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ON UDL DECOMPOSITIONS IN SEMIGROUPS

YoNGDO LiM

ABsTRACT. For a non-degenerate symmetric bilinear form o on a
finite dimensional vector space F, the Jordan algebra of o-symmetric
operators has a symmetric cone §, of positive definite operators
with respect to 0. The cone C, of elements (z.y) € F x E with
a(z,y) > 0 gives the compression semigroup. In this work, we show
that in the automorphism group of the tube domain over €2, this
semigroup has a UDL and Ol'shanskii decompositions and is exactly
the compression semigroup of 1.

1. Introduction

Let o be a non-degenerate symmetric bilinear form on a finite dimen-
sional vector space E. Let g := L{E) be the Banach algebra of the linear
maps on E. Then

g=g ®g,

where g~ is the Lie subalgebra of all self-adjoint operators with respect to
o and g7 is the space of all skew-symmetric operators on E. The space g
is also a Jordan algebra with the anti-commutator product zoy = %(Ty-}-
yx). Then g~ is a Jordan subalgebra of g. If ¢ is positive definite, then g~
is a simple Euclidean Jordan algebra which is isomorphic to Sym(n,R),
the symmetric n X n matrices with the corresponding symimetric cone
{1 of positive definite symmetric operators. However, if & is not positive
definite, then the Jordan algebra g~ is non-Euclidean but still simple. In
this case we let (2, be the set of all positive definite operators with respect
to the bilinear form o. Then there is an isomorphism (not Jordan algebra
isomorphism) from g~ to Sym(n, R) which sends €2, to €. Therefore Q,
Is a symmetric cone.
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For a closed cone €' in a Euclidean vector space E. the compression
semigroup

Compr(C') = {g € GL(E) | yC C '}

i5 a closed subsemigroup in GL(E). A non-degenerat.> symmetric bilinear
form o induces the cone C, = {&r € £ | o(x,2) > 0} and there are two
different semigroups which are cannonically related to the bilinear form
o : the expansion and contraction semigroups

S= = {9e€GL j olgr.gr) > o(r,z) Vo € E},
5 = {r]EG olgr.gr) <olr.r) Ve e F}.

These semigroups are known as Ol'shanskii semigroups [3].[6]. However.
the bilinear form o gives a skew-synuanetric bilinear ‘orm {-]'1on Ex E:

(wyfus) = al{ry y) — alre, y,),

for u; = (;, y,) which gives a cone C, = {(z,y) € ExE (x]y) = 0}. The
compression semigroup S, of Cy in the symplectic sroup Sp?(E) with
respect to o is completely characterized by using Wojtkowski's method
and has UDL (upper triangular, diagonal, lower trie ngular) decomposi-
tion which plays a role to estimate Lyapunov expon-nts[10],11].

From the one-to-one correspondence between symmetric cones and
Siegel domains of tube type. we cons:der the tube doinain Ta, =V, +Q,,
where 1/, is the Jordan algebra of self-adjoint operators with respect to
o. The compression semigroup g in the automorphism group of the
tube domain which can be extended to €, and caries Q, into itself is
a closed semigroup and is exactly e qual to the compression sernigroup
Sy Furthermore. it is an OlUshanskis semigroup with the decomposition
Se = H, - expW,. where H, is the group of units in S, and 1, is a
closed convex cone in the Lie algebra of the svmplectic group Sp”(F)
which is invariant under adjoint action of H,.

For positive definite svimetric bilinear form o, Ko fany [5] has proved
the same results in his dissertation. But we give more direct proofs and
consider any non-degenerate symmelric bilinear forn.
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2. Ol’shanskii decompositions

Let GG be a Lie group with Lic algebra £(G) and S be a closed sub-
semigroup of & with identity. The tangent wedge of S is defined by

L(S)={X €L G)] expR™X =~ S}.

Then it is a closed convex cone containing zero and is a Lie wedge, i.e.,

"N L(S)=L(S) ¥X € L(S)N ~L(S).
The largest group H(S) := SN S ! contained in .5 is called the group of
units of S. The systematic groundwork for a Lie theory of semigroups was
worked out by K. H. Hofmann, J. Hilgert and J. D. Lawson [2] (cf.[3]).
An important class of semigroups is Ol'shanskii semigroups that play
the role of noncommutative analogue of tube domains in the harmonic
analysis of hermitian semisimple Lie groups.

Let (G, 7) be an involutive Lie group, and let its derivative 7 : £L(G) —
L({G) have +1-eigenspace b and —1-eigenspace q. If H is an open sub-
group of G- := {g € G | 7(g) = v}, if W is an Ad(H)-invariant cone in
g, and if S := H(exp W) is a subsemigroup of G for which the mapping
(h,X) — h(exp X): Hx W — S is a homeomorphism. then S is called
an Ol'shanskii semigroup, and the factorization s = h(exp X) for s € S
is called the Ol’shanskii polar factorization.

The following theorm, which can be applied to the polar decomposi-
tion of matrices, will be a useful -ool for this work.

THEOREM 2.1. Let (G, 7) be an involutive Lie group, and let H C G,
be a closed subgroup containing the identity component of G.. Let W
be a wedge in q which is invariant under the adjoint action of H and
for which adX has real spectrun: for each X € W. Then the following
conditions are equivalent.

(1) (h, X) = h(expX) : Hx W — H(expW) is a diffeomorphism
onto a closed subset of (.

(2) The mapping Exp : ¢ — (/H defined by Exp(X) = H(exp X)
restricted to W is a diffeomorphism onto a closed subset of G/H.

(3) The mapping exp restricted to W is a diffeomorphism onto a
closed subset of G.

(4) If Z € 30 (W — W) satisfies expZ = e, then Z = 0. For each
non-zero X € W N3, the closure nf exp(RX) is not compact.
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If these conditions hold, then S := H{expW) is a closed semigroup
with the tangent wedge L(S) = h @& V.

Proof. ([6], Theorem 3.1). O

In a real or complex vector space V' with a cone (', we are very inter-
ested in a semigroup associated to the cone ¢ , namely the compression
semagroup

Compr(C) ={T € GL(V) | T(C) C C}.
This semigroup is always closed in GL(V). Let V be 4 finite dimensional
real ( complex ) vector space endowed with a non-degenerate syminetric
or skew- symmetric bilinear form o{w, ). Then one of cones which is
canonically related to the form is
Co={ueV]ouu) >0}
There are two different semigroups vhich are canonically related to the
form, the contraction semigroup
T'e GL(V) | o(Tu. Tu) < o(u.u), 7w € V}
and the expansion semigroup
c={T € GL(V) | o(Tu Tv) > o(u,u),Yu € V}.
For T € g = ¢gl(V), let T* be the adjoint operator of T associated to

the bilinear form o(u,v). Then o(Tu v) = o(u, T*v) for all w,v € V. We
may assume that the bilinear form o(u,v) is

'}
. N ‘L . -
Jpglu, ) = }_lus,- — L TiSiv dpa(T, ) Zr S — Z 78,
i=1

1=p+1 i=p+1

by Sylvester’s law of inertia. Let £, be the open cone of self adjoint
positive definite operators with respect to o(u, v) and W, g be the closure

of €, ,. Then

THEOREM 2.2. (Ol'shanskii Decomposition)
(1) Real case:

5= = Olp,qrexp(W,,),
S = O(p.q exp(—=W,,)

where O(p, q) is the pseudo-orthogonal group of the »ilinear form Ipg-
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(2) Complex case:
5 = Uity
5= = Ulp.q) exp(—W,,
where U(p. ) is the unitarv group of the bilinear form g

Proof. (cf. [6]. [7]). )

3. Ol’shanskii semigroups in symplectic groups

Let E' be a real Hilbert space with inner product {|y). Let L(E)
be the Banach algebra of bounded operators on E. For M € L{E), we
denote M' be the adjoint operator of M. If M = M' we say M is
symimetric. A symmetric matrix .V is positive definite (positive semidef-
mite), written M > 0(M > 0), if (Mz|z) > 0 ((Mz|r) > 0) whenever
a # Q.

Members M € L(E x E) have a block decomposition

M:(A B), AB.C.D € L(E).

C D,
Let J € L(E) be defined in block form by
Y00 T
-0 )
N
Note that J? = —J and hence /! = —J = J'. We define the skew-

symmetric form on F x E by
(xly) = (Jx|y),r.y e Ex E.

We denote by M* for M € L(E $ E) the unique linear operator such
that

(Mxly) = (x[M"y)
for all 7.y € £ x E. Then M* = - JM'J.

Let G = {M € GLE® E) | (Mu[Muv) = (ulv)}.
. ‘A B
PROPOSITION 3.1. Let E be a real Hilbert space and let M = C D
€ GL(E x E). Then the following are equivalent: /
(1) M € G.ie. M preserves (-| ).
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(2) M'JM = J.
(3) A'C. B'D are symmetric and A'D — C'B = 1.

If £ = R”, then the group G is called the sympiectic group which is
denoted by Sp(2n,R). Let 7 be the involution on G = Sp(2n, R) defined

by
(A B\, _(A -B
"¢ p))T\-c D

/

Then (G, 7) is an involutive Lie gronp with
He=c ={[7  2.) | accrmnr)
' ’ 0 (A"! v '
A

.0
Let W = {(B 0
Lie algebra of G. The Lie algebra b of H is

> | A, B > 0}. Then W is a closed convex cone in the

A0 ;
h:{a)_A%|AeAnmn

[t is easy to show that W is invariant under the adjoint action of
H. By lemma 4.1 [6]. if X has real spectrum. then adX has real spec-

) € W. To show adX

0 A
B0
has real spectrum, it is enough to consider when A and B are posi-
tive definite by continuity. Write 1 = CC', for some C € GL(n,R).
Then C'BC > 0. In this case, we may write C'B(" = exp Z, for some

trum for a matrix Lie algebra. Let X = (

. . f 0 Iy I
symmetric matrix Z. Then X is siilar to <C‘BC O) by the matrix
c o0\ 0 N 0 explz ,
(0 (Y- ,) - And (C"BC ()> 1s similar to (OXpEfZ 0 j by the

. fexpiZz 0\ . . .
matrix ! . Therefore adX has real spectrumn. Note

0 exp %Z
that the svmplectic group is simple and hence all tlie conditions of the-
orem 2.1 hold.

Turorem 3.1. We have S := Hiexp W) is an O!’shanskii semigroup
in Sp(2n. R) with L(S)=h & W,
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4. The compression semigroup of C;

Note that for any non-degenerate symmetric bilinear form o on R”.
It is isometric to the following form of signature | P.q):
<51‘].].p‘qz/>~

. I,
where j, , = (é _‘)1. ) From now on, we assume that o(z. y) = (2 | pqy)-
q

0 -3
g =1 . P
nq </l's"1 0 )

From now on. we fix p, ¢ and let j = Jpar 4 = Jp 4 for convenience. Define
a non-degenerate skew-symmetric bilinear form on E x E by

Now let

(uy|ug) = o (), 4) - o(r2, 1) = (Ju|uy).
We define the symplectic group with respect to the bilinear form o. Let
Sp'(E) = {g € GL(E x E) | (gulgv) = (u[v)}. Then we have
Sp'(E) = {ge GLIEx E)| (gulgt) = (ulv)}
{9€ GLIEXE)|g'Jg =T}
{9 GLIEXE) | g"=g""}.

Il

il

Here ¢* is the adjoint operator of ¢ with respect to the symplectic form
(ul). Furthermore. note that every element g in GL(E x E) can be
written as a block matrix:

o= (’A B

] - ("‘1 D w

/

where A, B,C', D € L(E). So by soiving the equation ¢' Jg = J. Sp’(2n.R)

consists of all (2, g) € GL(E x E) satisfying

A'JC. DB are symetric, D'jA - B'jC = j.

Let (); be the quadratic form on E x E associatec to o, Q;(u) =o(x,y)
for u = (r,y) € E x E. Then the rone C; corresponding to the bilinear
form o is

Ci={ueV|Qiu =20} ={u=(r,y) € E> Elo(r.y) > 0}.
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The compression semigroup of the cone C; on the group Sp’(2n, R) is
defined by

S; := Compr(C;) N Sp’(2n, R).
When the bilinear form o is positive definite or equivalently j is the
identity matrix, the structure of an element in S; is completely charac-
terized by Wojtkowski [10]. We follow his method for a generalization.
Note that S; is a closed subsemigroup of Sp?(2n, R).

THEOREM 4.1. Let g = (é g) € Sp’(2n,R). Then the following

are equivalent:

(a) Qi(gu) > Q;(u), forallu € E x E.

(b) g € S;.

(¢) A is invertible and A'jC > 0 and BjA! > 0.
(d) D is invertible and CjD" > 0 and D'jB > 0.

By definition. (a) implies (b). The proof of the rheorem is from the
following lemmas.

LEMMA 4.1. Let g = (A B

c D> € Sp’(2n,R). If g € S;, then A and

D are invertible.

Proof. Suppose g € S; and Azg = 0. Since D'jA — B'jC =
B'jC(x¢) = —j(xp). Let y = sj(xo) Then (zly) = s{zo|ag) > 0, for all
s > 0. Hence v = (7g,y) € C; and gv € C;. But gv == (By, Cxy+ Dy) €
C’; implies that

(By|Czo + Dy) = —(yljzo) + (y|B'yDy) > 0.

Hence (jzoljzo) < s{jag|BjDjrg) — 0, as s — 0. Hence jrg = 0.
Therefore A is invertible. Using the same methoc of the case A, we

show that D is invertible. |

REMARK In the proof of lemma 1.1, one may want to generalize this
result to any (infinite-dimensional) real or complex Hilbert spaces. It
looks quite non-trival to prove that A and D are surjective. We leave
this as an open problem.

‘A B

LEMMA 42, If g = (

c D)ES then
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(1) A'C >0, jJA™'B > 0 and hence BjA" > 0,
(2) D'jB >0, jD7'C > 0 and hence CiD" > (.
(3)y BD™'j > 0.

Proof. (1) A'jC > 0. By definition, A'jC is symmetric. Set

(A0 0
oEVo Ay

i R .
g1 = Gog = P j+ PR € oy,

Then

where
R=A"'BP=A'C.

For u = (x,0),

Qi(q1u) = (ja|A'jCx) = (x|A'jCx) > 0.
Hence P = A'5C > 0.

e oo g1 — o — (4 IR

(2) R=A"'B > 0. Since g, = goy = (P it PR
from the definition of Sp’(2n,R). we have that jR is symmetric. To

show that jR > 0, suppose that (j A~ Byy|ys) < (. Choose o € E such
that (rqlyo) < 0. Let v = (szy ~ Fyo,yo). Then

> € S; C Sp’(2n,R),

(so — Ryolyo) = s(zolye) — (Ryolyr) > 0
for sufficiently small s > 0. So v € C; for sufficiently small s > 0. Since
g1 € 55, giv € Cy. But g1v = (sxo, sA'jCxy + ) snd
Qilgiv) = (sjr|sPxo+ jyo)
= 5°(Juro| Pro) + (5] jyo)
= s%(xy|Pry) + s(xolye) < 0

for sufficiently small s > 0 which leads a contradiction. Therefore
JATIB > 0.

(3) BJA" > 0. BjA"' = (A7)(JR)(Aj)" > 0. The proof of the remaining
part is similar to that of the previous one.

O

LEMMA 4.3. If Als invertible and A'jC > 0, BjA' > () then Q;(gu) >
Q;(u),Vuec E® E.
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Proof.

Qilgu) = Q;(g1u)
= (jx + jRy|P+ + jy + PRy)

= (v + Ryljy) + (v + Ry|P(x + Ry))
= (rliy) + (Byljy) + (P(x + Ru)lx + Ry)
> (”U ( - ]

5. The UDL decomposition of §;
Let Sym(n,R) be the space of symmetric n x n-natrices and let

]]‘ — {((J) j) | A= Sym(n,R), A >0},
Iy = {(i1 ) | A= Sym(n,R), A >0},

H At 0 4

Then F are closed subsemigroups Sp’(2n, R) and H; is the group uuits
of S;. Therefor( It-H -T'y C8S,.

THEOREM 5.1 ( UDL decomposition of S;). We have
Sy=T] H;-T7.

Proof. Let g = <(4~ g) € S;. Then by theorem 1.1 and lemma 4.2,

j BD7y\ (D7) nj i0) g
0 4 Jo\ 0 yDj) \jptc j)=7
Hence
i BD'JJ‘) DN 0N( G0y,
7 —<o i)\ o pi) e g) €8T

Let ' /
_(J 0y L _ (i 0
C‘_(o 1)“"“(0 ,)

O
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Vo . . _ (10
Then a, 8 € GL(2n.R) are involutions and ~ 1= af = 0 ;) For
"4 B .
g = (C D) € Sp’(2n, R).

ago =

(JA) JB)
Cj D)

THEOREM 5.2. The mapping

g €Sp'(2n.R) — aga € Sp(2r, R)

gives an isomorphism between Sp’(2n,R) and Sp(2n. R).

Proof. Since A'jC = (" A,

(JA))'Cj = jATC) = jCGA] = (C) (AT,
Note that D'jB = B'jD = (jB)'D and
D'(jAj) = (B)'Cj = (D'jA - B'jC)i=j* = 1.

Hence the mapping is well-define. Because o is «n involution. it is not
hard to see that « is an isomorphism. O

For j=1 welet IT* =T7 and H = H;. Then 5, =I'* - H - I~
COROLLARY 5.1. We have vS v = S.
Proof. Note that

al'fa = pI'*,

alJa = T8,

aHjao = [SHB=H.
Therefore,

aS;a = al o -aHa- al'/w
= I -H - T3
Hence 3aS,af = S. O
Set

st =4 7) 1420
S; = {(ff1 ?) | jA > 0}
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Then by theorem 4.1, S C S;.

THEOREM 5.3. The semigroup &, can be decomposed as

Sy = S H/‘SJ—'
, A B . 1 el
Proof. Let g = c pl € S;. Then by lemma 4.2, BD~'j ;D= !'C
. BD™! - 0\ o e
are symmetric. Hence (U I ) € S and <DJC I) € 5. Using

D'jA-BjC = j

A

I AN -

(bl §)esim s

‘ ]

We recall the Ol'shanskii semigroup S = H(exp V) which appears in
section 3.

THEOREM 5.4. We have
S=H- -expW =8 =T"HI'".

Proof. Note that
0 A) :
I' = exp{ (0 0) | A> 0} CexpW,
0

/ \
[ = exp{ (g O) | A> 0} CexpW.

Hence I'T-H -~ € 5° =S = H-expW. Conversely. let Z = €

0 A
B 0

. [0 A . {00 s ;
W. Then A, B > 0. If){—(() 0>, }—(B 0>,thenzd-X+Y

and

; 1 1
exp(Z) = exp(X + Y) = lim (exp(=X)exp(=Y))".

100 n n

Since for each n > 0. exp(X) € I'* exp(X) € T~ and S; = T*HI~ is
closed, exp(Z) € S;. Hence H(expW) C 5;5; C S;. O
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6. The Euclidean Jordan algebra Sym(n.R)

Let F be the field R or C. A commutative algebra V over F with
product zy is said to be a Jordan algebra if for all elements = and y in
V.

r(ry = v ry).
This identity is called the Jordan 1dentity. For v € V, we denote L)y :=
ry, the multiplication operator representation. Then the Jordan identit v
can be written [L(z), L(x?)] = 0, where the bracket is usual Lie bracket
on L(V), the set of all bounded linear operators on the vector space V.
For » € V, we define P(x) = 2L(+)* — L(2?). The map P is called the
quadratic representation of V. Every associative algebra V' with product
xy becomes a Jordan algebra with the anti-commutator product:
1
Toy = Z—(x Y+ yx).

An element 7 of a Jordan algebra V with identity e is called invertible
with inverse y if xy = e and 2%y == . One can sec that an element 7 in
a Jordan algebra V' is invertible if and only if P(2) is invertible. In this
case, P(x)x™! =z and P(x)"! = P(x1).

Let V' be a finite dimensional Jordan algebra and let 7(x, y) = TrL(zry).
Then 7(r, y) is an associative synunetric bilinear form on V, that is,

T(xy, 2) = 7(y, xz),
for all z,y, z in V. A Jordan algebra is said to be semi-simple if the bilin-
ear form 7(r,y) is non-degenerate on it. A semi-simple Jordan algebra
is called simple if it has no non-trivial ideal. It is well-known that every
semisimple Jordan algebra has a unit and every deal is a semi-simple
Jordan algebra [4]. A semi-simple Jordan algebri over R or C is. in a
unique way, a direct sum of simple ideals [4].

A real Jordan algebra V' is called a Jordan-Hilbert algebra if V is a
real Hilbert space with inner product (z]y) such that

{rylz) = (ylzz),
for all ¥,y.2 € V. In addition, it V is finite dimensional and has an
identity, then it is called a Euclidean Jordan algebre. In general a Jordan-
Hilbert algebra does not contain a unit element [9]. In [8], it was proved
that a finite dimensional Jordan-Hilbert Jordan algebra has an identity
if and only if L{r) = 0 == x = (. It is easy to show that a Euclidean
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Jordan algebra is formally real in the following sense: 2 +y? = 0 implies
r =y = 0. The converse is also true, i.e., a finite dimensional formally
real Jordan algebra becomes a Euclidean Jordan algebra [1].
Examples (1) The algebra Sym(n.R) of n x n real symmetric matrices
with the Jordan product
1. \
TOY =5y + yr)
is a Enclidean Jordan algebra since the bilinear forin Tr(ry) is positive
definite and associative.
(2) (Non-Euclidean Jordan algetra) Let V|, be the space of 2 x 2-
matrices of the form:

Vii= {(_71/ Z) | r,y,z € R}

Then V;; is a 3-dimensional Jordan algebra with tle anti-commutative

product. Let
1 1
)

Then A% = 0 and hence V1.1 1s not formally real, hence not a Euclidean
Jordan algebra.

Let V' be a Euclidean Jordan algebra with the associated bilinear form
(z|ly). Let Q@ = {2? | # € V} be the set of squares Then the set Q is
a self dual cone and Q@ = {y € V' | L(y) > 0}. Let Q be the interior of
(2. Then it is a symmetric cone. That is,  is a self-dual cone and the
group

G(Q):={ge GL(V) | gQ=Q}

acts on it transitively. Furthermore.

THEOREM 6.1. The symmetric cone (2 has the following characteri-
zations:
Q = expV,
= the identity component of V',
{w’ fue vty
{w e V| L{u) is positive definite}.

Proof. (cf. [1]). O

I
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Let E be a finite-dimensional vector space over R and let o{r.y) be a
symmetric bilinear form on £. We also assume that o is non-degenerate.
Then the bilinear form o is represented as follows by a symmetric matrix
S = (a;;) for a basis on E

olr,y) = 20,_,.1‘,»5/_,.
i

For T € gl(E), the o-adjoint operator T* is given by T* = S~IT'S.
Let V; be the set of all self-adjoint operators with respect to the fixed
non-degenerate, symmetric bilinear form ¢ on V. Then V, is a Jordan
algebra with the product

AoB = -(AB + BA).

I

From now on, we let V,,, denote the Jordan algebra of all self-adjoint
matrices on R” of dimension 7 = n+ ¢ with respect to the bilinear form

} n
Tpglriy) = >. Ty — }4 T,
i= | 1=p+1

The following result is well-known and easy to prove [cf. 8].

THEOREM 6.2. Let o he a nou-degenerate svmmetric bilinear forni
on a finite dimensional vector space E. Then the Jordan algebra V, is
simple and is isomorphic to V,,, for some integers p, q with p+q = dimlV.
Furthermore, the Jordan algebr: 'V, is Euclidexn if and onlv if o is
positive or negative definite.

There is a one-to-one correspondence between Euclidean Jordan al-
gebras and symmetric cones which are the same categories of Siegel
domains of tube type [1], [4]. The simple Euclidean Jordan algebra
Sym{n.R) of svmmetric n x n-matrices has the corresponding symmet-
ric cone §2, of all symumetric positive definite matrices. In onr notation.
Sym(n.R) =V, for some positive definite symmetric bilinear form on £
with dim(FE) = n. But the non-Enclidean Jordan algebra Vig for p#0
and ¢ # 0 has a nice cone €2, which is not appeared in the characteriza-
tion of symmetric cone in theoren 6.1. Now we remind the notation of
£2,,4 as an open convex cone of the positive definite matrices with respect

, , , o 1, 0
o Jpolroy). Wealso fix p,g and let j = j, = <(; B L,) .
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PROPOSITION 6.1. We have 3V, , = Sym(n,R). In particular, jQ,, =
{1, where (), is the symmetric cone of Sym(n,R).

Proof. First. note that if A € V,,, then jA € Syrm(n,R) =V, ;. For
JA= A = A = A

which implies that (jA)' = jA. Hence jA is a symmetric operator.
Conversely, if A € Sym(n,R), then (jA)* = jA' = jA. Hence jA €
Vpg- Therefore jV,, = Sym(n,R). Now suppose that A € ,,. Then
(Az|z) > 0, for all non-zero element x in V. Since (Ax|z) = (jAz|x), jA
is a symmetric positive definite operator. So j€2,, C €2,. Similiary, one
can show the converse argument. O

7. The semigroup 'y

Let V = Sym(n,R) and Q := Q, be the open convex cone of posi-
tive definite » x n symmetric matrices. Then V is a simple Euclidean
Jordan algebra with the symmetric cone €. It is well-known that any
biholomorphic automorphisms on the tube domain Iy = V + i{2 is the
following form

;

ZETQ———'*(A B

c D) .Z = (AZ+ B)(CZ + D)™

for some (é g) € Sp(2n,R). Hence the symplect:c group

Sp(2n,R) = {(é g) € GL(2n,Ri | A'C,D'B € V,D'A — B'C = I}

acts on the tube domain Tp, =V + i, by

<g g) .Z =(AZ + B)(CZ + D).

J

Define a subsemigroup I'g by the clements of Sp(2n, R) which can be
extended to @ C V© and g - Q C . Since every element in Sp(2n, R)
can be extended to the conformal compactification of VE, we can write

Ip={9€Sp2n R) | g -2 CQ}.
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Note that (é g) € Sp(2n,R) and D € GLin,R) implies that

/

A= (DY +BD'C.(%)

In this case, g can be decomposed as

(86 ke )

, I A
NT = {(U 1.) | Ae V],

- I 0
Then N7 is the abelian subgroup of Sp(2n,R) of all translations and
ToNYor =N, where 7 = ( 0 ]) )

Let

-7 0

LEMMA 7.1. For g = (é g) € Sp(2n,R), the following properties
are equivalent:
(1) ge NTHN",

(2) g-0eV,
(3) D € GL(n.R).

Proof. Obviousely, (1) = (2) = (3). Suppose that D is invertible.
Then D'B = B'D implies that BD™! = (D™1)!B' = (BD~)!. There-
fore BD™! is symmetric. By (¥), A' = D™ 4+ C*BD™!. Since D'B =
B'D, C'BD'C = CY(D™1)!B!C is symmetric and hence C*BD~!1C =
C'(D™Y'B'C is symmetic. Therefore D~!C = A'C — C'BED~'C is sym-

o ‘A B I BD"Y\ (DY 0\/ I 0
metric. So g = c pl = lo 7 0 D (\D”lC’ I €
|

NTHN™.
It is easy to see that I"G(Q2) - C I'g. Hence S =T"HI~ C I'g.

LEMMA 7.2, We have NYHN NTga=S=0T"HI".
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roof. Suppose that @ = n-fm— — (L A (D1 0Y (T 0
Proof. Suppose that ¢ = n~hn~ = (0 Ij( 0 D <B 7)€

Fo. Then for X € Q0 X(BX +1)"! == (B+ X"Ll) is a1 invertible element
m V = Sym(n,R). This implies tha

B+Q v
By the argnment_in linear algebra or by theorem ¢.1, B +Q C Q. In
particular, B € Q. To show A € 1), choose Z € B+Q < Q. Then
nzZ € B+ Q. for all natural nmmbers n. This is Tom the induction
argument. Let Z = B+ X € B+ Q Then

nl=nB4+nX=B4+n—-1)B+nXecB+OQ+QC B+

But l
A4 =h(Z Yy en™h((B4 Q) Y = n"hn () C Q.

” A
Thus A € Q. 7

THEOREM 7.1. The two Lie senugroups S and Ty, are the same.

7oL
Proof. Suppose that g € T'g. Let ¢, = <([) ”[[> . Then gt, € 'y, and
gt,(0) = ‘(/(:%]) = (). Therefore, by lemma 7.2, gf;, e *HI™ = S Since
Sis closed. g € S. O

By the isomorphism in theorem 5.2 aud theorem 7.1,

COROLLARY 7.1. We havelg = I'7 H;I') = H;->xpW, = S, where

0}.
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