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ON STABILITY OF A TRANSMISSION PROBLEM
HyronBAE KANG AND JIN KEUN SEO

ABSTRACT. We investigate the behavior of the gradient of solutions
to the refraction equation div('1 + (k — 1)xp)Va) = 0 under per-
turbation of domain D. If u and uy, are solutions to the refraction
equation corresponding to subdomains D and D}, of a domain §2 in
2 dimensional plane with the same Neumann da a on 2, respec-
tively, we prove that ||[V{u — ’«{}J)HLQ(Q) < C\/Eigt(D,Dhj where
dist(D, Dy, ) is the Hausdorff distance between D and D). We also
show that this is the best possible result.

1. Introduction and statement of resulty

Let {2 be a simply connected bounded domain in R™ (n > 2) with the
C? smooth boundary and let D he a simply connected € subdomain
of €2 with closure in §2. Let & # 1 be a positive rumber. Consider the

following Neumann problem

div(1+ (k=1 xp)Vu) =0 in Q

Ju N ' B -
Pl gy =9 omOE _/{_)Q 9=0, gelL(09)

/ = (),
J
Ju

where v(.r) is the unit normal to the boundary, 5; = v Vu. and xp
is the characteristic function of L.

In this paper we study stabilitv of the solution to the transmission
problem P[D.g] under the perturbation of D. This study is moti-
vated in relation to the inverse problem to P[D, ¢}, namely the inverse
conductivity problem.
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Let Dj, be a bounded simply connected subdomain with C? smooth
boundary defined by

ODy = f(8) + hwp(s)v(s) (0D :x = f(s))
where s is 1 dimensional local parameter, wp(s) is a C' function on
OD whose C! norm is bounded uniformly in h, and ~(s) is the outward
unit normal to 8D. Let u and uy, be solutions to P[D, g] and P[Dy, g],
respectively. In [2} and [1], it is proved that
(1.1) v — urllLr @) < Ch

if p < 4 and 8D and dDy, are only C'''!. (This result is for n-dimension
(n =2,3).) In [7], (1.1) is proved for p = oc. Both results were used
strongly in the study of the inverse problem (see [2. 1, 7]).

In this paper we investigate the behaviour of Vu under perturbation
of D. We prove that

IV (1 — up)|| 2oy < CVR.

We also prove that vk is the best possible result one can expect. To
be precise, we have the following theorem:

THEOREM 1.1. Let Q be a simply connected bounded domain in R?
and D and Dy, be as above. Let DA D), be the symmetric difference of
D and Dy,. Then, there exists a constant C such that

1
(1.2) lim — / IV (u — up)|2dx = 0,
h Jo\pap,

h—0 n
(1.3)
1 . © o |
lim sup —/ V(u— up 2dr < C/ | ——| do.
b0 h DADh | ( )l oD ‘61/:t
Here, do is the line element on 8D and
U(P) = Jim (Vu(P £ t0(P), 1(P)).
Moreover, if wy, converges to w uniformly as h — 0. then
k-1 - Odu
4 —up)[dr = |dor
(1.4) %LH%J ; /DAD (u — up)|"dr = ) s |w|do

If the Neumann data g is not zero, then ’a% is not zero and hence

we have
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COROLLARY 1.2. There exists a constant C independent of h such
that
IV (= wn)l| L2y < CVR.

If wy converges to w uniformly as h — 0, then for small enough h
1 N
E h < HV(U — uh)”Lz(Q)

Corollary 1.2 says that v/h is the best possib e.

The proof of Theorem 1.1 is based on our ea-lier result on the rep-
resentation of the solution to P[D.g] ([9]). So, we first review the
representation formula in Section 2 and then srove Theorem 1.1 in
Section 3.

One comment on a notation: the constants C' .n estimates may differ
from one step to another. However, those constants do not depend on
the quatities to be estimated.

2. Representation of solutions

For this work, we assume that € is a simply connected bounded
C? domain in R? and D be a simply connected subdomain with 2
boundary which is compactly contained in Q. The single and double
layer potentials on D is defined by

Spf(X) = 5%/”7 log X — Qf(Q)do. X € RE.

N L <I/Q,_Y~—Q> .
Dof(x) = 5= [ E o fQuise. x e R

The following trace formula is well known (see [F| or [8]):

(1) SeSuf(P) = (i3] +K)I(P) (P eaD)

where

* . 1 <VP~P_Q>
Kpf(P) = o /av Wf(@)dgc;)-

We denote by K the dual of K7},.
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Let L2(9Q) = {f € L*(99) : [, fdo = 0}. Ther the representation
formula for the solution to the probtlem P[D.g] is «s follows.

Representation Formula [9].

If u is the weak solution to the Neumann problem P[D,yg], then
there are unique harmonic function H € WH2(Q) and ¢p € LE(9D)
so that u can be expressed as

(2.2) w(r) = H{r)+Speplr)  fora e Q.
Moreover, if f = ujaq,

(23) H(I) = —Sgg{[.[?) + DQf(.’I,‘)
and

) k41 . OH ,
(2-«1) ( ﬁﬁl K:D),O[) —O—V—|g)]) (&) 8] ()D

See [9] for proof. We remark that thie representation formula holds for
Lipschitz domains in R, n > 2.
LEMMA 2.1 [9]. Ifu is the weak solution to the Neumann problem
P[D,g]. then
on E—1 Ou

26 (/ P — — .
("()) &fjl) (A 1)()1/_ }i,' E)I/+

3. Proofs
Let D and Dy, be as in Section |. Write g, as
0Dy, C+ hwp(Cv(C), Ceoh

if slight abuse of notations is allowed, where wy(.)) is a C! function
on 00 whose C'' norm is uniformly bonnded and v({) is the outward
unit normal to @D at (. Let u and uy, be the weak solutions of P[D. g
and P[Dy.g]. respectively. By the representatior formula (2.2), the
solutions 1 and uy can be expresse:d uniquely as :
(3.1) w=H+S8pop and w, = Hy, +Sp,¢p, infl
where H. op. Hyp, and ¢p, satisiy the relations (2.3) and (2.4). To
make the notations short, we put

% * -k
£ =¥D =8p. K= K/[)~ Yo = Dy, Sy = 'S[),,~ }C}‘ = K]),,v
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LEMMA 3.1. There is a positive constant C such that
(3.2) IV(H — Hp)llreqy < Ch.

Lemma 3.1 is proved in [7].
By identifying the real 2-D vector (v, vo) with the complex number
vy + vy, we can see that

(3.3) VSp(z) = (2;1/ zj’( )Cdl |
and
(3.4) Ko(z) = 5‘;3/@ f(f)gd@

Here $ is the imaginary part. Let @5, be the diffeomorphism from 8D
onto 0Dy, defined by ®,({) = ¢ + hwn()(Q).

LEMMA 3.2. There is a positive constant C such that
llon 0 @n ~ @lli2ap) < CF

if h is small enough.

Proof. Let A = z(k 1) Since (Al — K*) is invertible on L?(dD) [5],
we have from (2.4) that

ln o ®n — 22 0p)

< O = K" )(n > ®n — @)l 201
AL = Khon) 0 @ — (M = K ¢l 120,
(K en) 0 @r = K7 (wn 0 1)l 2(0p)

OH OH
h‘ oy — ““"Hz 2(0D)

< Cl

(’Ch%) o @) — K*(n o Pu)llr2(ap)-

Since the first term in the most right hand side of the above in-
equalities is O(h) by Lemma 3.1, Lemma 3.2 follows from the following
lemma. [
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SUBLEMMA. For any function g = L*(0Dy,)
I(K5g) 0 @n — K" (g0 ®p)ilr2@opy < Chllgllizn,
if h is small enough.
Proof. By duality and boundednass of @}, it suffices to show that
|(Krg) o ®n — K(go®p)lirzapy < Chilg|r20p,)
for any g € L?(0Dy,). By (3.4),
(th)oq?h( - K( (lo‘bh)(z)

(g0 Px)(C) »]
=5-C ALY
[ Oy, q’h ) A = oD S >

@i 1
1 _ O@ 1
/()1) {‘Ph —d',, ) Z—C] (g0 @4)(C)dC

} (g0 ®3)(C)dC

P, (2 —dm () z-¢

} 2 .
/ ’“V S (g0 @ ()G
an
= I(z) + II(

Since the Cauchy transform on C?-curves (in fact, on Lipschitz curves)
is bounded on L?, we have

/)l I PIC] < CR2lgl2aom,
JOD

Note that

1
I
(2) = 2 3 /()D

It is proven in [3] that

(whtr)(z) = (wr) (),
(— 2 —( ) (go®p)(C)dC.

/H QP < S (Y e 001 U9 o,

- !, 2 2
< C'h7lg L(8D),)

if h is small enough. This completes the proof. |

Finally the following lemma leads us to Theorem 1.1.
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LeMMA 3.3. There exists a constant C such that

(3.5)
1/ .
lim ——/ V(Sp - Shgas,)(z)}de(z) =0
h=0h Joxpap,
(3.6)
, .
fimsup s [ V(S Sip) @ Ve < ¢ [l Pdotc)
h—0 DAD,, oD

Moreover, if wy, — w uniformly as h — 0, then
(3.7)

fim 5 (9SS Sion) () V() = [ 1plQF(Oido(c).
DAD;, an

h—0 h

Proof. It is easy to see that for each 6 > 0
.1 2
lim —~ /m oD)>5! V(S — Snn) (2)| dV (2) =
h—0 h JOarss
So, we assume, from the beginning, that Q = {z = ( + tv(() : |t]| <
6, € 9D} for some 6. (6 is chosen so that the normal projection
from §2 onto 9D is well-defined.: Let € > 0 be a fixed number to be

determined later and let U be the tubular neightorhood of 9D defined
by U={z=(+tv(():|t|<e € dD}. If z€ Q\ U, then by (3.3)

V(Shen — Se)(z)

:%[/ A e / ol dl<|]
7 [Jop ¢ oD

* i_ (<) “@}1.04>)1,(<) . (whv (C) -
B Uan v aE N h’/aD . n 0 21 ()|

7 ) Oz - 2a(0)
$h Oq)h(() , \
=1\ 1]d
+/01) z—3,(C) (124 (O 1] IC]
= N{z) + I2(z) + I3(z).

Suppose z = £ +tv(€) € Q\ D, £ € dD. If N is the smallest integer
such that 2Vt > max{|z — (| : ( = 0D}, then N < Clog ! and

) —ppo®
1 21/2/, S e A L

CEAD ' C‘
< Cllog t|M(p — o o D) (€)
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where M is the Hardy-Littlewood maximal operator on 9. Since M
is bounded on L#(0D) ([10)), it follows from Lemma 3.2 that

/ uuﬂwv:/' /ln@+w@m%mm
O\U Jelit|<b JOD

<c [ jogiPar [ |teone @)@ Pl
<|t|<é Jop

(3-8) < C“%’J — on o Py i!I‘;}((’)[)) < Ch?.

For Is(z), we have

1
uxn<m/ =kl < Cb,

and hence

(3.9) / |Io(2)|2dV < Ch? / t72dt < Ch%e™!
JONU Je<t|<é
Since |®},(¢)| — 1 = O(h), we have
1 1
(3.10) 15(2)] < Ch/ —=—d|(| < Chlog .
Jap 1z = (| t

Thus, we have
(3.11) / |I3(2)|2dV < Ch*.
JONU

Combining (3.8), (3.9), and (3.11), we have
1 f . 2
= / V(S = Spyn)(2)]*dV < Che™".
hilovw

Now suppose that z = £+ tv(€) = U. Put &, = &+ hwp(§r(€). Put
S« ={CedD:|(—& <e}and S5 ={(+hw(Qui(): € S} Then,

1 P(C VMQ
V(Shon = S9)e) = 5 [/()D\s E /an;,\h Fara ']

L [/ 8 w_o(f)dm_‘/ Pr(Q) - %(E")dlo}
T g o= C K ( z - Q
“n{€n) / 1 d v/ N £td

o [ ge 2—C N 55 2-¢ i<l
[YQ(Ej — $Yh (Err l] L

+ PR [

= I (2) + [1p(z) + T13(z) + 114(2).

(3.12)
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In the same way to derive (3.8). one can see shat

1

3.13]
(3.13) N

[I[I J2dV < Che™

Since ¢ is C for every o < 1 (see [4]), [[12(2)| < C¢* independently
of h. Hence. we have

(3.14) / |[[1(z IZ(JL < Oy erotip=l for every « < 1.

By Lemma 3.2 and the estimate used in (3.10), we have

(3.15)
1 ) 1 e /
7o HLE) AV =+ I4(€ + to(€))|2d|€)d1
hiJe hi) «iop
coror o
=5 lo(&) — onln)|?] log t7d|E|dt
Ve JoD
< Ch.

We now deal with 175(z). Put

- 1 '
Wi(z) = o [/ Z'“‘_"'K' /
l J Se - S

For each z € UU. we may assume that S is a graph by taking ¢ small
enough if necessary, namely,

S =a+ig(r). —€ < <€, geC?,
g(0) = ¢'(0) = 0. and z = it(Jt| < h). Put
{1+ ig' ()] |1+ ig'(x) + h{wyv) ()]

J{() = and J (() =

L +ig'(x) 1+idg'(x) + h(wpv) ()

Let Iy (I, resp.) be the straight line connecting the left (right, resp.)
endpoints of S and S, and let (), be the pos tively oriented closed
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curve composed of S, Sj, I'x, and I'},. Then

27TLV,7(Z):/ Md(-—/ Jh_(o ¢
se2—=( Jse z2—C
' 1 ’ 1
= d(-—/ d
./(?,,, z—( ror, 26 ¢
J{() — J —
N ECELIy G
se Z2—C sy £
By the Cauchy integral formula,
1 p 27 if z€ DADy,
/c~,,z~< C‘“ 0 ifzeQ\DADy.

It is easy to see that

Note that

[7() =1 < Clg'(x)| < Cla| < CIKJ, Ce€oD
[7n(¢) = 1] < Clg'(x)| + Chlw (z)] < C(IC| + 4), (€ ODh.

It then follows that for z = & + tw(€),

/&i—ldcsc/ KL < ce,
J 5 Jge Z—

).

|z = (] q
In(¢) ~ 1 ) / g1+ A 1
i (| < C -di¢| < C hl S
/S;. z—( Cf [z lel s Olet hlog =,
So far, we proved that
1
(3.16) [Wh(z)] < Cle+he™! + hlog m_—”)
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if z =&+ tv(€) ¢ DADy, and

1
N —1l<c e+ hlog
(3.17) [IWn(2)] = 1| < Cle + he™ + hlog (= s)wp (&)

if 2 =&+ swn(&)v(€) € DADy. It then follows from (3.16) that

)

1/ .
- / |I13(2)|?dV
h U\DAD,

1 N
= — wr ‘ Zd d
h/hlw:(f)|<t<e/aol¢h(€h) n (€ + w(€)Pdlg]ar

(3.18)
<C(Eh™t + hemt 4+ 1),

On the other hand, from (3.17), we have

(3.19)
1

- 2)2dV — W \
LCC Y ECL R

1 h . ‘ )
< E/az)/o 3(€ + swn(E)v(E))I* — l(€)]*] dslwn(€)dI€|
<c [ lonen) - ele)Pdl

C h ‘
+ -};/BD/O [[Wh(€ + swa(E)w(E)))* — 1]ds|o(€)]|wn(€)|d|€]

§C’(h,2+(+h,fl+/aD reon )] log - )1(1;51)

Take ¢ = h?/3. Then (3.12)-(3.15), (3.18), and (3.19) prove Lemma
3.3. O
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