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ON THE SQUARE OF
BROWNIAN DENSITY PROCESS

Nuansook CHO

ABSTRACT. The square of Brownian density process, Q* is defined
where A is a parameter. Applving limit theorems of stochastic in-
tegrals w.r.t. martingale measure, we prove a w=ak limit theorem

for Q)\ in DS’(R'I)[O’ l]

1. Introduction

Let {X® a € N} be a family of i.i.d. standerd Brownian motions
in R? with initial distribution given by a Poisson point process II* of
parameter A. Set for any test function ¢,

(11 mle) =D d(XF). i) =) G(XP)e(X))

a.g

We will first symmetrize this, then throw away the terms with o« = 8
to get a new process, Q7 of which limit we want to consider.
Let {€*, a € A} be i.id. random variables independent of the X*
. o _ _ [ 1
such that P{* = 1} = P{£* = -1} = 3.
Define for any test function ¥ on R?* x R4

LS~ o ,
(1.2) Qw) =5 Y _ €€ p(X. X7),
e 253¢}

The study of this process is related to the inversection local times
of super processes and is said {(by Dynkin and Mandelbaum|2]), and
Walsh[5]) to be connected with U-statistics.
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Define

(1.3) (o) =Y £%(XP)

acA

, 1 f
W) = 30 [ 1axyaxs
o ¢
- 1 t
Wi(A) = .A.Zgofo TA(XS)dX

Obviously, E[fj(¢)] = 0. It is known (see[G],[5]) that if ¢ € LY(R%),
then

(14)  Elnl9)] = A / o(x)dz, and Var 7,(6) ~ O(\)

Now, let A,, be the sequence of parameter values and we consider the
corresponding processes, 9, 7, W, and W™,

Let II"(dz) = %(HA" (dx) — A, dx) be the norralized initial mea-

sure. It is known that 1" = V°, where V0 is a white noise based on
R

Walsh[5] studied the limiting behavior of Q* anc proved the follow-
ing theorem in his famous note.

THEOREM 1.1. [5] The process Q* converges weakly in Dg:(geay[0,1]
to a solution of the SPDE

0 1 N .
% (0,9 = LAQUr) +1(1)Vs W 0(y)V - WY,

ot
Qo=VxV?
where VO and W° are independent white noises oi1 R* and R¢ x R,
respectively.

We dare to say that the proof in [5] is somehow wrong and try to
give an alternative proof using our previous theorein w.r.t. martingale
measure.
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DEFINITION 1.1. Let (R? B(R%), 1) be a o—finite measure space.
A white noise based on v is a random set function W on the sets
A € B(R?) of finite v—measure snch that

(1) W(A) is a N(0,v(A)) random variable,

(2) if ANB = 0, then W(A) and W (B) are independent and W (AU
B) = W(A) + W(B).

Let S'(R?) be the dual of Schwartz space, S(F?) which is the space
of infinitely differentiable functions vanishing at mfinity.

The folllowing definition is for the martingale measure established
by Walsh[5].

DEFINITION 1.2. Let (2, F;, P) be a filtered space, and B(R%) be
the Borel o—field. Let M(-,-) be a random real-valued function on
R x R,. M is called an (F;, P)-martingale measure if it satisfies the
following properties.

(1) For cach A € B(RY), M(A.-) is a (F,. P)— square integrable
martingale and M (A,0) = 0.

(2) For any A, B € B(R%) such that ANB = 0. M(AU B.f) =
M(A.t)+ M(B.t), P as. for every t > (.

(3) For every t > 0, M(-,t) is a o-finite L?-valued measure in a
certain sense. (See in detail [5]).

For A. B € B(R?), there exists a unique predictable process, (M(A),
M(B)): such that M (A, t)M(B.,t) — (M(A), M(13)); is a martingale.

DEFINITION 1.3. Let the covariance functionel of martingale mea-
sure, M be Covi(A. B) = (M(A), M(B)); where A, B € B(R%). Define

a set function U by

U(A X B x (s,t]) = C'ov,(A. B) — Cov, (A, B)

DEFINITION 1.4. A martingals measure is worthy if there is a o-
finite L*—valued measure K (I',w/,T" € B(R% x % x R,).w € Q such
that for fixed A, B{K(Ax Bx(0,/]. > 0} is predictable, and |U(T")| <
K(T'). We call K a dominating measure.

The processes W™ in (1.3) are good examples of martingale measure.
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PROPOSITION 1.1. [1] If A, — x, then for each ¢(x,y) € S(R*?),
along the appropriate subsequence

\/1)\7/¢(:E,y)77:(dm)W"(d8,dy,l = /¢(m’y)f?s(dﬂf)1@’(ds,dy),

where W Is a white noise based on Lebesgue measure, and 7 is the
S’(R%)-valued Gaussian process.

2. Main theorem

The following is our version of Theorem 1.1.

THEOREM 2.1. The process {Q;"} is relatively compact in Dy (pa)

[0,00), and converges to the solution of the following equation;
(2.0)
Qi ()

1 [t ‘ . -
41 / Qu(Av)ds + / (., 1)ita(dy) W (ds, dx)
2 0 Rix{0,t] JR?

+/ / (., y)is (dz )W (ds, dy),
RYx[0,t] JRe

for every ¥ € S(R*?)
Proof. Using Ito’s formula for Q}(x) and letting

x(z) = (Viv)(z, ) + (Vav)(z, z),

we rewrite Q7 (1) as the following:

(2.1)
QM W) =Qp(¥) + / QM (AY) ds+— s[V1v(x, )W (dz, ds)

R4 x[0, t]
1

+ — s [V 2 W (dy, ds
7 RdX[O’t]n[ 20 (-, Y)W )=

x(x)W(dx,ds
\/— RY x[0,4] (@W( )

Let

|m_ml2
pe(r,2’) = (2mt) 72 7, Gz, 25y.9) = plz, 2" )pe(y,v)

Gi(y,1,y) = / 2lzot(:r,m’)pt(y, y (e y')de'dy’
R «



On the square of Brownian density process 711

Then G is the green function on R*? for this problem. Write Q* =
Q* + R, where
(2.2)

QM) = Qo) + l ) @?(Aw) s
/ 7s(V1¢(e. )W (ds, dx)
R4 x [0, 1]
/d 0 1s(V2t (-, )W (ds.dy)

RMv) = L / R, (Aw)ds—~ — x ()W (ds, dr).
2 Jo Rex[0.1]

1/ ,

== / (ViGeos(0) (Y, y) + VaGi s () (y, y))W (ds. dy).
A % [0,t]

Define a pair of martingale measures on R?¢ by

M7 (v) = / ( / W, y)i? (dz))W(ds, dy).
R4x{0,]

My = [ (et ) s, o

Rex[0.t] JR

Define ;
My (¢) = / / V()7 (dy) W (ds, dx)
dxfo,t] J R

We write (2.2);
(2.3)
- o1t 1
QW) = Q) + 5 [ QAW+ My (Va0) + = (V1)
2 Jo VA
Now we apply Theorem 5.1 of Walsh[5], replacing A with A,,. for every
¥ € S(R?*).
(2.4)
QM ()

Q (Gf lp 1G(~s(’d).Jfky)ﬂ"l-‘?(d‘r,dy,dS)

VAn J R4 [0.1]

1
+ VoG (¥ x,y) M (dz, dy, ds).
VA S rzaxon t !
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The following argument shows the relative compactness of {Q;™}.
Define

l
VA R24x{0,t]

for ¢,7 = 1,2. Then

HOE VGt 2, y) M (dz, dy, ds)

(2.5)
ngt(d’)
- 1
—\/X; R24 x[0,t]
1
_\/j\—n— R24x (0,1}

1
= (M (V19)

t u
+/ {/ V1Gus(AY, z, y) M (dx, dy, ds)]du)
RZd

V1Gi—s(¢, x,y) M3 (dx,dy, ds)

t
VI(/ Gu_s(AY, 1, y) + (¥, z, y)du) M3 (dz, dy. ds)

Recalling that M2, ( o S e R (02, )W (ds, dx) | let

n 1 n '
Vau(¢) = \/TMM(VW(-’E-&))

Vet t/ { v
+ T (V1Gr—s(AY, x, ) )W (ds. dx)|du.
" [ ixion] | (V1Gr—s( NWA( )]

d

LEMMA 2.2. For any ¢,¢ € L*(R?) nCY(RY), 22 € L*(RY) for
i=1,--.d,
E[7(6)?] < Aalloll3

Proof. By Proposition 8.4[5], we have

L
ﬁ?(¢)=ﬁ6’(¢)+-/ 7 (Ad)ds + v/ / [ vota) wian,as
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Define G¢(¢,y) = f(Qﬂ’f)_—l —lre gb(r)dT Then by Theorem 5.1[5],
the solution of (2.6) is
(2.7. )

/ G, y) ™ (dy) -+ V3o / Gi—o(Vor,y) W (dy, ds)

Since the two terms on the right hand side of (2.7) are orthogonal, we
have

B (8)2) = El( [ Guldu)T(dy)?] +2n [ G- s(Vo,y)|2dyds
(2.6) /Rd /0 /R

1
_ 2 , 2
_)‘H/Gt (6, y)dy +')\n'/.0 /Rd |G- . (Vo,y)|*dyds
Note that since G¢(¢,y) = f * ¢(y) and || fe|1 = 1

IGe(@.y)ll2 < ligll2 and
IVGi—s (6,92 = [|Gi=s(V&,y)ll2 < [V]l2,

by Schwartz’s inequality. Hence

BlIn ()] < Anlloll3 + At Vo3 -

Let h(z) = (1 + 2?)"!, 2 € R?, and define ar. increasing process ki,

by
/ /d /R, 7 (dy))*h*(z)dxds.

Recall that if ¢ € S(R*?) then G, (v, z,y) € S(R?).
LEMMA 2.3. For each T > 0, ¥:(z,y) € S(R*?),

Bl sup (V" (4))’
< {8V ) (W2 () () oo
P72 sup [ V1G(80) (02 (y)h(x)) " oo} - ZLT]

o<t<T n
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Proof. In (2.5)
ny.N2 1 m Y2
sup Vi ()7 < =2 sup(M, (V19))
t n t

t u
+ 2sup T(/ (/ ViGy—s(A@)MY (dx, dy, ds))2(111,)
t 0 0 R24d

by the Schwartz inequality. By Doob’s inequality

Elsup V" (¢)?]
t<T
(2.8)
1
< X‘“SEUWQn,T(VI (1))
(2.9)

T u
+ QT/ E[/ VG- (AY)M™ (dx, dy, ds)? du]
o JR2

0
Walsh (p410[5]) shows that the covariance measure for M3 is
e (dy)ns (dy')é (2" Ydxda'dsI

where [ is the identity matrix, hence its dominating measure (defined
in Definitionl.4) is

K (dxdydz'dy'ds) = 7 (dy)7js (dy' )6, (2" )deda’ ds

Then by theorem 2.5(5]
(2.8)

8 . N :
< ;\—E[/(/Vly’)(ar,yl)n:'(dy))2dmd5|

n

8 7 il 20 2 (21 A A2 B2 () da
o EUV (e )Pk (@) o /Rdx[o,m(/h(”) 3 (dy))2h2 () dids]

IN

IV 1 ) (B2 () o Elkn ()
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;2\?; / (/ ViGo—o(AY)M™(dz, dy, ds))?du

"2 Jo (/ / (7™ (V1 Gums (AW (dar, ds))?]du

/ A /RQ, /VI Gu-s(Bt,2 ):E”;hgrin (dy))? duds)du

== sup [[V1Gi (AR 1)h? ()" loo - / Elkn (u)]du

n Q< <7
; Elk (T
ST sup [V1GUAB)R ()R () oo - L]
0<t<T An

O

LEMMA 2.4. For each T' > 0. sup, 3=E[kn(T)] < (||1]]*T + 177
IVRI3) - [P113

Proof.

E[k,(T “ (/ Y)i% dy))? p h(x)dxds

Rd

T .
/0 B[ / B dg) s < [ OullBlE + A sl VRIR)ds

(1
1. A
=X (|03 - T + §TZHVhII§)

by Lemma 2.2. Therefore,

sup 3= EBlba (V) < (I0IPT + ST2I9M3) - ol

ke

LEMMA 2.5. For t < T, and ¢ € S(R*), {Q}" (¥)} is relatively
compact.

Proof. In (2.5), let

|||

ViG, - s(AY)(x,y, s) M3 (dx, dy, ds)]dv
Vn / /0 pea ?
and

1

S’n = —== 8 V (”}u*s A DYy, s A’[n d."?,d ,(1
VA, 1,25’1’. o S 1 (AY)(z,y. s) M3 (dz, dy, ds)|
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Then for ¢t < T, for any 6 > 0, and 0 < u < 6,
U, — U <68,

By an argument similar to the proof of Lemma 2.3

5 1
E[S;]1<C- —X-E[k,,,v(T)]. for some constant C

Hence if we let 7,,(8) = (6 - S,,)?
[|l -}-71 - Un’2 “7‘”] < E[W"( ’]’"}

and by Lemma 2.4
. : 1 , _
lim sup Bl (6)] = limsupé - C( Elkn(1)]) =

It is obvious that U;" satisfies the condition (a) of Th.3.7.2 in [3], so by
Th.3.8.6.in the book U}, the last row in (2.5), is relatively compact. By
the same way, we can show the relative compactness of the third term,
V" (¥) in (2.4). Since V", (¥), V3", (3p) are continucus and {Q3™ ()} is

relative compact, {Q(¢)} is relative compact. 0
Proof of Theorem 2.1, continuec. It is known that( Prop. 8.16[5])

- - ~ 1 .
(H'n,’ 1" x H", VV”, = T~}n’ h,./\“) = (VO, ‘/O « VO, W"’r,ﬁ, 0)

T

Since

\/——' R IP,(7 I/ 7); (dl/) = Py "L"(-T, y)ﬁs(dy) on DC“(Rd)[O,TW]

for any test function ¥ (r,y) € S(R*?), by Proposirion 1.1,

1 .
SeMp = = [ e )i s, an
)\'n 2 \/ n J Rix[0,t] J R4

:>/ / (i, y)7s(dy)W (ds, da)
Réx[0,¢] J R
= My (¥)
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Thus the two terms of V3", () in (2.5) converge.
Furthermore, Q(’)\” is known to be II” x I, and hence Q(’}“(u’)) =

Qo(¥), where Qo = V9 x VY Since R* = 0. Q~,’\(L’) is relatively
compact, and

1

’\[ Vo) = My +(Va
\//\—n ( ) 1r( 2v)

1 ,
—\/T.M;,(Vlw) — A{‘zvf(vl’d)),

n (2.3), Q) (¥) converges to Q,(v) satisfying
Qi) = Qolw) + /Q (A)ds + My(V2(9)) + Ma(V1 (1))

Since R = 0, Q;\"(w) =3 Q:(¢), where @, is a possible limit
of @} and in fact, the unique solution of (2.0). ]
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