$

The relation $R_1 \subsetneq R_3$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b > \frac{a+3}{a-1}$. We investigate the images of the cones C_2, C_4 under Φ , where

$$C_2 = \{ v = c_1 \phi_{00} + c_2 \phi_{10} \mid c_2 \ge 0, |c_1| \le c_2 \},$$

$$C_4 = \{ v = c_1 \phi_{00} + c_2 \phi_{10} \mid c_2 \le 0, |c_1| \le |c_2| \}.$$

By Theorem 1.1 and Lemma 1.2, the image of C_2 under Φ is a cone containing

$$R_2 = \left\{ d_1 \phi_{00} + d_2 \phi_{10} \mid d_1 \ge 0, \frac{-a+3}{a+1} d_1 \le d_2 \le \frac{b-3}{b+1} d_1 \right\}$$

and the image of C_4 under Φ is a cone containing

$$R_4 = \left\{ d_1 \phi_{00} + d_2 \phi_{10} \ \middle| \ d_1 \ge 0, \frac{-b+3}{b+1} d_1 \le d_2 \le \frac{a-3}{a+1} d_1 \right\}.$$

We consider the restrictions Φ_2 and Φ_4 . Define the segments l_2, l_4 as follows;

$$l_2 = \left\{ \phi_{00} + d_2 \phi_{10} \mid \frac{-a+3}{a+1} \le d_2 \le \frac{b-3}{b+1} \right\},$$

$$l_4 = \left\{ \phi_{00} + d_2 \phi_{10} \mid \frac{-b+3}{b+1} \le d_2 \le \frac{a-3}{a+1} \right\}.$$

We investigate the inverse images $\Phi_2^{-1}(l_2)$ and $\Phi_4^{-1}(l_4)$. We note that $\Phi_i(C_i)$ contains R_i , for i=2,4, respectively.

LEMMA 2.1.1. For i=2,4, let γ be any simple path in R_i with end points on ∂R_i , where each ray in R_i (starting from the origin) intersects only one point of γ . Then the inverse image $\Phi_i^{-1}(\gamma)$ of γ is also a simple path in C_i with end points on ∂C_i , where any ray in C_i (starting from the origin) intersects only one point of this path.

Proof. Since Φ is continuous and γ is closed in V, $\Phi_i^{-1}(\gamma)$ is closed. Suppose that there is a ray(starting from the origin) in C_i , which intersects two points of $\Phi_i^{-1}(\gamma)$, say p and $\alpha p(\alpha > 1)$. Then $\Phi(\alpha p) = \alpha \Phi(p)$, which implies $\Phi(p) \in \gamma$ and $\Phi(\alpha p) \in \gamma$. This contradicts the assumption that each ray(starting from the origin) in C_i intersects only one point of γ .

We regard a point $p \in V$ as a radius vector in the plan V. Define the argument $\arg p$ to be the angle from the positive ϕ_{oo} -axis to p.

We claim that $\Phi_i^{-1}(\gamma)$ meets all the rays(starting from the origin) in C_i . If not, $\Phi_i^{-1}(\gamma)$ is disconnected in C_i . Since $\Phi_i^{-1}(\gamma)$ is closed and meets at most one point of any ray in C_i , there are two points p_1 and p_2 in C_i such that $\Phi_i^{-1}(\gamma)$ does not contain a point $p \in C_i$ with $\arg p_1 < \arg p < \arg p_2$. Let l be the segment with end points p_1 and p_2 then $\Phi_i(l)$ is a path in R_i , where $\Phi_i(p_1)$ and $\Phi_i(p_2)$ belong to γ . Choose a point $q \in \Phi_i(l)$ such that $\arg q$ is between $\arg \Phi_i(p_1)$ and $\arg \Phi_i(p_2)$. Then there exist a point q' of γ such that $q' = \beta q$ for some $\beta > 0$. Hence $\Phi_i^{-1}(q)$ and $\Phi_i^{-1}(q')$ are on the same ray(starting from the origin) in C_i and $\arg p_1 < \arg \Phi_i^{-1}(q') < \arg p_2$, which is a contradiction. This completes the proof.

Lemma 2.1.1 implies that $\Phi_i(i=2,4)$ is surjective. Hence we have the following theorem.

THEOREM 2.1.2. For $1 \le i \le 4$, the restriction Φ_i maps C_i onto R_i . Therefore, Φ maps V onto R_3 . In particular, Φ_1 and Φ_3 are bijective.

The above theorem also implies the following result.

THEOREM 2.1.3. Suppose -17 < a < -1 < b < 3 and $b > \frac{a+3}{a-1}$. Let $f = s_1 \phi_{00} + s_2 \phi_{10} \in V$. Then we have :

- (1) If $f \in IntR$, then (1.3) has exactly two solutions, one of which is positive and the other the other is negative.
- (2) If $f \in IntR_2 \bigcup IntR_4$, then (1.3) has a negative solution and at least one sign changing solution.
- (3) If $f \in \partial R_3$, then (1.3) has a negative solution.
- (4) If $f \in R_3^c$, then (1.3) has no solution.

2.2 The nonlinearity $-(bu^+ - au^-)$ satisfies $b < \frac{a+3}{a-1}$

The relation $R_3 \subsetneq R_1$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b < \frac{a+3}{a-1}$. We investigate the images of the cones C_2, C_4 under Φ . By Theorem 1.1 and Lemma 1.2, the image of C_2 under Φ is a cone containing

$$R_2' = \left\{ d_1 \phi_{00} + d_2 \phi_{10} \mid d_1 \ge 0, \frac{b-3}{b+1} d_1 \le d_2 \le \frac{-a+3}{a+1} d_1 \right\}$$

and the image of C_4 under Φ is a cone containing

$$R_4' = \left\{ d_1 \phi_{00} + d_2 \phi_{10} \mid d_1 \ge 0, \frac{a-3}{a+1} d_1 \le d_2 \le \frac{-b+3}{b+1} d_1 \right\}$$

We consider the restrictions Φ_2 and Φ_4 . Define the segments l_2', l_4' as follows;

$$l_2' = \left\{ \phi_{00} + d_2 \phi_{10} \mid \frac{b-3}{b+1} \le d_2 \le \frac{-a+3}{a+1} \right\}$$
$$l_4' = \left\{ \phi_{00} + d_2 \phi_{10} \mid \frac{a-3}{a+1} \le d_2 \le \frac{-b+3}{b+1} \right\}$$

We investigate the inverse images $\Phi_2^{-1}(l_2')$ and $\Phi_4^{-1}(l_4')$. We note that $\Phi_i(C_i)(i=2,4)$ contains $R_i'(i=2,4)$.

LEMMA 2.2.1. For i=2,4, let γ' be any simple path in R_i' with end points on $\partial R_i'$, where each ray in R_i' (starting from the origin) intersects only one point of γ' . Then the inverse image $\Phi_i^{-1}(\gamma')$ of γ' is also a simple path in C_i with end points on ∂C_i , where any ray in C_i (starting from the origin) intersects only one point of this path.

Proof. The proof is similar to the proof given in Lemma 2.1.1. \square

Lemma 2.2.1 implies that $\Phi_i(i=2,4)$ is surjective. Hence we have the following theorem.

THEOREM 2.2.2. For i = 2, 4, the restriction Φ_i maps C_i onto R_i' . And Φ_1 and Φ_3 are bijective. Therefore, Φ maps V onto R_1 .

Above the theorem also implies the following results.

THEOREM 2.2.3. Suppose -17 < a < -1 < b < 3 and $b < \frac{a+3}{a-1}$. Let $f = s_1\phi_{00} + s_2\phi_{10} \in V$. Then we have :

- (1) If $f \in IntR$, then (1.3) has exactly two solutions, one of which is positive and the other the other is negative.
- (2) If $f \in IntR_2' \bigcup IntR_4'$, then (1.3) has a positive solution and at least one sign changing solution.
- (3) If $f \in \partial R_1$, then (1.3) has a positive solution.
- (4) If $f \in R_1^c$, then (1.3) has no solution.

2.3 The nonlinearity $-(bu^+ - au^-)$ satisfies $b = \frac{a+3}{a-1}$

The relation $R_1 = R_3$ holds if and only if the nonlinearity $-(bu^+ - au^-)$ satisfies $b = \frac{a+3}{a-1}$.

We considered the map $\Phi: V \longrightarrow V$ defined by

$$\Phi(v) = Lv + P(b(v + \theta(v))^{+} - a(v + \theta(v))^{-}), \quad v \in V,$$

where -17 < a < -1 < b < 3 and $b = \frac{a+3}{a-1}$.

We investigate the images of C_2 and C_4 under Φ . For fixed v, we define a map $\Phi_v: (-1,3) \longrightarrow V$ as follows

$$\Phi_v(b) = Lv + P(b(v+w)^+ - a(v+w)^-), \qquad b \in (-1,3),$$

where $v \in V$ and a are fixed.

LEMMA 2.3.1. Φ_v is continuous at $b_0 = \frac{a+3}{a-1}$, where $-17 < a < -1 < b_0 < 3$ and a is fixed.

Proof. Let $\delta = \frac{a+b_0}{2}$ and -1 < b < 3. Rewrite (1.4) as

$$(2.3.1) \quad (-L - \delta)w = (I - P)(b(v + w)^{+} - a(v + w)^{-} - \delta(v + w)),$$

or equivalently,

$$(2.3.2) w = (-L - \delta)^{-1} (I - P)h(b, w),$$

where

$$h(b, w) = b(v + w)^{+} - a(v + w)^{-} - \epsilon(v + w).$$

By Lemma 1.2, (2.3.2) has a unique solution $w = \theta_b(v)$ for fixed b with -1 < b < 3. Let $w_0 = \theta_{b_0}(v)$. Then we have

$$w - w_0 = (-L - \delta)^{-1} (I - P)[h(b, w) - h(b_0, w_0)]$$

= $(-L - \delta)^{-1} (I - P)[h(b, w) - h(b, w_0)]$
+ $(-L - \delta)^{-1} (I - P)[h(b, w_0) - h(b_0, w_0)].$

Since

$$||h(b, w) - h(b, w_0)|| \le \max\{|b - \delta|, |\delta - a|\}||w - w_0||$$

and

$$\gamma = \max\{\frac{1}{|-17-\delta|}, \frac{1}{|3-\delta|}\} \max\{|b-\delta|, |\delta-a|\}| < 1,$$

we have

$$||w - w_0|| \le \gamma ||w - w_0|| + \max\{\frac{1}{|-17 - \delta|}, \frac{1}{|3 - \delta|}\} ||v + w_0|| |b - b_0|.$$

Hence

$$||w - w_0|| \le \max\{\frac{1}{|-17 - \delta|}, \frac{1}{|3 - \delta|}\}\frac{||v + v_0||}{(1 - \gamma)}|b - b_0|,$$

which shows that $\theta_b(v)$ is continuous at $b_0 = \frac{a+3}{a-1}$. Therefore $\Phi_v(b)$ is continuous at $b_0 = \frac{a+3}{a-1}$.

First, we investigate the images of the cones C_2 under Φ . Let $p_1 = \phi_{00} + \frac{-a+3}{a+1}\phi_{10}$ and $p_2 = \phi_{00} + \frac{b-3}{b+1}\phi_{10}$. We fix a. Define

$$\theta = \begin{cases} \arg p_1 - \arg p_2, & \text{if } b > \frac{a+3}{a-1}; \\ \arg p_2 - \arg p_1, & \text{if } b < \frac{a+3}{a-1}. \end{cases}$$

Then $0 \le \theta \le \frac{\pi}{2}$ and

$$\tan \theta = \frac{|-ab+a+b+3|}{-2a-2b+4}.$$

When b converges to $\frac{a+3}{a-1}$, $\tan \theta$ converges to 0. Then θ converges to 0 since $0 \le \theta \le \frac{\pi}{2}$. We note that Φ_2 maps C_2 onto R_2 when $b > \frac{a+3}{a-1}$ and that Φ_2 maps C_2 onto R_2' when $b < \frac{a+3}{a-1}$. When b converges to $\frac{a+3}{a-1}$, the angle of two lines consisting ∂R_2 or $\partial R_2'$ converges to 0. Since Φ_2 is continuous at $\frac{a+3}{a-1}$, Φ_2 maps C_2 onto the ray

$$S_2 = \left\{ d_1 \phi_{00} + d_2 \phi_{10} \mid d_1 \ge 0, d_2 = \frac{b-3}{b+1} d_1 \right\}$$

when $b = \frac{a+3}{a-1}$.

Second, we investigate the images of the cones C_4 under Φ . Let $q_1 = \phi_{00} + \frac{a-3}{a+1}\phi_{10}$ and $q_2 = \phi_{00} + \frac{-b+3}{b+1}\phi_{10}$. We fix a. Define

$$\theta' = \begin{cases} \arg q_1 - \arg q_2, & \text{if } b > \frac{a+3}{a-1}; \\ \arg q_2 - \arg q_1, & \text{if } b < \frac{a+3}{a-1}. \end{cases}$$

Then $0 \le \theta' \le \frac{\pi}{2}$ and

$$\tan \theta' = \frac{|-ab+a+b+3|}{-2a-2b+4}.$$

When b converges to $\frac{a+3}{a-1}$, $\tan \theta'$ converges to 0. Then θ' converges to 0, since $0 \le \theta' \le \frac{\pi}{2}$. We note that Φ_4 maps C_4 onto R_4 when $b > \frac{a+3}{a-1}$ and that Φ_4 maps C_4 onto R_4' when $b < \frac{a+3}{a-1}$. When b converges to $\frac{a+3}{a-1}$, the angle of two lines consisting ∂R_4 or $\partial R_4'$ converges to 0. Since Φ_4 is continuous at $\frac{a+3}{a-1}$, Φ_4 maps C_4 onto the ray

$$S_4 = \left\{ d_1 \phi_{00} + d_2 \phi_{10} \mid d_1 \ge 0, d_2 = \frac{-b+3}{b+1} d_1 \right\}$$

when $b = \frac{a+3}{a-1}$.

Hence we have the following theorem.

THEOREM 2.3.2. For i = 2, 4, the restriction Φ_i maps C_i onto S_i . And Φ_1 and Φ_3 are bijective. Therefore, Φ maps V onto R, where $R = R_1 = R_3$.

The above theorem also implies the following result.

THEOREM 2.3.3. Suppose -17 < a < -1 < b < 3 and $b = \frac{a+3}{a-1}$. Let $f = s_1\phi_{00} + s_2\phi_{10} \in V$. Then we have :

- (1) If $f \in IntR$, then (1.3) has exactly two solutions, one of which is positive and the other the other is negative.
- (2) If $f \in \partial R$, then (1.3) has a positive solution, a negative solution, and infinitely many sign changing solutions.
- (3) If $f \in \mathbb{R}^c$, then (1.3) has no solution.

References

- [1] A. Ambrosetti and G. Prodi, A primer of nonlinear analysis, vol. **34**, Cambridge, University Press, Cambridge Studies in Advanced Math., 1993.
- [2] Q. H. Choi, T. S. Jung and P. J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method, Applicable Analysis 50 (1993), 73-92.
- [3] Q. H. Choi and T. S. Jung, An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations 117 (1995), 390-410.
- [4] Q. H. Choi and T. S. Jung, Multiplicity of solutions of nonlinear wave equations with nonlinearities crossing eigenvalues, Hokkaido Math. J. 24 (1995), 53-62.
- [5] Q. H. Choi and T. S. Jung, Multiplicity of solutions and source terms in a semilinear beam equation, Preprint.
- [6] K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall., Inc., 1971.
- [7] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons Inc., 1978.
- [8] A. C. Lazer and P. J. McKenna, A symmetry theorem and applications to nonlinear partial differential equations, J. Differential Equations 72 (1988), 95-106.
- [9] J. E. Marsden and M. J. Horrman, Elementary classical analysis, W. H. Freeman and Company, 1993.
- [10] P. J. McKenna and W. Walter, Nonlinear Oscillations in a Suspension Bridge, Archive for Rational Mechanics and Analysis 98 (1987), 167-177.
- [11] B. Narici, Functional Analysis, Academic Press., Inc., 1996.
- [12] W. Rudin, Functional Analysis, McGraw-Hill Book Co., 1991.
- [13] J. Schröder, Operator Inequalities, Academic Press, New York, 1980.
- [14] L. A. Segel and G. H. Handelman, Mathematics to Applied to Continuum Mechanics, Macmillan Publishing Co., Inc., New York, 1977.

Department of Mathematics Inha university Incheon 402-751, Korea