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NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME
QUASILINEAR INITIAL BOUNDARY VALUE
PROBLEMS

SANG RO PARK

ABSTRACT. In this paper, the nonexistence of the global solutions
of semilinear wave equations with damping terms in the boundary
conditions is investigated.

1. Introduction

We study the initial value problems

(1.1) APu = f(u), (t,a)€ (0.T) x S,

(1.2) u=0,Au+ (Y(T)ZL: =0, (t.7)€(0,T)xT,
(1.3) u=0,Au+ a(:r,)%‘ =0, (t,2)€10,T)x T,
(1.4) u(0,7) = w(r), 2€Q

where () is a bounded domain in R" with sufliciently smooth boundary
['. T > 0is an arbitrary real number, v is the outward normal and o(x) is
a smooth nonnegative function given on the boundary of the domain §2.
The nonexistence of the global solutions of quasilinear parabolic equa-
tions with no damping terms in the boundary conditions is investigated
by H. A. Levine [4], O. A. Ladyzhenskaya and V. K. Kalantarov [3], J.
L. Lions [8], R. T. Glassey and recently by H. A. Levine and J. Serrin
[7]. In this paper we look at a new type of problem in which we have a
semilinear wave equation with a damping term in *he boundary condition
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[see 9,10] rather than in the equation as was considered in [2} in concrete
cases and in [5] in an abstract setting.

Natures of the solutions to these equations have been investigated by
several means. However the methods used for the investigation of the
initial boundary value problems with no damping terms in the bound-
ary conditions are quite insufficient to deal with the problems with the
damping terms in the boundary conditions. The tool used in this work
1s a Lemma due to H.A. Levine [7]. From now on we will call it the Con-
cavity Lemma. The most crucial point in the application of this tool is
to find a functional that represents the dissipation on the boundary and
satisfies the conditions of the Concavity Lemma.

The plan of the paper is as follows. The end of this section we will
write down the Concavity Lemma and will prove it. In the next section
we will prove the nonexistence of global solutions for /1.1),(1.2) and (1.4)
for negative initial energy. In final section we will prove the nonexistence
of global solutions for (1.1),(1.3) and (1.4) for negative initial energy if
the structure conditions are satisfied.

LEMMA 1. If a function
FeC* F>0
satisfies the inequality
(1.5) F'(OF(t) = (1+3[F(HF > 0

for some real number v > 0, as long as it is defined then if F(0) >

i

0, F'(0) > 0 then for the real number

_ (0)
Ty E(0)

(1.6) t

there exists a positive real number t_ < t, such that as t — t,
(1.7) F(t) — 400

The proof of this lemma is quite easy. One observe that from (1.5)
we have (F77)” < 0 as long as F > (. Since the differential inequality
tells us that F is convex and F'(0) > 0, " must be increasing and hence
cannot change sign. The rest of the lemma follows from the observations
that F77 must be below its tangent line at (0, F~7(0)) and that the slope
of this line is negative. Therefore the line and hence £~ must cross the
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t axis. The line does so in time f, while the function F~ does so in a
possibly earlier time #,. That is

F(O)+
0] — 0 <t <ty

FOT 2 Fo— g

2. The first problem

Let us assume that the initial-boundary value problem (1.1),(1.2) and
(1.4) has a local classical solution.
Let f(u) with the primitive

2.1) - [ s
satisfy the inequality
(2.2) flu) -u>2(1 + ) F(u)

for some real number v > 0, and for all v € R!. Let

(2.3) Blt) = ;/Q(Au dr—/]—"udr

for function u(t, r). Then we can prove the following theorem about the
nonexistence of global solutions of the initial-boundary value problem

(1.1), (1.2) and (1.4).

THEOREM 1. Let uy be a smooth function such that E(0) < 0. Then
there exists no global solution of the initial-boundary value problem

(1.1), (1.2) and (1.4).

Proof. We suppose that there exists a global sclution u(t, z) of (1.1),
(1.2) and (1.4). To prove the theorem, it suffices to show that the func-
tional

// 2d7dr}+(TQ—-f)/ ()(%)%im—kB(f—HO)Q

r v
satisfies the hypothesis of the Corncavity Lemma. Here

-2(v+1) [r alr) (B2 da

0< i<
' - 2'\; + 1 4’76

E(0), ¢

and

Bty
2’)/31‘0 - Jraf a“”)Qd.?
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are real constants. If we prove that the functional F(t) satisfies the
hypothesis of the Concavity Lemma, then there exists a real number
T < oc such that

)
(2.5) hm/ / (-E Ydrdn = oo

This means that the solution blows up in finite time.
To show the functional F'(¢) satisfies the hypothesis of the Concavity
Lemma let us make the observation

0 = — [ud®u+ [,uf(u)dr
= [oVu- - V(Au)dr — [ u- 2y - [ uf(w)
= — [ (Au)’ dT+j Audidr +fQ uf(u)dr
= = [,(Au)dr — | 0(7)6“ Qudr + [, uf(uide

v ov
. B o AAu .
by using [ u- %tdr = 0 and (1.2).

So we have

) ‘ Oudu, , 9, N
(2.7) / v(x )()1/ 5 —dr (/5«,(AU) dr + ‘/{2 uf(u)dr.

And we also observe

(2.6)

]Q wN\*udr
= — o VuV(Au)dr + [ u 2%t dx
= [oAulAwdr - [ A (?)“'(1.1,
= [oAudwdr + [.a(r)( Guy2y

(91/
R p ©, 0Au
by using (1.2) and [ w, %2 dr = 0.
Hence we get

] 0 = “fo wA%ude +]( u,f
(28) ()u
= — Jo DulAudr - [ ofx) (G2 ) dr 4 [, u f(u)da
Now we can get
()
(2.9) = 54 [ (Au)’dr + Jpof ‘)“',Qd 4 0 jp (u)u,dxdn

By e e AR

where E(t) was defined in (2.3). Then integrating the above relation
with respect to 1, over the interval 1), 1] we get

R
E(t) = E(0) - / / o 1,)(()1 Vdady.
Jo Jr v

14
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=~1

Now we want to calculate F” .nd F”.

F(t) = KO( )(du) dx - /I:a( )(%1;) dr + 28(t + 1)

v
and
" Su Oy
F't)y=2 ——d: 3.
(t) = _/p“(l)()l/al v+ 273
Thus we have from (2.2) and 12.7)
F//( )
> =2/, Au2d7+’jnuf )dz + 28.
> u[ fQ(Au) dr +2(y + 1) /Q (widx + ]
> (Au)dr + (v + 1 Au 2dy
(2.10) d fQ (v )fQ )

+2 (v+1) ]0 Jre (%)QdeT] - 2(’) +1)E(0) + 3

414

2y Jo(Au 2d1+4 (v+1) fofr (();: Ydrdn
25— (7+1)E 0)
> 4y +1)] fnt Jral) (5 )2d7d7]+ Bl + Dq

()z

where Dy = 23 — 4(y + 1)8 — 4(- +1)E(0). Since

du L Oudu
Vdrdi) = 2 g
/n dn /(l 2 ()1/ ran = /U / 01/ ov ddr,
/ (x )(3u)2dr / (1) dM Vidr = 2/ / dudu,,( {rdn.
. v

By using Holder’s inequality and Young’s ineq 1ality,

(2.18)
P |
= [r (e} du j[ d“(] d.’lf + 2/13(f -4~ f(;)}z

du

- bl JI o g:: iy ol o
< {[0 [1 35,' erdn} {/ /1 ”dn}) + Bt + to)]*.

Now we want to find a lower bound for the function
(2.19) E(t) =F"F — (1 +~)(F)*
Let.

SN
(2.20) A:/ / ()((g" Vdrdy, B = / / W==)2drdn.
Jo

I
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So we get
(2.21)
2(1)

F'F = (1+y)(F? |
41+ N[(A+B) (B + Bt +t0)*) — {A2B: + B(t + t9)}2].

AVAN

Now we note from the choice of /1 that

if the initial energy is negative, that is £(0) < 0. So, by the Schwarz
inequality,

(A+ B)(B + B(t+16)2) — {AIBY + B(t + t5)}2 > 0.
Thus
=(t) > 0

as long as it is defined. By the Concavity lemma, the theorem is proved.
O

3. The second problem

We assume that the initial-boundary value problem (1.1),(1.3) and
(1.4) has a local classical solution. Also we assume that the structure
condition (2.2) for function f is satisfied.

Let

31 E(t) =2 /(;(Au)zdm 41 /Fa(m)(

0 ,
2 5 ut)Qd;'I - [ Flu)dr

v Q
for function u(r,t). Then we have Theorem 2;

THEOREM 2. Let uy be a smootk function such that £(0) < . Then
there exists no global solution of (1.1), (1.2) and (1.4).

Proof. We suppose that there exists a global solution w(f, ) of (1.1),
(1.3) and (1.4). To prove the theorem, it suffices to show that the func-
tion

ou

(3.2) F(t) = /Q(JT)(Q Yidr + Bt + 1y
JT

1
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satisfles the hypothesis of the Concavity Lemma. Here §. to are real
constants which will be specified later. If F(t) satisfies the hvpothesis
of Concavity Lemma, then there exists a real munber 7 < oo such that

(3.3) lim / ol )(

tnT

To show the functional F() satisfies the hyposhesis of the Conc avity
Lemma let us make the observation

r ' du Ou '
9., Az o
(3.4) 0= ./Q(Au,) dr / {1 )dl/ E» dx ./Q wf(w)da

('}(,)AV” dr =0 and (1.3).

by using [, -
So we have

COu Ouy ' 9 / ,
3.5 e = - FAN dr L widr.
(3.5) ‘/‘(1( )01/ 5, 4 /Q( u) dx +jQ wf(u)dr
And we also observe
' , Ouy Ju
(3.6) ./(2 w A udr = /) Aududr + / (a1 )-0; ()1;{ dx
by using (1.3) and jr Uy ‘)}3"(17 =
Hence we get
(37 0 = — [ wAN*udr - [, uy f(u)de
) c AulNuydr - rolr Gu duy [ u; f(w)daz.
2 v Ou JO

Now we can get
(3.8)
0 = Zdr .Q(A“)Z?dr+ s Jrovlr )(ga__ Jodr — fo Jo f (g daven
: ”}‘ng(f()z (Au)dr + 4 / (o) (G2 2dx Js (u)dzr)

dt

where E(1) was defined in (3.1). 'Thus we have
E(t) = E(0).
Now we want to calculate F' and F”.
(3.9) F'(t) = 2/ () -
Jr
and

‘ ' Ou ch ' Ouy o
(3.10) F'(t)y =2 / alr)—=—dr + 2 / (1’(.77)(7&)‘2(1:1? +24.
Jr 71 Jr ()l/

Ju O
“e uf(l[’ + 2[}(7‘ + f[))
v O
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Thus we have from (2.2) and (3.5)

(3.11)
F//()
> =2 [o(Au)dr + 2 fuf(u)de + 2 [i af %f)2d7+23
> 2= [o(Au) 2d7 +2(v+1) o, Flu) dr+fra( am) dr + 3]
> 2[»]Q (Au) dr+ (v + 1) fo(Au)’de

+(y +2) fI o (37")2(17 -2(v+ DEO) + 7
27 fo (Au)?dr + 2(7 +2) [rov(a) (2L )2 dar
+20 — 4(7 + 1)E(0)
> 4{yo + D[ fpals )(du )2dr + 8] + Dy
where v = 2vy, Dg = —2(2v + 1)5 — 4(v + 1)E(0). Now we choose 3
such that

Dy >0
and choose t; such that
F'(0) > 0.
By using Holder's inequality and Young’s inequality

= %2 Jr <1 SL’ Siedr +25(t + 1))

< A(fp a(@) (L) 2dr)z( fp () (Ze)2dr)i + B(F + )]
Now we want to find a lower bound for the function

(3.13) E(t) = F"F — (1 + %) (F)~

Let

(3.14) A:/Ot/ ()(%“" Vdrdy, B = // e dady).

So we get

(3.12)

(3.15)
=(t) |
= F'F —(L+9)(F)?
> A1+ v)|[(A+ B)(B + 8(t +t)?) W{A 1Bt + B(t + 1)}

Now we note from the choice of & that
(3.16) Dy 0

if the initial energy is negative, tha: is £(0) < 0. 30. by the Schwarz
inequality,

(A+ B)(B+8(t +10)%) — {A2B? + B(t + *)}2 > 0.
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Thus

n

() =0

as long as it is defined. By the Concavity lemina. the theorem is proved.

O
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