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A NONLINEAR BEAM EQUATION WITH
NONLINEARITY CROSSING AN EIGENVALUE

Q-HeuNG CHol' AND HYEwon NaMm

ABSTRACT. We investigate the existence of solutions of the non-
linear beam equation under the Dirichlet boundary condition on
the interval (~3, %) and periodic condition on the varible ¢, Lu +
but —au™ = f(x,t), when the jumping nonlinearity crosses the first
positive eigenvalue.

0. Introduction

In this paper, we investigate multiplicity of solutions w(x,t) for a
piecewise linear perturbation —(but — au™) of the beam operator L
under the Dirichlet boundary condition on the interval (—%,Z) and
periodic condition on the variable t,

Lu+but —au™ = fixt) in (— ;’ ‘g) x R,
(0.1) u(i;_r,t) - u”(ig,f) =0,

u(z,t) = u(—z,t) = v(r, ) = u(zr, t + ),

where L denote the beam operator Lu = uy + tippre. The eigenvalues
of L under the Dirichlet boundary condition and periodic condition on
the variable t are given by A, == (2n + 1)4 — 4m?(m,n=0.1,2,---).
Let @ be the square (-7, %) » (=%, %) and ¥ be the Hilbert space
defined by
H={ue L*Q)|uisevenin # end t}.

Then equation (0.1) is representced by
(0.2) Lu+but —au = f in H.
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In [2,10], Chol and McKenna investigated multiplicity of solutions
of a semilinear equation (0.2) when the nonlinearity —but crosses an
eigenvalue Ajp and the forcing tern: f is supposed to be 1 4+ ch(]| h |
). In [5], Choi and Jung investiguted multiplicity of solutions of a
semilinear equation (0.2) when the nonlinearity —(but — an™) crosses
two eigenvalues Agg, Ao and the source term f is geaerated by ¢pp and
®10. and when the nonlinearity — (b ™ - au™) crosses an eigenvalue Ay
and the source term f is generated by ¢go and ¢p.

Our concern is to investigate multiplicity of solu-ions of (0.2) when
=17 < a << —1 < b < 3 and the source term f is generated by two
eigenfunctions ¢gg. 0. In particular, we investigate multiplicity of
solutions of {0.2).

In Section 1, we suppose that the nonlinearity —(but — au ™) crosses
the eigenvalue Mg and the source term f is generated by ¢ag and ¢1g.
And we use the variational reduction method to roduce the problem
from an infinite dimensional one to a finite dimensional one. Let Q =
(=5. %) x (=5.%) and V be the subspace of L*(Q) spanned by ¢go
and ¢jo. Let P be the orthogonal projection L2(Q: onto V. Then the
beam equation (0.1) is reduced to a equation in V.

In Section 2, we define a map & hy

S(v) = Lo+ Pb(v +0(v))" —alv+0(v)) "), veV

and we investigate the properties of the map ® and we reveal a relation
between multiplicity of solutions and source terms in equation (0.2)
when f belongs to the two-dimensional space V. We also determine
the region of source terms in which (0.2) has no solution.

1. A variational reduction method

We consider the beam equation under the Dirichlet boundary con-

dition on the interval (~%, %) and periodic condition on the varible
t
. . y » T
Ut + Upgrr +but —au - t) in (,5 5) x R,

(1.1) u(ig.f) - u,”(ii;fr) =1,

u(r. t) = ul—u,t) =u(x, - t) = ulz,t + 7).
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Here we suppose that —\y; = —17<a < —Agg = -1 < b < —\jp = 3.
Let L be the differential operator Lu = Ut + Uzree. Then the
eigenvalue problem

Lu = Au in ( "3 g) x R,
(1.2) ‘u,(:tg, t) = 'u,m_,,(:i:g, 1) =0,
u(r t) = u(—x,t) = u(z,—t) = u(r,t + )

has infinitely many eigenvalues A, and corresponding eigenfunctions
¢mn('nlr, n 2 ()) give“ by

Amn = (2n + )Y — 4m?*,
Gmn = cos2mtcos(2n 4 1)z (m,n:=0,1,2,---).

Let @ be the square (-F, ) x (—%,%) and H be the Hilbert space
defined by
H={uec L*Q)! uis even in = and t}.

Then the set {¢yy, |, n =0,1,2. - - } forms an orthogonal set in H.
Equation (1.1) is equivalent to

(1.3) Lu+but —au™ = f in H,

where we assume that f = sy¢0 + s2¢10 (51, 52 = R).
THEOREM 1.1. If s; < 0, then (1.3) has no solution.
Proof. We rewrite (1.3) as

(L - )\0())21, + (b + )\()0)11} - ((1 -+ )\Oo)u_ = 81000 + 2010 n H.

Multiply across by ¢gg and integrate over Q. Since L is self-adjoint
and (L — Aop)doo = 0, ((L — Ago)u, dpg) = 0. Thus we have

{{(b+Xoo)ut — (a4 Ago 1 Yoo = (81090 + s210, $o0)

Jo
2
= 8 / doo

O

81.

o]
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We know that (b+Ago)ut — (a+ Moo )u™ > 0 for all real valued function
u. Also ¢gg > 0in Q. Therefore fQ{(b+)\00)u+ — (24 Aoo)u ™ pao > 0.
Hence there is no solution of (1.3) if sy < 0. 0

Let V' be the subspace of H spanned by {¢go, 10} and W be the
orthogonal complement of V in H. Let P be the orthogonal projection
of H onto V. Then every «w € H can be written as v = v + w, where
v = Puand w = (I — P)u. Hence equation (1.3) is equivalent to a
system

(1.4) Lw+ (I = P)(b(v +w)t —a(v+1)7) =0,
(1.5) Lv+ P(b{v+w)t — alv +w)”) = s1¢p0 + s2010-

LEMMA 1.2, Forafixedv € V, (1.4) has a uniqu» solution w = 6(v).
Furthermore, 8(v) is Lipschitz continuous in v.

Proof. Let & = %E2. Rewrite (1.1) as
(16) (—L—-0w=UI—-P)blv-w)t—alv+u) —8v+uw)),

or equivalently,
w=(~-L 8"~ P)g.(w),

where
go(w) = blv+w)* —efv+w)™ = 6(v+w).
Since
|9u(wi) = go(w2)| < max{lb — 6], [& — al}|w) — w.
we have

llgo (w1 ) — go(wa)|] < max{|b — 8|,|6 — a|}| w; — wy

The operator (=L — &)1 — I’} is a self-adjcint compact linear
map from W into itself. Its eigenvaiues in W are (- A, — &)1 where
Amn # 1. Therefore its L? norm is max{ ‘:]—;_—5 FTI:W}' Since max{|b—

8,16 — al} < min{| — 17 = 8|, |3 — ¢|}. for fixed v € V. the right hand
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side of (1.6) defines a Lipschitz mapping of W into itself with Lipschitz
constant v < 1.

By the contraction mapping principle, for each v € V, there is a
unique w € W which satisfies (1 4).

By the standard argument principle, f(v) is Lipschitz continuous in
v. U

By Lemma 1.2, the study of the multiplicity of solutions of (1.3) 1s
reduced to that of an equivalent problem

(1.7) Lo+ P(b(v +6(v)t - a(v + B(v))7) = s1¢p0 + $2¢010
defined on V.
PROPOSITION. Ifv >0 orv <. 0, then f(v) = 0.
Proof. Let v > 0. Then (v) == 0 and equation (1.4) is reduced to
LO+(I—-Pibwt —av™) =0
because vt = v.v™ = 0 and (I - P)v = 0. Similarly if v < 0, then

f(v) = 0. O

Since V' = span{¢oo, $10} and ¢gg is a positive eigenfunction, there
exists a cone C defined by
Cr ={v = c1d0 + m010]c1 > 0,|c2] < ¢}
so that v > 0 for all v € (U, and a cone Cy defined by

Cy = {v = c1¢00 + 2010 | 1 <0,

ez < lerl}

so that v < 0 for all v € C3. Thus #(v) =0 for v € ) U 3.
Now we set

Cy ={v = crdoo + c2d10 ] c2 > 0, |y < ¢y}
Cy = {v = rc1do0 + c2¢10]c2 <0, |e; < |ey]}.

Then the union of €, Cy, C3, and Cy is the space V.
We define a map & : V. — V by

P(v) = Lv+ Plb{v+6(v): " —alv+6(v)) ), veV

Then & is continuous on V and we have the following lemma.
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LEMMA 1.3. ®(cv) = cP(v) forc >0 andv e V.
Proof. Let ¢ > 0. If v satisfies

Lé(v) +

then

L{ch(v)) +

(I — P)(b(v + 60\t —a(v +6(v))") =0,

(I — P)(b(cv+ cB{v))T —alcv +cB(v))") =0

and hence 6(cv) = cf(v). Therefore

b(cv) = L )
= L(cv) + P(b(cv + 20(v))T — alcv -+ cb(v)) ")

2) + P(b(cv + A(cv)) T — alcv -+ (cv)

)

= cd(v)

We investigate the image of the cones C, C3 under ®.
First, we consider the image of (*y. If v = ¢y oo + c2p10 > 0,

®(v)

L+ P((o +6(0))* = afu +6(0)))
c1do0 — 3cadro + blerdoo + c2¢0)
(b + 1)(:1¢00 + (b — 3)C2¢10-

Thus images of the rays ¢;¢gg £ c1010(c1 > 0) are

(b+ L)cigoo + (b — d)c1010 (c1 2:0).

Therefore ® maps Cy onto the cone

Ry = {dlﬁf)oo + d2¢10

b
d. > 0,|ds| < —:—3d }

Second, we consider the image of C'5. If v = —ci¢po + 2010 <
0(c1 > 0,]ep| <ey),

d(v)

=Lv+ Pbv+6(v)" ~alv+6{v)")

—C1¢po — 3cado + a(—c1o00 + c2d10)
(—a—1)eydoo + (a — 3)cadro-
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Thus images of the rays —cj oo =+ c1¢1p(er > 01 are
(—a = Derdoo £ (1 — 3)e ¢y (c1 >0).

Therefore ® maps C'5 onto the cone

Ry = {d1@00 + dadq

a—3
11 >0, |do] < dy 5.
b2 0l < 23 l}

We have three cases R, g Rs, Ry % R;, and R; = Rs. The relation
Ry & Rj holds if and only if the nonlinearity —(but — au™) satisfies
b > g‘—f—f The relation Ry g Ry holds if and only if the nonlinearity
—(bu™ — au™) satisfies b < %%]‘ The relation R, = R5 holds if and

a+3

only if the nonlinearity —(but - au~) satisfies ¢ = P

2. Multiplicity results

We consider the restrictions Pl (1 <@ < 4) of @ to the cones C;.
Let @7‘ = (I)I(77, 7:.(3., ‘I’,; : C,; -— 17,

First, we consider ®,. It maps C'y onto R;. Let l; be the segent
defined by

| ~b-3
h = {%0 + da¢ o ‘ |da| < ﬂ_f}'

Then the inverse image @fl(ll) is the segment

’CQ! S 1 }
By Lemma 1.3, ®, : O} — R; is bijective.
Second, we consider ®5. It maps C'3 onto Ry. Let I3 be the segment
defined by

1
L, = {ﬁ—l(éoo + ca¢10)

! a—3
lq = logno | lda] < — 2%
3 {¢00+(2910j)2’_u+1}

Then the inverse image ®5'(I3) is the segment

1 L -
Ly = {m(@oo + c2010) } leal < 1}-
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By Lemma 1.3, 3 : C3 — Rj3 is bijective.
2.1 The nonlinearity —(but — au™) satisfies b > 42

The relation R, g R3 holds if and only if the noalinearity —(bu* —

au” ) satisfies b > fo We investigate the images of the cones Cq, Cy
under &, where

Cy ={v=c1¢00 + 2010 c2 > 0, ]e1| < e},
Cy = {v = c1ép0 + 2010 | c2 <0, |e1] < |eal}-

By Theorem 1.1 and Lemma 1.2, the image of Cy under @ is a cone
containing

dy >0, d1§d><—-—l

—a+3 3
a—+1 ) b+ 1

Ry = {(11%0 + d2¢1o
and the image of C4y under ® is a cone containing

dy > 0,

<d. °d
SR T !

“a+1

-—b+3d J a—3 }

Ry = {dl%o + da o

We consider the restrictions ®5 and ®4. Define th» segments o, 4 as
follows;

ol —a+3 b-3
ly = {¢00+d2¢10 R <ds < E+—1}

. =b+3 a—3
ly = {¢00+d2¢10 ‘ TFT <dy < g;—l"}

We investigate the inverse images ®5'(l2) and ®;'(l4). We note
that ®,(C;) contains R;, for i = 2,4, respectively.

LemMA 2.1.1. For i = 2,4, let v be any simple path in R; with
end points on JR,, where each rav in R; (starting from the origin)
intersects only one point of y. Then the inverse image & 1(7) of v is
also a simple path in C; with end points on 0C;, where any ray in C;
(starting from the origin) intersects only one point of this path.
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Proof. Since @ is continuous and 7 is closed in V, ;71 () is closed.
Suppose that there is a ray(starting from the origin) in C;, which inter-
sects two points of ®; ! (v), say p and ap(a > 1). Then ®(ap) = ad(p),
which implies ®(p) € v and ®(ap) € v. This contradicts the assump-
tion that each ray(starting from the origin) in C; intersects only one
point of .

We regard a point p € V' as a radius vector in the plan V. Define
the argument argp to be the angle from the positive ¢q,-axis to p.

We claim that & '(v) meets all the rays(starting from the origin)
in C;. If not, ®;'(v) is disconnected in C;. Since () is closed
and meets at most one point of any ray in C;. there are two points
p1 and pz in C; such that ®;'(y) does not contain a point p € C,
with argp; < argp < argp,. Let [ be the segment with end points
p1 and py then ®;(l) is a path in R;, where ®;(p1) and ®;(p2) belong
to . Choose a point ¢ € ®,(I) such that argq is between arg ®;(p;)
and arg ®;(p2). Then there exist a point ¢’ of 4 such that q = Bq for
some 3 > 0. Hence &, *(¢) and ®;'(¢') are on the same ray(starting
from the origin) in C; and argp, < arg ®71(q') < argp,, which is a
contradiction. This completes the proof. ]

Lemma 2.1.1 implies that ®;(i = 2, 4) is surjective. Hence we have
the following theorem.

THEOREM 2.1.2. For1 < i < 4, the restriction ®, maps C; onto R, .
Therefore, ® maps V onto Rs. In particular, ®; and ®3 are bijective.

The above theorem also implies the following result.

THEOREM 2.1.3. Suppose —17 < a < —1 < b < 3 and b > sz
Let f = s1¢00 + s2¢10 € V. Then we have :

(1) If f € IntR, then (1.3) has exactly two solutions, one of which
is positive and the other the other is negative.

(2) If f € IntRy|JIntRy, then (1.3) has a negative solution and
at least one sign changing solution.

(3) If f € OR3, then (1.3) has a negative solution.

(4) If f € RS, then (1.3) has no solution.

a+3

2.2 The nonlinearity —(bu? — au~) satisfies b < ot
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The relation R3 & Ry holds if and only if the nonlinearity —(but —
au”) satisfies b < fo We investigate the images of the cones Cy, C4

under ®. By Theorem 1.1 and Lemma 1.2, the image of Cy under @ is
a cone containing

| b—3 —a+3
Ry = {dydog + dachyg | dy > 1), - I, < dy < 2d
2 {(1,00 (26,10‘(1_ b+1(l”“(z‘ a+1(l
and the image of (4 under ® is a cone containing
a—3 -b+ 3
Ry = {diboo + dadbro | dy >0, 1 <dy < ——2d
1 {1,00 2010 | d1 =2 a+1{]_2_b+1 1}

We consider the restrictions ®, and ®,. Define the segments I,", [ as
follows;

., b3 —a+3
I = {@00 + dagro b1 <dp < 7;1—}
’ , la—3 ) —b+3
L= {@00 + dadg ‘ PR <dy < ?_;l_}

We investigate the inverse images &, ' (1) and ®;'(/4'). We note that
®,(C;)(i = 2.4) contains R,'(i = 2,1).

LEMMA 2.2.1. Fori = 2,4, let v' be any simple path in R, with
end points on JR;’, where each rayv in R,’ (starting from the origin)
intersects onlv one point of v'. Then the inverse image @;"1(7»" ) of o
is also a simple path in C; with end points on 0C.. where any rayv in
C; (starting from the origin) intersccts only one point of this path.

Proof. The proof is similar to the proof given ir Lemma 2.1.1. [
Lemma 2.2.1 implies that ®;(i =- 2,4) is surject ve. Hence we have
the following theorem.

THEOREM 2.2.2. For i = 2.4, the restriction ®, maps C; onto R’
And ®, and ®3 are bijective. Therefore, ® maps V" onto R;.

Above the theorem also implies rhe following results.
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THEOREM 2.2.3. Suppose ~17 < a < —1 <. b < 3 and b < at3
Let f = s1¢00 + s2¢10 € V. Then we have :
(1) If f € IntR, then (1.3) has exactly two solutions, one of which
is positive and the other the other is negative.
(2) If f € IntRy'|JIntRy', then (1.3) has & positive solution and
at least one sign changing solution.
(3) If f € ORy, then (1.3) has a positive solution.
(4) If f € RS, then (1.3) has no solution.
2.3 The nonlinearity —(bu" — au~) satisfies b = E—?
The relation R; = R3 holds if and only if the nonlinearity —(but —
au”) satisfies b = 442
We considered the map ® : V — V defined by

®(v) = Lo+ Pb(v+0(w)*t ~ a(v + 6(v)) "), vev,
where —17<a< -1<b<3and b= gf—f
We investigate the images of Cy and 4 under ®. For fixed v, we
define a map @, : (—1,3) — V as follows

P, (b) = Lv+ P(b(v + w)* — av 4+ w)™), be(—-1,3),

where v € V and a are fixed.

LeMMA 2.3.1. @, is continuons at by = Z—f-f where —17 < a <
—1 < by < 3 and a is fixed.

Proof. Let 6 = %”“ and —1 < b < 3. Rewrite (1.4) as
(2.3.1) (=L =0)w=(I—P)blv+w)" —alv-w)™ =6+ w)),
or equivalently,
(2.3.2) w=(-L~-6) "1~ Ph(bu).

where
h(b,w) =b(v +w)* -a(v +w)” — v+ w).
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By Lemma 1.2, (2.3.2) has a unique solution w = 6,(v) for fixed b with
~1<b<3. Let wg = 6y,(v). Then we have
w—wy = (=L —8)"YI- P)[h(b,w) — hibg, wy)]
=(~L—86)"'(I - P)[h(b,w) — hib,wp)]
+ (=L = 8)"HI - P)[h(b,wp) — h(bo.wo)].

Since
1A(b,w) = b, wo)l| < ma{[b — 6,16 — a] Hlw — wp
and
1 1
v = max{’ iy Ty 6’}max{|b— o, |0 —al}f < 1,
we have
1 1
llw —woll < ~¥ljlw — woll + max{l ST B 6|}||U + woll[b — bol.
Hence
1 1 v+ ool

llw — wo|| < max{ — b — bg|.

T B (- a)

which shows that 6,(v) is continuous at by = 223 Therefore @, (b) is

a

continuous at by = 243, 0
First, we investigate the images of the cones Cy under ®. Let p, =

®oo + “afl:j(f)m and pa = ¢oo + 2;—*}510‘ We fix a. Define

5

2
|
—_

©
+

5 { arg p; — arg po, if b > ¢

argp, —argpy, ifb<

)
|
—

Then 0 <6 < 5 and

| —ab+a+b+ 3

tanf =
at Ton —2b+ 4




A nonlinear beam equation 621

When b converges to f—l‘—f—f, tan @ converges to 0. Then # converges to 0

since 0 < § < 7. We note that ®; maps C; onto Ry when b > &3 and

that ® maps C, onto Ry’ when b < %f—i’ When b converges to 243

the angle of two lines consisting @Ry or Ry’ converges to 0. Since @,
is continuous at %ﬂ_i%, ®, maps 'y onto the ray

Sy = {d1¢00 + dagio

b ¢
dl 20,(12 = b—}—fdl}

when b = ﬂ%

Second, we investigate the images of the cones Cy under ®.

Let ¢ = ¢po + g—;—?qﬁlo and g = oo + :E%j"l—Bcﬁl() . We fix a. Define

=]

g | en -, if b > 2t3,
argqy — argqy, ifb< &3,

Then 0 < ¢ < § and

|~ ab+a+ b+ 3|

tanf’ =
an T2a—%b+4

243 "tan 6’ converges to 0. Then #' converges to

0, since 0 < #' < 5. We note that ®4 maps Cy onto Ry when b > ﬁi_r—‘f
and that ¢4 maps C4 onto R4’ when b < Z—‘E% When b converges to

ﬂ—f%-, the angle of two lines consisting R4 or OR4" converges to 0. Since

When b converges to

gf? ®4 maps Cy onto the ray

d,4 is continuous at

Sy = {dlfﬁoo + dadic P

b
dy > 0,dy = »—iéd]}

— a+3
when b = &+,

Hence we have the following theorem.

THEOREM 2.3.2. For i = 2,4, the restriction ®; maps C; onto S;.
And ®, and ®3 are bijective. Therefore, ® maps V onto R, where
R - ,Rl = Rg,

The above theorem also implis the following result.
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THEOREM 2.3.3. Suppose —17 < a < -1 < b < 3 and b = atd
Let f = s1¢00 + s2¢10 € V. Then we have :

(1) If f € IntR, then (1.3) has exactly two solutions, one of which
is positive and the other the other is negative.

(2) If f € OR, then (1.3) has a positive solution, a negative solution,
and infinitely many sign changing solutions.

(3) If f € R, then (1.3) has no solution.
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