ON STABILITY OF A TRANSMISSION PROBLEM

HYEONBAE KANG AND JIN KEUN SEO

ABSTRACT. We investigate the behavior of the gradient of solutions to the refraction equation $\operatorname{div}((1+(k-1)\chi_D)\nabla u)=0$ under perturbation of domain D. If u and u_h are solutions to the refraction equation corresponding to subdomains D and D_h of a domain Ω in 2 dimensional plane with the same Neumann data on $\partial\Omega$, respectively, we prove that $\|\nabla(u-u_h)\|_{L^2(\Omega)} \leq C\sqrt{\operatorname{dist}(D,D_h)}$ where $\operatorname{dist}(D,D_h)$ is the Hausdorff distance between D and D_h . We also show that this is the best possible result.

1. Introduction and statement of results

Let Ω be a simply connected bounded domain in \mathbb{R}^n $(n \geq 2)$ with the C^2 smooth boundary and let D be a simply connected C^2 subdomain of Ω with closure in Ω . Let $k \neq 1$ be a positive number. Consider the following Neumann problem

$$P[D,g] \begin{cases} \operatorname{div}((1+(k-1)\chi_D)\nabla u) = 0 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = g & \text{on } \partial \Omega, \quad \int_{\partial \Omega} g = 0, \quad g \in L^2(\partial \Omega) \\ \int_{\Omega} u = 0, \end{cases}$$

where $\nu(x)$ is the unit normal to the boundary, $\frac{\partial u}{\partial \nu} = \nu \cdot \nabla u$, and χ_D is the characteristic function of D.

In this paper we study stability of the solution to the transmission problem P[D,g] under the perturbation of D. This study is motivated in relation to the inverse problem to P[D,g], namely the inverse conductivity problem.

Received May 17, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 35B35.

Key words and phrases: conductivity problem, stability, layer potential.

The both authors are partially supported by GARC-KOSEF, BSRI'97, and KOSEF 95-0701-01-01-3.

Let D_h be a bounded simply connected subdomain with C^2 smooth boundary defined by

$$\partial D_h : f(s) + h\omega_h(s)\nu(s) \qquad (\partial D : x = f(s))$$

where s is 1 dimensional local parameter, $\omega_h(s)$ is a C^1 function on ∂D whose C^1 norm is bounded uniformly in h, and $\nu(s)$ is the outward unit normal to ∂D . Let u and u_h be solutions to P[D, g] and $P[D_h, g]$, respectively. In [2] and [1], it is proved that

if p < 4 and ∂D and ∂D_h are only $C^{1,1}$. (This result is for *n*-dimension (n = 2, 3).) In [7], (1.1) is proved for $p = \infty$. Both results were used strongly in the study of the inverse problem (see [2, 1, 7]).

In this paper we investigate the behaviour of ∇u under perturbation of D. We prove that

$$\|\nabla (u - u_h)\|_{L^2(\Omega)} \le C\sqrt{h}.$$

We also prove that \sqrt{h} is the best possible result one can expect. To be precise, we have the following theorem:

THEOREM 1.1. Let Ω be a simply connected bounded domain in \mathbb{R}^2 and D and D_h be as above. Let $D\Delta D_h$ be the symmetric difference of D and D_h . Then, there exists a constant C such that

(1.2)
$$\lim_{h \to 0} \frac{1}{h} \int_{\Omega \setminus D\Delta D_h} |\nabla (u - u_h)|^2 dx = 0,$$

(1.3)

$$\limsup_{h\to 0} \frac{1}{h} \int_{D\Delta D_h} |\nabla (u - u_h)|^2 dx \le C \int_{\partial D} \left| \frac{\partial u}{\partial \nu^{\pm}} \right|^2 d\sigma.$$

Here, $d\sigma$ is the line element on ∂D and

$$\frac{\partial u}{\partial \nu^{\pm}}(P) = \lim_{t \to 0^{+}} \langle \nabla u(P \pm t\nu(P)), \nu(P) \rangle.$$

Moreover, if ω_h converges to ω uniformly as $h \to 0$, then

(1.4)
$$\lim_{h\to 0} \frac{1}{h} \int_{D\Delta D} |\nabla (u - u_h)|^2 dx = \frac{k-1}{k} \int_{\partial U} \left| \frac{\partial u}{\partial \nu^+} \right|^2 |\omega| d\sigma.$$

If the Neumann data g is not zero, then $\frac{\partial u}{\partial \nu^{\pm}}$ is not zero and hence we have

Corollary 1.2. There exists a constant C independent of h such that

$$\|\nabla(u-u_h)\|_{L^2(\Omega)} \le C\sqrt{h}$$

If ω_h converges to ω uniformly as $h \to 0$, then for small enough h

$$\frac{1}{C}\sqrt{h} \le \|\nabla(u - u_h)\|_{L^2(\Omega)}$$

Corollary 1.2 says that \sqrt{h} is the best possible.

The proof of Theorem 1.1 is based on our earlier result on the representation of the solution to P[D,g] ([9]). So, we first review the representation formula in Section 2 and then prove Theorem 1.1 in Section 3.

One comment on a notation: the constants C in estimates may differ from one step to another. However, those constants do not depend on the quatities to be estimated.

2. Representation of solutions

For this work, we assume that Ω is a simply connected bounded C^2 domain in \mathbb{R}^2 and D be a simply connected subdomain with C^2 boundary which is compactly contained in Ω . The single and double layer potentials on D is defined by

$$\mathcal{S}_D f(X) = rac{1}{2\pi} \int_{\partial D} \log |X - Q| f(Q) d\sigma_Q, \qquad X \in \mathbb{R}^2,$$

$$\mathcal{D}_D f(X) = rac{1}{2\pi} \int_{\partial D} rac{\langle \nu_Q, X - Q \rangle}{|X - Q|^2} f(Q) d\sigma_Q, \qquad X \in \mathbb{R}^2.$$

The following trace formula is well known (see [F] or [8]):

(2.1)
$$\frac{\partial}{\partial \nu^{\pm}} \mathcal{S}_D f(P) = (\pm \frac{1}{2} I + \mathcal{K}_D^*) f(P) \qquad (P \in \partial D)$$

where

$$\mathcal{K}_D^* f(P) = \frac{1}{2\pi} \int_{\partial D} \frac{\langle \nu_P, P - Q \rangle}{|P - Q|^n} f(Q) d\sigma_Q.$$

We denote by \mathcal{K}_D the dual of \mathcal{K}_D^* .

Let $L_0^2(\partial\Omega) = \{f \in L^2(\partial\Omega) : \int_{\partial\Omega} f d\sigma = 0\}$. Then the representation formula for the solution to the problem P[D,g] is as follows.

Representation Formula [9].

If u is the weak solution to the Neumann problem P[D,g], then there are unique harmonic function $H \in W^{1,2}(\Omega)$ and $\varphi_D \in L^2_0(\partial D)$ so that u can be expressed as

(2.2)
$$u(x) = H(x) + S_D \varphi_D(x) \quad \text{for } x \in \Omega.$$

Moreover, if $f = u|_{\partial\Omega}$,

(2.3)
$$H(x) = -S_{\Omega}g(x) + \mathcal{D}_{\Omega}f(x)$$

and

(2.4)
$$(\frac{k+1}{2(k-1)}I - \mathcal{K}_D^*)\varphi_D = \frac{\partial H}{\partial \nu}|_{\partial D} \quad \text{on } \partial D.$$

See [9] for proof. We remark that the representation formula holds for Lipschitz domains in \mathbb{R}^n , $n \geq 2$.

LEMMA 2.1 [9]. If u is the weak solution to the Neumann problem P[D, g], then

(2.6)
$$\varphi_D = (k-1)\frac{\partial u}{\partial \nu^{-}} = \frac{k-1}{k}\frac{\partial u}{\partial \nu^{+}}$$

3. Proofs

Let D and D_h be as in Section 1. Write ∂D_h as

$$\partial D_h : \zeta + h\omega_h(\zeta)\nu(\zeta), \qquad \zeta \in \partial D$$

if slight abuse of notations is allowed, where $\omega_h(\zeta)$ is a C^1 function on ∂D whose C^1 norm is uniformly bounded and $\nu(\zeta)$ is the outward unit normal to ∂D at ζ . Let u and u_h be the weak solutions of P[D,g] and $P[D_h,g]$, respectively. By the representation formula (2.2), the solutions u and u_h can be expressed uniquely as:

(3.1)
$$u = H + \mathcal{S}_D \varphi_D$$
 and $u_h = H_h + \mathcal{S}_{D_h} \varphi_{D_h}$ in Ω

where H. φ_D . H_h , and φ_{D_h} satisfy the relations (2.3) and (2.4). To make the notations short, we put

$$\varphi = \varphi_D, \ \mathcal{S} = \mathcal{S}_D, \ \mathcal{K}^* = \mathcal{K}_D^*, \ \varphi_h = \varphi_{D_h}, \ \mathcal{S}_h = \mathcal{S}_{D_h}, \ \mathcal{K}_h^* = \mathcal{K}_{D_h}^*.$$

Lemma 3.1. There is a positive constant C such that

Lemma 3.1 is proved in [7].

By identifying the real 2-D vector (v_1, v_2) with the complex number $v_1 + iv_2$, we can see that

(3.3)
$$\nabla \mathcal{S}\varphi(z) = \frac{-1}{2\pi} \int_{\partial D} \frac{\varphi(\zeta)}{\bar{z} - \bar{\zeta}} d|\zeta|$$

and

(3.4)
$$\mathcal{K}\varphi(z) = \frac{1}{2\pi} \Im \int_{\partial D} \frac{\varphi(\zeta)}{z - \zeta} d\zeta.$$

Here \Im is the imaginary part. Let Φ_h be the diffeomorphism from ∂D onto ∂D_h defined by $\Phi_h(\zeta) = \zeta + h\omega_h(\zeta)\nu(\zeta)$.

Lemma 3.2. There is a positive constant C such that

$$\|\varphi_h \circ \Phi_h - \varphi\|_{L^2(\partial D)} \le Ch$$

if h is small enough.

Proof. Let $\lambda = \frac{k+1}{2(k-1)}$. Since $(\lambda I - \mathcal{K}^*)$ is invertible on $L^2(\partial D)$ [5], we have from (2.4) that

$$\begin{split} \|\varphi_{h} \circ \Phi_{h} - \varphi\|_{L^{2}(\partial D)} \\ &\leq C \|(\lambda I - \mathcal{K}^{*})(\varphi_{h} \circ \Phi_{h} - \varphi)\|_{L^{2}(\partial D)} \\ &\leq C \|(\lambda I - \mathcal{K}^{*}_{h}\varphi_{h}) \circ \Phi_{h} - (\lambda I - \mathcal{K}^{*})\varphi\|_{L^{2}(\partial D)} \\ &+ C \|(\mathcal{K}^{*}_{h}\varphi_{h}) \circ \Phi_{h} - \mathcal{K}^{*}(\varphi_{h} \circ \Phi_{h})\|_{L^{2}(\partial D)} \\ &\leq C \|\frac{\partial H_{h}}{\partial \nu} \circ \Phi_{h} - \frac{\partial H}{\partial \nu}\|_{L^{2}(\partial D)} \\ &+ C \|(\mathcal{K}^{*}_{h}\varphi_{h}) \circ \Phi_{h} - \mathcal{K}^{*}(\varphi_{h} \circ \Phi_{h})\|_{L^{2}(\partial D)}. \end{split}$$

Since the first term in the most right hand side of the above inequalities is O(h) by Lemma 3.1, Lemma 3.2 follows from the following lemma.

Sublemma. For any function $g \in L^2(\partial D_h)$

$$\|(\mathcal{K}_h^*g)\circ\Phi_h-\mathcal{K}^*(g\circ\Phi_h)\|_{L^2(\partial D)}\leq Ch\|g\|_{L^2(\partial D_h)}$$

if h is small enough.

Proof. By duality and boundedness of Φ'_h , it suffices to show that

$$\|(\mathcal{K}_h g) \circ \Phi_h - \mathcal{K}(g \circ \Phi_h)\|_{L^2(\partial D)} \le Ch \|g\|_{L^2(\partial D_h)}$$

for any $g \in L^2(\partial D_h)$. By (3.4),

$$(\mathcal{K}_{h}g) \circ \Phi_{h}(z) - \mathcal{K}(g \circ \Phi_{h})(z)$$

$$= \frac{1}{2\pi} \Im \left[\int_{\partial D_{h}} \frac{g(\zeta)}{\Phi_{h}(z) - \zeta} d\zeta - \int_{\partial D} \frac{(g \circ \Phi_{h})(\zeta)}{z - \zeta} d\zeta \right]$$

$$= \frac{1}{2\pi} \Im \int_{\partial D} \left[\frac{\Phi'_{h}(\zeta)}{\Phi_{h}(z) - \Phi_{h}(\zeta)} - \frac{1}{z - \zeta} \right] (g \circ \Phi_{h})(\zeta) d\zeta$$

$$= \frac{1}{2\pi} \Im \int_{\partial D} \left[\frac{1}{\Phi_{h}(z) - \Phi_{h}(\zeta)} - \frac{1}{z - \zeta} \right] (g \circ \Phi_{h})(\zeta) d\zeta$$

$$+ \frac{1}{2\pi} \Im \int_{\partial D} \frac{h(\omega_{h}\nu)'(\zeta)}{\Phi_{h}(z) - \Phi_{h}(\zeta)} (g \circ \Phi_{h})(\zeta) d\zeta$$

$$:= I(z) + II(z).$$

Since the Cauchy transform on C^2 -curves (in fact, on Lipschitz curves) is bounded on L^2 , we have

$$\int_{\partial D} |II(\zeta)|^2 d|\zeta| \le Ch^2 ||g||_{L^2(\partial D_h)}^2.$$

Note that

$$I(z) = \frac{1}{2\pi} \Im \int_{\partial D} \frac{1}{z - \zeta} \sum_{i=1}^{\infty} h^{i} \left(\frac{(\omega_{h} \nu)(z) - (\omega_{h} \nu)(\zeta)}{z - \zeta} \right)^{i} (g \circ \Phi_{h})(\zeta) d\zeta.$$

It is proven in [3] that

$$\int_{\partial D} |I(\zeta)|^2 d|\zeta| \le \sum_{j=1}^{\infty} (hC \|(\omega_h \nu)'\|_{L^{\infty}(\partial D)})^{2j} \|g\|_{L^2(\partial D_h)}^2$$

$$\le C' h^2 \|g\|_{L^2(\partial D_h)}^2$$

if h is small enough. This completes the proof.

Finally the following lemma leads us to Theorem 1.1.

LEMMA 3.3. There exists a constant C such that

(3.5)

$$\lim_{h\to 0} \frac{1}{h} \int_{\Omega \setminus D\Delta D_h} \left| \nabla \left(\mathcal{S} \varphi - \mathcal{S}_h \varphi_h \right)(z) \right|^2 dV(z) = 0$$

(3.6)

$$\limsup_{h\to 0} \frac{1}{h} \int_{D\Delta D_h} |\nabla (\mathcal{S}\varphi - \mathcal{S}_h \varphi_h)(z)|^2 dV(z) \le C \int_{\partial D} |\varphi(\zeta)|^2 d\sigma(\zeta).$$

Moreover, if $\omega_h \to \omega$ uniformly as $h \to 0$, then

(3.7)

$$\lim_{h\to 0} \frac{1}{h} \int_{D\Delta D_h} \left| \nabla \left(\mathcal{S}\varphi - \mathcal{S}_h \varphi_h \right)(z) \right|^2 dV(z) = \int_{\partial D} |\varphi(\zeta)|^2 |\omega(\zeta)| d\sigma(\zeta).$$

Proof. It is easy to see that for each $\delta > 0$

$$\lim_{h\to 0} \frac{1}{h} \int_{\text{dist}(z,\partial D)>\delta} \left| \nabla \left(\mathcal{S}\varphi - \mathcal{S}_h \varphi_h \right)(z) \right|^2 dV(z) = 0.$$

So, we assume, from the beginning, that $\Omega = \{z = \zeta + t\nu(\zeta) : |t| < \delta, \zeta \in \partial D\}$ for some δ . (δ is chosen so that the normal projection from Ω onto ∂D is well-defined.) Let $\epsilon > 0$ be a fixed number to be determined later and let U be the tubular neighborhood of ∂D defined by $U = \{z = \zeta + t\nu(\zeta) : |t| < \epsilon, \zeta \in \partial D\}$. If $z \in \Omega \setminus U$, then by (3.3)

$$\begin{split} &\nabla \big(\mathcal{S}_{h}\varphi_{h} - \mathcal{S}\varphi\big)(z) \\ &= \frac{1}{2\pi} \left[\int_{\partial D} \frac{\varphi(\zeta)}{\bar{z} - \bar{\zeta}} d|\zeta| - \int_{\partial D_{h}} \frac{\varphi_{h}(\zeta)}{\bar{z} - \bar{\zeta}} d|\zeta| \right] \\ &= \frac{1}{2\pi} \left[\int_{\partial D} \frac{\varphi(\zeta) - \varphi_{h} \circ \Phi_{h}(\zeta)}{\bar{z} - \bar{\zeta}} d|\zeta| + h \int_{\partial D} \frac{(\omega_{h}\nu)(\zeta)}{(\bar{z} - \bar{\zeta})(\bar{z} - \overline{\Phi_{h}(\zeta)})} \varphi_{h} \circ \Phi_{h}(\zeta) d|\zeta| \right. \\ &\quad + \int_{\partial D} \frac{\varphi_{h} \circ \Phi_{h}(\zeta)}{\bar{z} - \overline{\Phi_{h}(\zeta)}} [|\Phi'_{h}(\zeta)| - 1] d|\zeta| \right] \\ &:= I_{1}(z) + I_{2}(z) + I_{3}(z). \end{split}$$

Suppose $z = \xi + t\nu(\xi) \in \Omega \setminus D$, $\xi \in \partial D$. If N is the smallest integer such that $2^N t > \max\{|z - \zeta| : \zeta \in \partial D\}$, then $N \leq C \log \frac{1}{t}$ and

$$|I_{1}(z)| \leq \sum_{j=1}^{N} \int_{2^{j-1}} \frac{|\varphi(\zeta) - \varphi_{h} \circ \Phi_{h}(\zeta)|}{|z - \zeta|} d|\zeta|$$

$$\leq C |\log t| M(\varphi - \varphi_{h} \circ \Phi_{h})(\xi)$$

where M is the Hardy-Littlewood maximal operator on ∂D . Since M is bounded on $L^2(\partial D)$ ([10]), it follows from Lemma 3.2 that

$$\int_{\Omega \setminus U} |I_1(z)|^2 dV = \int_{\epsilon < |t| < \delta} \int_{\partial D} |I_1(\xi + t\nu(\xi))|^2 d|\xi| dt
\leq C \int_{\epsilon < |t| < \delta} |\log t|^2 dt \int_{\partial D} |M(\varphi - \varphi_h \circ \Phi_h)(\xi)|^2 d|\xi|
\leq C ||\varphi - \varphi_h \circ \Phi_h||_{L^2(\partial D)}^2 \leq Ch^2.$$
(3.8)

For $I_2(z)$, we have

$$|I_2(z)| \le Ch \int_{\partial D} \frac{1}{|z - \zeta|^2} d|\zeta| \le Cht^{-1},$$

and hence

(3.9)
$$\int_{\Omega \setminus U} |I_2(z)|^2 dV \le Ch^2 \int_{\epsilon < |t| < \delta} t^{-2} dt \le Ch^2 \epsilon^{-1}.$$

Since $|\Phi'_h(\zeta)| - 1 = O(h)$, we have

$$(3.10) |I_3(z)| \le Ch \int_{\partial D} \frac{1}{|z|^2 - \zeta|} d|\zeta| \le Ch \log \frac{1}{t}.$$

Thus, we have

(3.11)
$$\int_{\Omega \setminus U} |I_3(z)|^2 dV \le Ch^2.$$

Combining (3.8), (3.9), and (3.11), we have

(3.12)
$$\frac{1}{h} \int_{\Omega \setminus U} \left| \nabla \left(\mathcal{S} \varphi - \mathcal{S}_h \varphi_h \right)(z) \right|^2 dV \le C h \epsilon^{-1}.$$

Now suppose that $z = \xi + t\nu(\xi) \in U$. Put $\xi_h = \xi + h\omega_h(\xi)\nu(\xi)$. Put $S^{\epsilon} = \{\zeta \in \partial D : |\zeta - \xi| < \epsilon\}$ and $S^{\epsilon}_h = \{\zeta + h\omega(\zeta)\nu(\zeta) : \zeta \in S^{\epsilon}\}$. Then,

$$\nabla \left(S_h \varphi_h - S \varphi \right)(z) = \frac{1}{2\pi} \left[\int_{\partial D \setminus S^{\epsilon}} \frac{\varphi(\zeta)}{\bar{z} - \zeta} d|\zeta| - \int_{\partial D_h \setminus S_h^{\epsilon}} \frac{\varphi_h(\zeta)}{\bar{z} - \bar{\zeta}} d|\zeta| \right]$$

$$+ \frac{1}{2\pi} \left[\int_{S^{\epsilon}} \frac{\varphi(\zeta) - \varphi(\xi)}{z - \bar{\zeta}} d|\zeta| - \int_{S_h^{\epsilon}} \frac{\varphi_h(\zeta) - \varphi_h(\xi_h)}{\bar{z} - \bar{\zeta}} d|\zeta| \right]$$

$$+ \frac{\varphi_h(\xi_h)}{2\pi} \left[\int_{S^{\epsilon}} \frac{1}{\bar{z} - \bar{\zeta}} d|\zeta| - \int_{S_h^{\epsilon}} \frac{1}{\bar{z} - \bar{\zeta}} d|\zeta| \right] .$$

$$+ \frac{[\varphi(\xi) - \varphi_h(\xi_h)]}{2\pi} \int_{S^{\epsilon}} \frac{1}{\bar{z} - \bar{\zeta}} d|\zeta|$$

$$:= II_1(z) + II_2(z) + II_3(z) + II_4(z).$$

In the same way to derive (3.8), one can see that

$$(3.13) \qquad \frac{1}{h} \int_{U} |II_1(z)|^2 dV \le Ch\epsilon^{-1}.$$

Since φ is C^{α} for every $\alpha < 1$ (see [4]), $|II_2(z)| \leq C\epsilon^{\alpha}$ independently of h. Hence, we have

(3.14)
$$\frac{1}{h} \int_{U} |II_2(z)|^2 dV \le C_{\alpha} \epsilon^{2\alpha+1} h^{-1} \quad \text{for every } \alpha < 1.$$

By Lemma 3.2 and the estimate used in (3.10), we have

$$(3.15)$$

$$\frac{1}{h} \int_{U} |II_{4}(z)|^{2} dV = \frac{1}{h} \int_{-\epsilon}^{\epsilon} \int_{\partial D} |I_{4}(\xi + t\nu(\xi))|^{2} d|\xi| dt$$

$$\leq \frac{C}{h} \int_{-\epsilon}^{\epsilon} \int_{\partial D} |\varphi(\xi) - \varphi_{h}(\xi_{h})|^{2} |\log t|^{2} d|\xi| dt$$

$$\leq Ch.$$

We now deal with $II_3(z)$. Put

$$\overline{W_h(z)} = \frac{1}{2\pi} \left[\int_{S'} \frac{1}{z - \zeta} d|\zeta| - \int_{S'_h} \frac{1}{z - \zeta} d|\zeta| \right].$$

For each $z \in U$, we may assume that S^{ϵ} is a graph by taking ϵ small enough if necessary, namely,

$$S^{\epsilon}: \zeta = x + ig(x), \qquad -\epsilon < x < \epsilon, \qquad g \in C^2,$$

$$g(0) = g'(0) = 0$$
, and $z = it(|t| < h)$. Put

$$J(\zeta) = \frac{|1 + ig'(x)|}{1 + ig'(x)} \text{ and } J_h(\zeta) = \frac{|1 + ig'(x) + h(\omega_h \nu)'(x)|}{1 + ig'(x) + h(\omega_h \nu)'(x)}.$$

Let Γ_h (Γ_h' , resp.) be the straight line connecting the left (right, resp.) endpoints of S^{ϵ} and S_h^{ϵ} and let C_h be the positively oriented closed

curve composed of S^{ϵ} , S_h^{ϵ} , Γ_h , and Γ_h' . Then

$$2\pi \overline{W_h(z)} = \int_{S^{\epsilon}} \frac{J(\zeta)}{z - \zeta} d\zeta - \int_{S_h^{\epsilon}} \frac{J_h(\zeta)}{z - \zeta} d\zeta$$

$$= \int_{C_h} \frac{1}{z - \zeta} d\zeta - \int_{\Gamma_h + \Gamma_h'} \frac{1}{z - \zeta} d\zeta$$

$$+ \int_{S^{\epsilon}} \frac{J(\zeta) - 1}{z - \zeta} d\zeta - \int_{S_h^{\epsilon}} \frac{J_h(\zeta) - 1}{z - \zeta} d\zeta.$$

By the Cauchy integral formula,

$$\left| \int_{C_h} \frac{1}{z - \zeta} d\zeta \right| = \begin{cases} 2\pi & \text{if } z \in D\Delta D_h \\ 0 & \text{if } z \in \Omega \setminus \overline{D} \overline{\Delta D_h}. \end{cases}$$

It is easy to see that

$$\left| \int_{\Gamma_h + \Gamma_h'} \frac{1}{z - \zeta} d\zeta \right| \le Ch\epsilon^{-1}.$$

Note that

$$|J(\zeta) - 1| \le C|g'(x)| \le C|x| \le C|\zeta|, \quad \zeta \in \partial D$$

$$|J_h(\zeta) - 1| \le C|g'(x)| + Ch|\omega_h'(x)| \le C(|\zeta| + h), \quad \zeta \in \partial D_h.$$

It then follows that for $z = \xi + t\nu(\xi)$,

$$\left| \int_{S^{\epsilon}} \frac{J(\zeta) - 1}{|z - \zeta|} d\zeta \right| \le C \int_{S^{\epsilon}} \frac{|\zeta|}{|z - \zeta|} d|\zeta| \le C\epsilon,$$

$$\left| \int_{S^{\epsilon}_{h}} \frac{J_{h}(\zeta) - 1}{z - \zeta} d\zeta \right| \le C \int_{S^{\epsilon}_{h}} \frac{|\zeta| + h}{|z - \zeta|} d|\zeta| \le C(\epsilon + h \log \frac{1}{|h\omega_{h}(\xi) - t|}).$$

So far, we proved that

$$(3.16) |W_h(z)| \le C(\epsilon + h\epsilon^{-1} + h\log\frac{1}{|h\omega_h(\xi) - t|})$$

if $z = \xi + t\nu(\xi) \notin \overline{D\Delta D_h}$, and

(3.17)
$$||W_h(z)| - 1| \le C(\epsilon + h\epsilon^{-1} + h\log\frac{1}{|(h-s)\omega_h(\xi)|})$$

if $z = \xi + s\omega_h(\xi)\nu(\xi) \in D\Delta D_h$. It then follows from (3.16) that

$$\frac{1}{h} \int_{U \setminus D\Delta D_h} |II_3(z)|^2 dV$$

$$= \frac{1}{h} \int_{h|\omega_h(\xi)| \le t < \epsilon} \int_{\partial D} |\varphi_h(\xi_h) W_h(\xi + t\nu(\xi))|^2 d|\xi| dt$$
(3.18)
$$\le C(\epsilon^3 h^{-1} + h\epsilon^{-1} + h).$$

On the other hand, from (3.17), we have

$$(3.19)$$

$$\left|\frac{1}{h}\int_{D\Delta D_{h}}|II_{3}(z)|^{2}dV - \int_{\partial D}|\varphi(\xi)|^{2}|\omega_{h}(\xi)|d|\xi|\right|$$

$$\leq \frac{1}{h}\int_{\partial D}\int_{0}^{h}\left||I_{3}(\xi + s\omega_{h}(\xi)\nu(\xi))|^{2} - |\varphi(\xi)|^{2}\right|ds|\omega_{h}(\xi)|d|\xi|$$

$$\leq C\int_{\partial D}|\varphi_{h}(\xi_{h}) - \varphi(\xi)|^{2}d|\xi|$$

$$+ \frac{C}{h}\int_{\partial D}\int_{0}^{h}\left||W_{h}(\xi + s\omega_{h}(\xi)\nu(\xi))|^{2} - 1|ds|\varphi(\xi)|^{2}|\omega_{h}(\xi)|d|\xi|$$

$$\leq C(h^{2} + \epsilon + h\epsilon^{-1} + \int_{\partial D}|h\omega_{h}(\xi)|\log\frac{1}{|h\omega_{h}(\xi)|}d|\xi|.$$

Take $\epsilon = h^{2/3}$. Then (3.12)-(3.15), (3.18), and (3.19) prove Lemma 3.3.

References

 H. Bellout, A. Friedman, and V. Isakov, Inverse Problem in potential theory, Trans. A. M. S. 332 (1992), 271-296.

- [2] H. Bellout and A. Friedman, *Identification Problems in potential theory*, Arch. Rat. Mech. Anal. 101 (1988), 143-160.
- [3] R. R. Coifman, A. McIntosh, Y. Meyer, L'intégrale de Cauchy definit un opérateur bournée sup L² pour courbes lipschitziennes, Ann. of Math. 116 (1982), 361-387.
- [4] E. DiBenedetto, C. M. Elliot, and A. Friedman, The free boundary of a flow in a porous body heated from its boundary, Nonlinear Anal. 10 (1986).
- [5] L. Escauriaza, E. B. Fabes, and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries, Proceedings of AMS (1992).
- [6] G. B. Folland, Introduction to partial differential equations, Princeton University Press, Princeton, New Jersey, 1976.
- [7] E. Fabes, H. Kang, and J. K. Seo, Inverse conductivity problem with one measurement: global stability and approximate identification for perturbed disks, in preparation.
- [8] E. B. Fabes, M. Jodeit, and N. M. Reviére, Potential techniques for boundary value problems on C¹ domains, Acta Math. 141 (1978), 165-186.
- [9] H. Kang and J. K. Seo, Layer Potential technique for the Inverse Conductivity Problem, Inverse Problems 12 (1996), 267-278.
- [10] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970.
- [11] G. C. Verchota, Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains, J. of Functional Analysis 59 (1984), 572-611.

Hyeonbae Kang
Department of Mathematics
Korea University
Seoul 136-701, Korea
E-mail: kang@semi.korea.ac.kr

Current address of Hyeonbae Kang Department of Mathematics Seoul National University Seoul 151-742, Korea

Jin Keun Seo Department of Mathematics Yonsei University Seoul 120-749, Korea E-mail: seoj@bubble.vonsei.ac.kr