ON THE SQUARE OF BROWNIAN DENSITY PROCESS

NHANSOOK CHO

ABSTRACT. The square of Brownian density process, Q^{λ} is defined where λ is a parameter. Applying limit theorems of stochastic integrals w.r.t. martingale measure, we prove a weak limit theorem for Q^{λ} in $D_{S'(R^d)}[0,1]$.

1. Introduction

Let $\{X^{\alpha}, \alpha \in N\}$ be a family of i.i.d. standard Brownian motions in \mathbb{R}^d with initial distribution given by a Poisson point process Π^{λ} of parameter λ . Set for any test function ϕ ,

(1.1)
$$\eta_t(\phi) = \sum_{\alpha} \phi(X_t^{\alpha}), \qquad {\eta_t}^2(\phi) = \sum_{\alpha,\beta} \phi(X_t^{\alpha})\phi(X_t^{\beta})$$

We will first symmetrize this, then throw away the terms with $\alpha = \beta$ to get a new process, Q_t^{λ} of which limit we want to consider.

Let $\{\xi^{\alpha}, \alpha \in A\}$ be i.i.d. random variables independent of the X^{α} such that $\mathbf{P}\{\xi^{\alpha} = 1\} = \mathbf{P}\{\xi^{\alpha} = -1\} = \frac{1}{2}$.

Define for any test function ψ on $\mathbb{R}^d \times \mathbb{R}^d$

(1.2)
$$Q_t^{\lambda}(\psi) = \frac{1}{\lambda} \sum_{\alpha \neq \beta} \xi^{\alpha} \xi^{\beta} \psi(X^{\alpha}, X^{\beta}).$$

The study of this process is related to the intersection local times of super processes and is said (by Dynkin and Mandelbaum[2]), and Walsh[5]) to be connected with U-statistics.

Received May 22, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 60J55, 60H15, 60F17.

Key words and phrases: Brownian density process, martingale measure, sto-chastic integral.

This work is partially supported by Administry Education (BSRI-97-1407).

Define

(1.3)
$$\tilde{\eta}_{t}(\phi) = \sum_{\alpha \in A} \xi^{\alpha} \phi(X_{t}^{\alpha})$$

$$W_{t}(A) = \frac{1}{\lambda} \sum_{\alpha} \int_{0}^{t} I_{A}(X_{s}^{\alpha}) dX_{s}^{\alpha}$$

$$\tilde{W}_{t}(A) = \frac{1}{\lambda} \sum_{\alpha} \xi^{\alpha} \int_{0}^{t} I_{A}(X_{s}^{\alpha}) dX_{s}^{\alpha}$$

Obviously, $E[\tilde{\eta}(\phi)] = 0$. It is known (see[G],[5]) that if $\phi \in L^1(\mathbb{R}^d)$, then

(1.4)
$$E[\eta_t(\phi)] = \lambda \int \phi(x) dx$$
, and $\operatorname{Var} \eta_t(\phi) \sim O(\lambda)$

Now, let λ_n be the sequence of parameter values and we consider the corresponding processes, η^n , $\tilde{\eta}^n$, W_n and \tilde{W}^n .

Let $\tilde{\Pi}^n(dx) = \frac{1}{\sqrt{\lambda_n}}(\Pi^{\lambda_n}(dx) - \lambda_n dx)$ be the normalized initial measure. It is known that $\tilde{\Pi}^n \Rightarrow V^0$, where V^0 is a white noise based on \mathbb{R}^d .

Walsh[5] studied the limiting behavior of Q^{λ} and proved the following theorem in his famous note.

Theorem 1.1. [5] The process Q^{λ} converges weakly in $D_{\mathcal{S}'(R^{2d})}[0,1]$ to a solution of the SPDE

$$\begin{split} \frac{\partial Q}{\partial t}(x,y) &= \frac{1}{2}\Delta Q(x,y) + \eta(x)\nabla_2 \cdot W_{ys}^0 + \eta(y)\nabla_1 \cdot W_{xs}^0 \\ Q_0 &= V^0 \times V^0 \end{split}$$

where V^0 and W^0 are independent white noises on R^d and $R^d \times R_+$ respectively.

We dare to say that the proof in [5] is somehow wrong and try to give an alternative proof using our previous theorem w.r.t. martingale measure.

DEFINITION 1.1. Let $(R^d, \mathcal{B}(R^d), \nu)$ be a σ -finite measure space. A white noise based on ν is a random set function W on the sets $A \in \mathcal{B}(R^d)$ of finite ν -measure such that

- (1) W(A) is a $N(0, \nu(A))$ random variable,
- (2) if $A \cap B = \emptyset$, then W(A) and W(B) are independent and $W(A \cup B) = W(A) + W(B)$.

Let $\mathcal{S}'(\mathbb{R}^d)$ be the dual of Schwartz space, $\mathcal{S}(\mathbb{R}^d)$ which is the space of infinitely differentiable functions vanishing at infinity.

The following definition is for the martingale measure established by Walsh[5].

DEFINITION 1.2. Let $(\Omega, \mathcal{F}_t, P)$ be a filtered space, and $\mathcal{B}(R^d)$ be the Borel σ -field. Let $M(\cdot, \cdot)$ be a random real-valued function on $R^d \times R_+$. M is called an (\mathcal{F}_t, P) -martingale measure if it satisfies the following properties.

- (1) For each $A \in \mathcal{B}(\mathbb{R}^d)$, $M(A,\cdot)$ is a $(\mathcal{F}_t,P)-$ square integrable martingale and M(A,0)=0.
- (2) For any $A, B \in \mathcal{B}(\mathbb{R}^d)$ such that $A \cap B = 0$, $M(A \cup B, t) = M(A, t) + M(B, t)$, P a.s. for every t > 0.
- (3) For every t > 0, $M(\cdot, t)$ is a σ -finite L^2 -valued measure in a certain sense. (See in detail [5]).

For $A, B \in \mathcal{B}(\mathbb{R}^d)$, there exists a unique predictable process, $\langle M(A), M(B) \rangle_t$ such that $M(A, t)M(B, t) - \langle M(A), M(B) \rangle_t$ is a martingale.

DEFINITION 1.3. Let the covariance functional of martingale measure, M be $Cov_t(A, B) = \langle M(A), M(B) \rangle_t$ where $A, B \in \mathcal{B}(\mathbb{R}^d)$. Define a set function U by

$$U(A \times B \times (s,t]) = Cov_t(A,B) - Cov_s(A,B)$$

DEFINITION 1.4. A martingale measure is worthy if there is a σ -finite L^2 -valued measure $K(\Gamma, \omega), \Gamma \in \mathcal{B}(R^d \times R^d \times R_+), \omega \in \Omega$ such that for fixed $A, B \{K(A \times B \times (0, r], t \geq 0\}$ is predictable, and $|U(\Gamma)| \leq K(\Gamma)$. We call K a dominating measure.

The processes W^n in (1.3) are good examples of martingale measure.

PROPOSITION 1.1. [1] If $\lambda_n \to \infty$, then for each $\phi(x,y) \in \mathcal{S}(\mathbb{R}^{2d})$, along the appropriate subsequence

$$\frac{1}{\sqrt{\lambda_n}} \int \phi(x,y) \tilde{\eta}_s^n(dx) \tilde{W}^n(ds,dy) \Longrightarrow \int \phi(x,y) \tilde{\eta}_s(dx) \tilde{W}(ds,dy),$$

where \tilde{W} is a white noise based on Lebesgue measure, and $\tilde{\eta}$ is the $\mathcal{S}'(R^d)$ -valued Gaussian process.

2. Main theorem

The following is our version of Theorem 1.1.

THEOREM 2.1. The process $\{Q_t^{\lambda_n}\}$ is relatively compact in $D_{\mathcal{S}'(R^d)}$ $[0,\infty)$, and converges to the solution of the following equation; (2.0)

$$Q_t(\psi)$$

$$\begin{split} &=Q_0(\psi)+\frac{1}{2}\int_0^tQ_s(\Delta\psi)ds+\int_{R^d\times[0,t]}\int_{R^d}\psi(x,y)\tilde{\eta}_s(dy)\tilde{W}(ds,dx)\\ &+\int_{R^d\times[0,t]}\int_{R^d}\psi(x,y)\tilde{\eta}_s(dx)\tilde{W}(ds,dy), \end{split}$$

for every $\psi \in \mathcal{S}(\mathbb{R}^{2d})$

Proof. Using Ito's formula for $Q_t^{\lambda}(\psi)$ and letting

$$\chi(x) = (\nabla_1 \psi)(x, x) + (\nabla_2 \psi)(x, x),$$

we rewrite $Q_t^{\lambda}(\psi)$ as the following: (2.1)

$$\begin{split} Q_t^{\lambda}(\psi) &= Q_0^{\lambda}(\psi) + \frac{1}{2} \int_0^t Q_s^{\lambda}(\Delta \psi) \, ds + \frac{1}{\sqrt{\lambda}} \int_{R^d \times [0,t]} \tilde{\eta}_s [\nabla_1 \psi(x,\cdot)] \tilde{W}(dx,ds) \\ &+ \frac{1}{\sqrt{\lambda}} \int_{R^d \times [0,t]} \tilde{\eta}_s [\nabla_2 \psi(\cdot,y)] \tilde{W}(dy,ds) - \frac{1}{\sqrt{\lambda}} \int_{R^d \times [0,t]} \chi(x) W(dx,ds) \end{split}$$

Let

$$p_t(x,x') = (2\pi t)^{-\frac{d}{2}} e^{-\frac{|x-x'|^2}{2t}}, \quad G_t(x,x';y,y') \coloneqq p_t(x,x') p_t(y,y')$$

$$G_t(\psi,x,y) = \int_{R^{2d}} p_t(x,x') p_t(y,y') \psi(x',y') dx' dy'$$

Then G is the green function on R^{2d} for this problem. Write $Q^{\lambda} = \tilde{Q}^{\lambda} + R^{\lambda}$, where (2.2)

$$\begin{split} \tilde{Q}_t^{\lambda}(\psi) &= Q_0^{\lambda}(\psi) + \frac{1}{2} \int_0^t \tilde{Q}_s^{\lambda}(\Delta \psi) \, ds \\ &+ \frac{1}{\sqrt{\lambda}} \int_{R^d \times [0,t]} \tilde{\eta}_s(\nabla_1 \psi(x,\cdot)) \tilde{W}(ds,dx) \\ &+ \frac{1}{\sqrt{\lambda}} \int_{R^d \times [0,t]} \tilde{\eta}_s(\nabla_2 \psi(\cdot,y)) \tilde{W}(ds,dy) \\ R_t^{\lambda}(\psi) &= \frac{1}{2} \int_0^t R_s(\Delta \psi) ds - \frac{1}{\sqrt{\lambda}} \int_{R^d \times [0,t]} \chi(x) W(ds,dx). \\ &= -\frac{1}{\lambda} \int_{R^d \times [0,t]} (\nabla_1 G_{t-s}(\psi)(y,y) + \nabla_2 G_{t-s}(\psi)(y,y)) W(ds,dy). \end{split}$$

Define a pair of martingale measures on \mathbb{R}^{2d} by

$$M_{1,t}^{n}(\psi) = \int_{R^{d} \times [0,t]} (\int_{R^{d}} \psi(x,y) \tilde{\eta}_{s}^{n}(dx)) \tilde{W}^{\lambda}(ds,dy),$$

$$M_{2,t}^{n}(\psi) = \int_{R^{d} \times [0,t]} (\int_{R^{d}} \psi(x,y) \tilde{\eta}_{s}^{n}(dy)) \tilde{W}^{\lambda}(ds,dx).$$

Define

$$M_{2,t}(\psi) \equiv \int_{R^d \times [0,t]} \int_{R^d} \psi(x,y) \tilde{\eta}_s(dy) \tilde{W}^{\lambda}(ds,dx)$$

We write (2.2);

(2.3)

$$\tilde{Q}_t^{\lambda}(\psi) = Q_0^{\lambda}(\psi) + \frac{1}{2} \int_0^t \tilde{Q}_s^{\lambda}(\Delta \psi) ds + \frac{1}{\sqrt{\lambda}} M_{1,t}(\nabla_2 \psi) + \frac{1}{\sqrt{\lambda}} M_{2,t}(\nabla_1 \psi).$$

Now we apply Theorem 5.1 of Walsh[5], replacing λ with λ_n , for every $\psi \in \mathcal{S}(\mathbb{R}^{2d})$.

$$(2.4) \\ \tilde{Q}_{t}^{\lambda_{n}}(\psi) \\ = Q_{0}^{\lambda_{n}}(G_{t}\psi) + \frac{1}{\sqrt{\lambda_{n}}} \int_{R^{2d} \times [0,t]} \nabla_{1}G_{t-s}(\psi, x, y) M_{2}^{n}(dx, dy, ds) \\ + \frac{1}{\sqrt{\lambda_{n}}} \int_{R^{2d} \times [0,t]} \nabla_{2}G_{t-s}(\psi, x, y) M_{1}^{n}(dx, dy, ds).$$

The following argument shows the relative compactness of $\{Q_t^{\lambda_n}\}$. Define

$$V_{i,t}^{n}(\phi) \equiv \frac{1}{\sqrt{\lambda_n}} \int_{R^{2d} \times [0,t]} \nabla_j G_{t-s}(\psi, x, y) M_i^{n}(dx, dy, ds)$$

for i, j = 1, 2. Then

$$(2.5) V_{2,t}^{n}(\psi) = \frac{1}{\sqrt{\lambda_{n}}} \int_{R^{2d} \times [0,t]} \nabla_{1} G_{t-s}(\psi, x, y) M_{2}^{n}(dx, dy, ds)$$

$$= \frac{1}{\sqrt{\lambda_{n}}} \int_{R^{2d} \times [0,t]} \nabla_{1} (\int_{s}^{t} G_{u-s}(\Delta \psi, x, y) + (\psi, x, y) du) M_{2}^{n}(dx, dy, ds)$$

$$= \frac{1}{\sqrt{\lambda_{n}}} (M_{2,t}^{n}(\nabla_{1} \psi)$$

$$+ \int_{0}^{t} [\int_{0}^{u} \int_{R^{2d}} \nabla_{1} G_{u-s}(\Delta \psi, x, y) M_{2}^{n}(dx, dy, ds)] du)$$

Recalling that $M^n_{2,u}(\psi)=\int_0^u\int_{R^d}\tilde{\eta}^n_s(\psi(x,\cdot))\tilde{W}^\lambda(ds,dx)$, let

$$\begin{split} V_{2,t}^n(\psi) &= \frac{1}{\sqrt{\lambda_n}} M_{2,t}^n(\nabla_1 \psi(x,y)) \\ &+ \frac{1}{\sqrt{\lambda_n}} \int_0^t [\int_{R^d \times [0,u]} \tilde{\eta}_s^n(\nabla_1 G_{t-s}(\Delta \psi, x, \cdot)) \tilde{W}^{\lambda}(ds, dx)] du. \end{split}$$

LEMMA 2.2. For any ϕ , $\phi \in L^2(R^d) \cap C^1(R^d)$, $\frac{\partial \phi}{\partial x_i} \in L^2(R^d)$ for $i = 1, \dots, d$,

$$E[\tilde{\eta}_t^n(\phi)^2] \le \lambda_n \|\phi\|_2^2 + \lambda_n t \|\nabla\phi\|_2^2$$

Proof. By Proposition 8.4[5], we have (2.6)

$$\tilde{\eta}_t^n(\phi) = \tilde{\eta}_0^n(\phi) + \frac{1}{2} \int_0^t \tilde{\eta}_s^n(\Delta\phi) ds + \sqrt{\lambda_n} \int_0^t \int_{R^d} \nabla\phi(x) \cdot W(dx, ds)$$

Define $G_t(\phi, y) \equiv \int (2\pi t)^{-\frac{d}{2}} e^{-\frac{|y-x|^2}{2t}} \phi(x) dx$. Then by Theorem 5.1[5], the solution of (2.6) is (2.7.)

$$ilde{\eta}_t^n(\phi) = \int_{R^d} G_t(\phi,y) ilde{\Pi}^{\lambda_n}(dy) + \sqrt{\lambda}_n \int_0^t \int_{R^d} G_{t-s}(
abla\phi,y) W(dy,ds)$$

Since the two terms on the right hand side of (2.7) are orthogonal, we have

$$(2.6) \quad \begin{split} E[\tilde{\eta}_{t}^{n}(\phi)^{2}] &= E[(\int_{R^{d}} G_{t}(\phi, y) \tilde{\Pi}^{\lambda_{n}}(dy))^{2}] + \lambda_{n} \int_{0}^{t} \int_{R^{d}} |G_{t-s}(\nabla \phi, y)|^{2} dy ds \\ &= \lambda_{n} \int G_{t}^{2}(\phi, y) dy + \lambda_{n} \int_{0}^{t} \int_{R^{d}} |G_{t-s}(\nabla \phi, y)|^{2} dy ds \end{split}$$

Note that since $G_t(\phi, y) = f * \phi(y)$ and $||f_t||_1 = 1$

$$|G_t(\phi, y)||_2 \le ||\phi||_2$$
 and $|\nabla G_{t-s}(\phi, y)||_2 = ||G_{t-s}(\nabla \phi, y)||_2 \le ||\nabla \phi||_2$,

by Schwartz's inequality. Hence

$$E[|\tilde{\eta}_t^n(\phi)|^2] \le \lambda_n ||\phi||_2^2 + \lambda_n t ||\nabla \phi||_2^2.$$

Let $h(x) = (1 + x^2)^{-1}, x \in \mathbb{R}^d$, and define an increasing process k_n by

$$k_n(t) = \int_0^t \int_{R^d} (\int_{R^{d}} h(y) \tilde{\eta}_s^n(dy))^2 h^2(x) dx ds.$$

Recall that if $\psi \in \mathcal{S}(R^{2d})$ then $G_t(\psi, x, y) \in \mathcal{S}(R^{2d})$.

LEMMA 2.3. For each T > 0, $\psi(x, y) \in \mathcal{S}(\mathbb{R}^{2d})$,

$$\begin{split} E[\sup_{0 \le t \le T} (V_t^n(\psi))^2] \\ & \le \{8\|\nabla_1 \psi(x,y)(h^2(y)h(x))^{-1}\|_{\infty} \\ & + 2T^2 \cdot \sup_{0 \le t \le T} \|\nabla_1 G_t(\Delta \psi)(h^2(y)h(x))^{-1}\|_{\infty}\} \cdot \frac{E[k_n(T)]}{\lambda_n}. \end{split}$$

Proof. In (2.5)

$$\sup_{t} V_{t}^{n}(\psi)^{2} \leq \frac{1}{\lambda_{n}} 2 \sup_{t} (M_{2,t}^{n}(\nabla_{1}\psi))^{2}
+ 2 \sup_{t} T(\int_{0}^{t} (\int_{0}^{u} \int_{R^{2u}} \nabla_{1} G_{u-s}(\Delta\phi) M_{2}^{n}(dx, dy, ds))^{2} du)$$

by the Schwartz inequality. By Doob's inequality

$$E[\sup_{t \le T} V_t^n(\phi)^2]$$
(2.8)
$$\le \frac{1}{\lambda_n} 8E[M_{2,T}^n(\nabla_1(\psi))^2]$$
(2.9)
$$+2T \int_0^T E[\int_0^u \int_{\mathbb{R}^{2d}} \nabla_1 G_{u-s}(\Delta \psi) M^n(dx, dy, ds)^2 du]$$

Walsh (p410[5]) shows that the covariance measure for M_2^n is

$$\tilde{\eta}_s^n(dy)\tilde{\eta}_s^n(dy')\delta_x(x')dxdx'dsI,$$

where I is the identity matrix, hence its dominating measure (defined in Definition1.4) is

$$K(dxdydx'dy'ds) = \tilde{\eta}_s(dy)\tilde{\eta}_s(dy')\delta_x(x')dxdx'ds$$

Then by theorem 2.5[5]
(2.8) $\leq \frac{8}{\lambda_n} E[\int (\int \nabla_1 \psi(x, y) \tilde{\eta}_s^n(dy))^2 dx ds]$ $= \frac{8}{\lambda_n} E[\|\nabla_1 \psi(x, y) (h^2(y) h^2(x))^{-1}\|_{\infty} \int_{R^d \times [0, T]} (\int h(y) \tilde{\eta}_s^n(dy))^2 h^2(x) dx ds]$ $\leq \frac{8}{\lambda_n} \|\nabla_1 \psi(x, y) (h^2(y) h^2(x))^{-1}\|_{\infty} E[k_n(T)]$

$$= \frac{2T}{\lambda_{n}} \int_{0}^{T} E[\int_{0}^{u} (\int_{R^{2d}} \nabla_{1} G_{u-s}(\Delta \psi) M^{n}(dx, dy, ds))^{2} du$$

$$= \frac{2T}{\lambda_{n}} \int_{0}^{T} E[(\int_{0}^{u} \int_{R^{2d}} (\tilde{\eta}^{n} (\nabla_{1} G_{u-s}(\Delta \psi)) \tilde{W}^{\lambda}(dx, ds))^{2}] du$$

$$(2.9) = \frac{2T}{\lambda_{n}} \int_{0}^{T} E[\int_{0}^{u} \int_{R^{2d}} (\int \nabla_{1} G_{u-s}(\Delta \psi, x, y) \frac{h(y)h(x)}{h(y)h(x)} \tilde{\eta}_{s}^{n}(dy))^{2} dx ds] du$$

$$= \frac{2T}{\lambda_{n}} \sup_{0 \le t \le T} \|\nabla_{1} G_{t}(\Delta \psi)(h^{2}(y)h^{2}(x))^{-1}\|_{\infty} \cdot \int_{0}^{T} E[k_{n}(u)] du$$

$$\leq 2T^{2} \cdot \sup_{0 \le t \le T} \|\nabla_{1} G_{t}(\Delta \psi)(h^{2}(y)h^{2}(x))^{-1}\|_{\infty} \cdot \frac{E[k_{n}(T)]}{\lambda_{n}}$$

LEMMA 2.4. For each T>0, $\sup_n \frac{1}{\lambda_n} E[k_n(T)] \leq (\|h\|^2 T + \frac{1}{2} T^2 \|\nabla h\|_2^2) \cdot \|h\|_2^2$

Proof.

$$E[k_n(T)] = \int_0^T E[(\int h(y)\tilde{\eta}_s^n dy))^2] \int_{R^d} h(x)dxds$$
$$\int_0^T E[(\int h(y)\tilde{\eta}_s^n (dy))^2]ds \le \int_0^T (\lambda_n ||h||_2^2 + \lambda_n s||\nabla h||_2^2)ds$$
$$= \lambda_n(||h||_2^2 \cdot T + \frac{1}{2}T^2||\nabla h||_2^2),$$

by Lemma 2.2. Therefore,

$$\sup_{n} \frac{1}{\lambda_{n}} E[k_{n}(T)] \leq (\|h\|^{2}T + \frac{1}{2}T^{2}\|\nabla h\|_{2}^{2}) \cdot \|h\|_{1}.$$

LEMMA 2.5. For $t \leq T$, and $\psi \in \mathcal{S}(R^{2d})$, $\{\tilde{Q}_t^{\lambda_n}(\psi)\}$ is relatively compact.

Proof. In (2.5), let

$$U_t^n \equiv \frac{1}{\sqrt{\lambda_n}} \int_0^t \left[\int_0^v \int_{R^{2d}} \nabla_1 G_{u-s}(\Delta \psi)(x, y, s) M_2^n(dx, dy, ds) \right] dv$$

and

$$S_n \equiv \frac{1}{\sqrt{\lambda_n}} \sup_{v \le T} \left| \int_0^v \int_{R^{2d}} \nabla_1 G_{u-s}(\Delta \psi)(x, y, s) M_2^n(dx, dy, ds) \right|$$

Then for $t \leq T$, for any $\delta > 0$, and $0 \leq u \leq \delta$,

$$|U_{t+u}^n - U_t^n| \le \delta \cdot S_n$$

By an argument similar to the proof of Lemma 2.3

$$E[S_n^2] \leq C \cdot \frac{1}{\lambda_n} E[k_n(T)].$$
 for some constant C

Hence if we let $\gamma_n(\delta) = (\delta \cdot S_n)^2$

$$E[|U_{t+u}^n - U_t^n|^2 | \mathcal{F}_t^n] \le E[\gamma_n(\delta) | \mathcal{F}_t^n]$$

and by Lemma 2.4

$$\lim_{\delta \to 0} \sup_{n} E[\gamma_n(\delta)] = \lim_{\delta \to 0} \sup_{n} \delta \cdot C(\frac{1}{\lambda_n} E[k_n(T)]) = 0$$

It is obvious that U_t^n satisfies the condition (a) of Th.3.7.2 in [3], so by Th.3.8.6.in the book U_t^n , the last row in (2.5), is relatively compact. By the same way, we can show the relative compactness of the third term, $V_{1,t}^n(\psi)$ in (2.4). Since $V_{1,t}^n(\psi)$, $V_{2,t}^n(\psi)$ are continuous and $\{\tilde{Q}_0^{\lambda_n}(\psi)\}$ is relative compact. \square

Proof of Theorem 2.1, continued. It is known that (Prop. 8.16[5])

$$(\tilde{\Pi}^n, \, \tilde{\Pi}^n \times \tilde{\Pi}^n, \, \tilde{W}^n, \, \frac{1}{\sqrt{\lambda_n}} \tilde{\eta}^n, R^{\lambda_n}) \Rightarrow (V^0, \, V^0 \times V^0, \, \tilde{W}, \tilde{\eta}, \, 0)$$

Since

$$\frac{1}{\sqrt{\lambda_n}} \int_{R^d} \psi(x,y) \tilde{\eta}_s^n(dy) \Longrightarrow \int_{R^d} \psi(x,y) \tilde{\eta}_s(dy) \qquad \text{on } D_{C_0(R^d)}[0,T]$$

for any test function $\psi(x,y) \in \mathcal{S}(\mathbb{R}^{2d})$, by Proposition 1.1,

$$\frac{1}{\sqrt{\lambda_n}} M_{2,t}^n(\psi) = \frac{1}{\sqrt{\lambda_n}} \int_{R^d \times [0,t]} \left(\int_{R^d} \psi(x,y) \tilde{\eta}_s^n(dy) \right) \tilde{W}^n(ds,dx)
\Longrightarrow \int_{R^d \times [0,t]} \int_{R^d} \psi(x,y) \tilde{\eta}_s(dy) \tilde{W}(ds,dx)
= M_{2,t}(\psi)$$

Thus the two terms of $V_{2,t}^n(\psi)$ in (2.5) converge.

Furthermore, $Q_0^{\lambda_n}$ is known to be $\tilde{\Pi}^n \times \tilde{\Pi}^n$, and hence $Q_0^{\lambda_n}(\psi) \Rightarrow Q_0(\psi)$, where $Q_0 = V^0 \times V^0$. Since $R^{\lambda_n} \Rightarrow 0$, $\tilde{Q}_t^{\lambda_n}(\psi)$ is relatively compact, and

$$\frac{1}{\sqrt{\lambda_n}} M_{1,t}^n(\nabla_2 \psi) \Longrightarrow M_{1,t}(\nabla_2 \psi) \quad \frac{1}{\sqrt{\lambda_n}} M_{2,t}^n(\nabla_1 \psi) \Longrightarrow M_{2,t}(\nabla_1 \psi),$$

in (2.3), $\tilde{Q}_t^{\lambda_n}(\psi)$ converges to $Q_t(\psi)$ satisfying

$$Q_t(\psi) = Q_0(\psi) + \frac{1}{2} \int_0^t Q_s(\Delta \psi) ds + M_1(\nabla_2(\psi)) + M_2(\nabla_1(\psi)).$$

Since $R^{\lambda_n} \Longrightarrow 0$, $Q_t^{\lambda_n}(\psi) \Longrightarrow Q_t(\psi)$, where Q_t is a possible limit of $\tilde{Q}_t^{\lambda_n}$ and in fact, the unique solution of (2.0).

References

- [1] N. Cho, Weak convergence of stochastic integrals driven by martingale measures, Stochastic process. appl. **59** (1995), 55-79.
- [2] E. B. Dynkin and A. Mandelbaum, Symmetric statistics, Poisson point processes, and multiple Wiener integrals, Ann. Math. Stat. 11 (1983), 739-745.
- [3] Ethier and Kurtz, Markov process: Characterization and convergence, Wiely, 1986.
- [4] I. Mitoma, Tightness of probabilities on (C[0,1],S) and (D[0,1],S'), Ann. Prob. 11 (1983), 989–999.
- [5] J. Walsh, An introduction to stochastic partial differential equation, Lect. notes in Math. 1180 (1986), 265-439.

Department of general science Hansung University Seoul 136-792, Korea