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DIRICHLET FORMS, DIRICHLET
OPERATORS, AND LOG-SOBOLEV
INEQUALITIES FOR GIBBS MEASURES OF
CLASSICAL UNBOUNDED SPIN SYSTEM

HyE YounNG LM, YONG MoON PARK, AND HYUN JAE YOO

ABSTRACT. We study Dirichlet forms and related subjects for the
Gibbs measures of classical unlyounded spin systems interacting via
potentials which are superstable and regular. For any Gibbs mea-
sure u, we construct a Dirichlet form and the associated diffusion
process on L2(, du), where O = (Rd)zzv. Under appropriate con-
ditions on the potential we show that the Dirichlet operator asso-
ciated to a Gibbs measure p is essentially self-ad;joint on the space
of smooth bounded cylinder functions. Under the condition of uni-
form log-concavity, the Gibbs measure exists uniquely and there
exists a mass gap in the lower end of the spectram of the Dirich-
let. operator. We also show that under the condition of uniform
log-concavity, the unique Gibbs measure satisfies the log-Sobolev
inequality. We utilize the general scheme of the previous works on
the theory in infinite dimensional spaces develop=d by e.g., Albev-
erio, Antonjuk, Hpegh-Krohn, Kondratiev, Rockner, and Kusuoka,
etc, and also use the equilibrium condition and the regularity of
Gibbs measures extensively.

1. Introduction

In this paper we study Dirichlet forms and the associated diffusion
processes for the Gibbs measures of classical unbounded spin systems
interacting via potentials which are superstable aad regular in the sense
of Ruelle [38-2]. For any Gibbs measure g on © = (R9)%” we construct
a Dirichlet form and the associated diffusion process on L*(§2,du).
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Under appropriate conditions on the potential we “hen show that the
Dirichlet operator associated to the Gibbs measure u is essentially self-
adjoint on the space of smooth bounded cylinder functions. We will
give sufficient conditions to the potential so that the corresponding
Gibbs measure satisfies the uniforin log-concavity (R,-positivity) con-
dition. Under the condition. we then show that the Gibbs measure
exists uniquely and there exists a mass gap in the lower end of the
spectrum of the Dirichlet operator Furthermore, we will show that
the unique Gibbs measure satisfies the log-Sobolev inequality. In this
study we utilize the general scheme on the theory of Dirichlet forms in
the infinite dimensional state spaces [3-2, 6-3, 10-2. 12-2, 15, 27, 29-2.
35] together with the equilibrium condition and the regularity of Gibbs
measures [28, 33].

In [8], the essential self-adjointness of Dirichlet operators and the
log-Sobolev inequality have been proved for polynomially bounded one-
body and finite range two-body potentials. Thus, the results in this
paper can be considered as an extension of those in [8] to more general
class of potentials. See Assumption 2.1, Assumption 2.9, and Remark
2.10 in Section 2.

Dirichlet forms and the associated diffusion procasses have been in-
tensively investigated in connection with their important applications
to mathematical physics and to the theory of random processes (see [22,
25, 37, 42] and references therein). The theory of Dirichlet forns on
finite dimensional spaces is a well-known modern tool in the potential
theory [22] and quantum mechanics [5]. There have been many efforts
to extend the general theory to the case where the state spaces are of
infinite dimensional, hence non-locally compact topological spaces [1-2,
3-2, 25, 6-3, 37]. In all cases the forms are given lirst on some min-
imal domains of smooth functions with compact support or cvlinder
ones. Most of results then touch upon the problems of the closability
of the forms and the construction of corresponding diffusion processes.
The uniqueness problem of determining whether a given closable form
possessing the contraction property has a unique closed extension has
also been discussed in recent years ‘[4, -3, 26, 30, 35] and references
therein). Clearly the essential self-adjointness of the associated Dirich-
let operator implies the uniqueness  In this direction, various condi-
tions for the essential self-adjointness of Dirichlet operators have been
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obtained [6-3. 26, 50).

In applications, the important property of a Dirichlet operator is
when the logarithmic Sobolev inequality for tte Gibbs measure ap-
peares. The log-Sobolev inequality was first proven by Gross [24] for
Gaussian measures on R™, and then extended irn: many directions [14-
2, 19-2, 31, 32. 46, 47-3, 51]. The log-Sobolev 1nequality leads to the
hypercontractivity for the semigroup generated by the Dirichlet oper-
ator and has a wide range of applications [19]. For Gibbs measures
of bounded spin systems the log-Sobolev inequality was established by
Stroock and Zegarlinski [46, 47-3]. In [8] and [51]. the log-Sobolev
inequality for Gibbs measures of unbounded sp'n systems with finite
range pair potentials has been obtained. In [25], the essential self-
adjointness of Dirichlet operators and the log-Sobolev inequality for
Gibbs measures on loop spaces his been obtained. The log-Sobolev in-
equality for Gibbs measures on loop spaces has been also independently
obtained in [10] and moreover in [10-2], the log-Sobolev inequality has
been applied to show the uniqueness of Gibbs neasures for quantun
unbounded spin systems. In [3CG], we have proved the essential self-
adjointness of Dirichlet operators and also provel that under the con-
dition of uniform log-concavity (¢f. Definition 2.12), the unique Gibbs
measure for quantum unbounded spin systems satisfies the log-Sabolev
inequality.

Let us describe briefly the results and the basc ideas in this paper.
We deal with classical unbounde:l spin systems nteracting via super-
stable and regular potentials [17 28, 34, 39]. Lot C be the family of
finite subsets of the v-dimensional lattice space Z¥. Let ) = (R%)Z"
and for each i € Z¥, let m, : © — RY be the projection m{r) = x;,
= (1;)iezv € Q. Fory € RY, denote by |y| the Euclidean norm on RY.
We topologize € by the countable seminorms, {p; -;czv, pi(x) = |, ().
For each A  Z” we have a local g-algebra Fj of Forel sets for which i
i € A, is continuous. Let F = F; . For given intcraction ¢, we denote
by G*(0) the set of corresponding, Gibbs measures on (1. F). See Sec-
tion 2.1 for the details. Then G*({)) is non-empt, convex, compact in
the local convergence topology, aud a Choquet simplex (Theorem 2.5).
Furthermore, each g € G*(Q) is regular and satisfies the equilibrium
condition. See Definition 2.3 and Definition 2.4.

Let Qg be the subspace of ) consisting of elemients which have only
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finite numbers of non-zero components: if @ = (7;);ezv € Qgn, there
exists A € C such that x; = 0 unless 1 € A. We shall introduce three
inner products (-,-)g, (- )., and : ;- )4 on Q4g,, and denote by Hy,
H_. and H, the completions of €y, with respect to the norms | - o,
| -], and |- |4 induced by (-, -)o. (-.-)—. and ( .- )4, respectively.
These inner products are introducesd so that

(I.1) Hy CHyC H-

is a rigging of Hy by H, and H_ and such that the embeddings are
everywhere dense and belong to the Hilbert-Schmidt class. The duality
between H, and ‘H_ given by (-, - iy will be denoted by < -~ >. We
shall also introduce the subspace ,, of H_ defined by

(1.2) Mg = {r € H_ AN € Nst. o, < Nlog( i +1), Vi #0}.

By the regularity of Gibbs measures, it turns out that (Remark 2.6

(b))
(1.3) (1(Qog) =1 for any p € G*(Q).

Denote by CF(H_,R), k € NU {0, x}. the set of mappings from H_
into R that are k-times continuously Fréchet diff>rentiable [15] and
have bounded derivatives. Let FC'P* be the set ¢f smooth bounded
cylinder functions on ‘H_: that is if v € FCP°, there exist A € C
and f € CP((RYY) such that u(a) = f(za). For given p € G*(Q),

we shall consider a form on L?(H_ .dp) of the following type: for an
orthonormal basis {k, }22, C Qg, for Ho.

D(E,) = FCp®

/ 1 o
Eylu,v) = EZ / (V™u, V™) dp.

n==1

where V" is the directional derivative of w in the direction of k,,. Let
3 be the logarithmic derivative of the Gibbs measure p given as in
(2.19). For any x € e, |J(x)|_ is finite. Let H, be the Dirichlet
operator defined by

. 1 . 1 ; . ;
Hyu(r) = vsAu(:I:) -5 < (), Vu(r) >, we FCY.
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See Section 2.2 for the notations. Using the regularity of a given Gibbs
measure 4, it can be shown that [8|_ € L*(K_,du) (Lemma 3.1).
From this fact and the equilibrivm condition for Gibbs measure i, it
follows that H,, is a well-defined symmetric operator and satisfies the
relation (Proposition 3.3)

Eplu vy = (u, Hov)2. wowveFOr.

Since (£,, FCP?) is associated with a symmetric operator (H,, FCr),
it Is closable. By use of the method of [12]. the closure becomes a
Dirichlet form.

Following Albeverio and Réckner [13], we will construct the as-
sociated diffusion process. For the purpose, we need to show that
several conditions must be satistied. Among them the hardest part
18 to give a sequence K, € H_, n € N, K, compact, such that
limy, oo Cap(H - \ K,,) = 0. We will use the method of [27] together
with the equilibrium condition and the regularity of Gibbs measures
to show that such a sequence actially exists.

Next we cousider the problem »f the essential self-adjointness of the
Dirichlet operator H), for a given Gibbs measure ;i In [6-2], Albeverio.
Kondratiev, and Rockuer gave an approzimate -riterium of essential
self-adjointness of Dirichlet operators on CZ(H_ 1. We impose further
conditions on the potentials (Assumption 2.9) and check that under
the conditions the approximate criterium of [6-2] are satisfied in our
case. In [8], the same authors mentioned above gave a slightly improved
approximation criterion (the basic idea, however. flows the same line)
for the essential self-adjointness.

Finally we discuss the existence of a mass gap of the Dirichlet oper-
ator and the log-Sobolev inequality for the Gibbs measure. As in [15.
&]. we introduce the notion of uniform log-concavity (R,,-positivity) of
a Gibbs measure p. We will give sufficient conditions to the poten-
tial for the uniform log-concavity (Theorem 2.14). It turns out that
under the condition, the Gibbs measure exists uriquely. We will then
show that under the both condition of essential self-adjointness of the
Dirichlet operator H,, and of uniform log-concavity, the unique Gibbs
measure satisfies the log-Sobolev inequality. See [14] and [8] for the
related results.

We organize this paper as follows: In Section .1, we introduce no-
tations, definitions and basic assumptions on the potentials, and then
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describe specific properties of Gibbs measures from [28, 33]. In Sec-
tion 2.2, we introduce Dirichlet forms and Dirichlet operators for Gibbs
measures, and give the main results in this paper. In Section 3, we con-
struct Dirichlet forms and the associated diffusion processes employing
the methods in [12-2] and [27]. In Section 4, we show the essential
self-adjointness of Dirichlet operators under Asswnption 2.1 and As-
sumption 2.9. Main ingredients shall be the approximate criterium of
essential self-adjointness of Dirichlet operators [6] and the regularity of
Gibbs measures. In Section 5, we will prove the uriform log-concavity
of the Gibbs measure under proper conditions on the potential (The-
orem 2.14). We also prove the log-Sobolev inequality for the unique
Gibbs measure under the uniform log-concavity condition (Theorem

2.16).

We remark here that the original version of this raanuscript has been
already appeared two years ago. In the mean time, some further results
have been obtained by many authors, see e.g., [8, 51, 30, 35]. In order
to accommodate those results we have revised the original version of
this paper.

2. Notations, preliminaries, and main results

2.1. Classical unbounded spin systems; Gibbs measures

We consider the classical unbounded spin systems interacting via
potentials which are superstable and regular. The systems were studied
in detail in [28] (see also [17, 34, 39]). As a preparation, we briefly
describe the svstems we consider and collect basic results which will
be used in the sequel.

Let Z" be the v-dimensional lattice space. Denote by C the class of
finite subsets of Z¥. At each site ¢ = Z” we associate an identical copy
of RY For = (xt. 2 2% € RY and i = (4y,i9,- - .i,) € Z¥ we
write

d 1/
= L2 - ;
(2.1) || = (Z(.p) ) o il = max iy

=1
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For each A € C, we write

(2.2) xp = {x; i € A}, dzy = Hdm,;,
€A

where dx; is the Lebesgue measure on RY. In this paper, we only
consider one-body and two-body potentials, and introduce the local
potential

(2.3) Viea) =Y @)+ Y @pgy ),
€A {i.7}:
ijEA
where for any 4,7 € Z¥, ®y;y and ®y; 5} are one-body and two-body
interaction potentials which are measurable rea! valued functions on
R? and R? x R?, respectively. Throughout this paper we impose the
following conditions on the interaction:

ASSUMPTION 2.1. The interaction ® = (®a)\czv satisfies the fol-

Al<2
lowing conditions:

(a) There exist a differentiable function P(x) on R* and positive
constants a and b such that for cach i € Z¥, ®y; (v;) = P(x,) and for
some vy > 2

P(x) > alz]” —b.
(If v = 2, then the constant a is assumed to be sufficiently large.)
Moreover, for any o > 0 there exists M («) such that the bound

Z)()_IP(T)I < M(a)exp(ajz?), 1=1,2.--- .d,
x

holds.

(b) For each r € N, there exists differentiable symmetric function
U(.-7): REx R? — R such that S (g my) =Ule; oy li — g]) =
Ulxy,ri i — j|) for any i,j € Z¥. Moreover, there exists a decreasing
function ¥ on N such that ¥(r) < Kr~ V"¢ for some constants K and
¢ > (0 and such that the bounds

Ut ysli = D)= W= )5 el + 1y ).

J N o )
UGyl =) < Wi - e+ ). 1=12,

hold.
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REMARK 2.2. By the above conditions the interaction is invariant
under Z"-actions and moreover, superstable and regular. i.e.. there
exists A > 0 and ¢ € R such that for any 74 € (R4,

(2.4) Viea) =Y (Ali* - ),
PEA

and if A;, A, are disjoint finite subsets of Z¥ and if we write
V(raon,) = Viea) + Viea,) + Wiay, x4,).

then the bound

(25)  IWlra,. o)< > > \P(ti—m% (e * + [;]%)

TEAL JEA,

holds. Furthermore, by Assumption 2.1 (a) we may take A in (2.4) to
be sufficiently large so that we may assume that

> vl < A

7 {;ZLU

which was needed to show the regularity of Gibbs measures in Theorem
2.5 28, 33, 39].

Let Q = (RH%" and for each i € Z", let m, : Q -» R be the projec-
tion m;(x) = x;, r = (1,);ezv € . We topologize ? by the countable
seminorms, {p;ticze: p(r) = |m(r)]. Notice that this topology is
equivalent to the metric topology given by the merric

(26) (1(.1‘,! l]) = Z 2—|;|“‘4” ;llllk ’ T,y € Q.

JETY 1 ':I’-l - !/1‘

where & = (r;);czv and y = (y;);ez - For each subsiet A C Z¥, we have
a local g-algebra Fu, which is the minimal o-algebra of Borel sets for
which p,, 7 € A, is continuous. We simply write F for Fzo. By P(Q, F)
we mean the set of probability measures on (0, F).

Before introducing Gibbs measures on €2, we give the notion of reg-
ular measures on §2:



Dirichlet forms and log-Sobolev inequalities 739

DEFINITION 2.3. A Borel probability measure 1 on (2, F) is said
to be regular if there exist A* and 6 > 0 so that the projection pa of s
on any (£, F4), being understood as a measure on ((R*)4, B((R)A)).

satisfies
S At - 6)] .,

PeEA

glaoa

1) < exp

where g(xalp) is such that pa(drepy) = glralp)dry.

Let us define

(2.7) &=[]J 6w
NeN
Sy ={re:Vvi, Z li|* < N2(21 + )"}
prl<d
This definition is invariant under linear translations of Z¥. It can be
shown that each regular measurc on (2, F) has its support on & [38].
We say that a measure p is tempered if p(&) = 1.
For . € Y and A € C, we write
Wira,wae) = L D,y (i)

i€r, JEAS
(2.8) = > Ulwwa;) =il

i€h jEAT
The partition function in a finite A C Z¥ for tae interaction ® with
boundary condition y € & is defined by

(2.9) Zf(y) = /d:r,A exp| =V (ra) — W(ea, yac)]

Notice that the partition function is well defined from the assumptions
on ® [38, 28]. The Gibbs specification v = (v¥)rec with respect to &
is defined by [23, 28, 33]

Z3(y) ! / dry exp[—V(:a) — Wira. yao)]

I A ‘I’ gy — .
(210) 93 (Aly) = X 1(rayac). ifyes

0, ifyeeo.
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where A € F and 1,4 is the indicator function of .4 and zayae is the
configuration defined by x4 on A and ya- on A€, respectively. It is easy
to check that the Gibbs specificaticn satisfies the consistent condition
[23]: for AC A, y€B.

(2L (Aly) = / S (dF |y (AR

JO

~E(Aly).

We now give a definition of Gibls measures on 12, F):

DerFINITION 2.4. A Gibbs measure u for the potential @ is a tem-
pered Borel probability measure on (2, F) satisfying the equilibrinm
conditions (equations)

n(A) = / plde)y P (Alr), A7

We denote by G*() the family of all Gibbs measures.

We summarize the results from Theorems 4.3 - .1.5 of [28] and The-
orem 2.7 of [33]:

THEOREM 2.5. Let the hypotheses of Assumption 2.1 hold. Then
any Gibbs measure is regular. Furthermore, G® () is non-empty, con-
vex, compact in the local convergence topology, and a Choquet simplex.

REMARK 2.6. (a) The above i~ the classical version of Theorem
2.7 of [33]. The existence and the regularity of GG'bbs measures were
shown in [28]. Direct applications of the methods nsed in the proof of
Theorem 2.7 of [33] give the rest of the theorem.

(b) Denote by €y, the subset of @ defined by
(2.11)

Qog = {2 = (1:)iezr € Q: AN st 1) < Nlog |i| + 1), Vi # 0}.
Due to the regularity of Gibbs measures, one can show for any Gibbs
measure p that p(Qs) = 1. In fact, this follows from Lemma 3.1 of

[28] as a corollary.

2.2 Main results
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We introduce Dirichlet form and Dirichlet operator associated to a
Gibbs measure 1 € G*(§) and then list main results in this paper. We
begin with some notations. As in Introduction let Q5. be the subset
of {1 consisting of elements whicl have only finite members of non-zero
components, i.e..

(2.12) Qpn = {or = (r)iczr € Q: 3A €Cs. a; =0if ¢ A}

Let us introduce inner products in Qan as follows: for a given (fixed)
real number o > 0 and for z = (ri), ¥ = (i) € Q.

(0, y)o = >: (i, 93 ),
(2.13) (r,y). = ‘S e "“’m(:lri,y,)w
iz
(v.y)y = "_: ey,

PR AL
A

where for each i € Z¥, (r;,5,) is the Euclidean inner product in R?.
The constant ¢ > 0 will be fixod according t¢ Assumption 2.9 (d).
Denote by | - |o. | - |-, and | - |1 the norms indi.ced by (-,-)o, (-.)._.
and (-, ), respectively. Let H,,, H_. and H, be the separable real
Hilbert spaces obtained by completions of {lin with respect to | -
| - |—,and | - |, respectively. Nctice that the enibeddings

bR

(214) Hy CHyC H-

are everywhere dense and belong to the Hilbert-Schmidt class. Thus,
the above is a rigging of Hy by H, and H_. The duality between H
and H_. given by the inner product in Hgy will be denoted by < -.- >.
Let ¢ be the subset of Q defined as in (2.11). Since Qo C H..
p(H_) = 1.

We now focus on L*(H_,du) for a given u & G*(Q). For n =
0,1,2,---, we denote by CP'(R™) the n-times continuously differen-
tiable functions with bounded I th derivatives, I = 0,1.--. .n. Let
FCy be the family of cylinder functions of the (' type:

FO ={u:H = R:3AC, € CPURYY) st u(x) = flrp)).
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Put FC° =N, FCY. It turns out that FCy° is dense in LP(H_, dy),
p > 1, for any Gibbs measure p. See Lemma 3.4.
Following [3—2, 14-2, 6-3, 12-2, 26} we introduce a Dirichlet form for
a Gibbs measure pu € G¥(). Define for u € FC;° and k € H_ the
Gateaux-type derivative of w in the direction k:
ou(r) d

“W- g E“(T + »1\) s

Define for k € H_

—0, TEH_.

L Bu(x) Ov(x) N o
gk(]l,.?/) = 5 ‘/H (‘)}, “‘(jk— (1/1,(.7,), U, ) (S fcb .

Observe that if k = (k;) € H_ and u(x) = f(xa),
au(.’?') i .
ok :Z(V flra). k).

€A

(2.15)

where V* is the gradient operator with respect to z; = (), )

variable. Let {k,} be an orthonormal basis of Hy such that k, €
Qfn C Hy for each n € N. Define « form on L2(H..,du) by

D(E,) = FC°

(2.16) Ep(u.v) = }_: E, (u,v).
7=l
Obviously, &,(u,v) is independent of the choice o orthonormal basis
(37].
Let us consider a coordinate free version of the form (2.16) [37].
Observe that by (2.15), for v € FC® and x € H_ fixed, k — %(A—Q is
a continuous linear functional on H _. Define Vu(:r) € Hy by

{)‘ﬂ;l')

(2.17) < Vulr),k >= FTa

keH. .
It follows from (2.15) — (2.17) that

D(&,) = FCy°

(2.18) Ep(u,v) = % / (Vu(e), Vu(x))p, dy.
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The form (&,, FCp©) is a densely defined positive definite symmetric
bilinear form on L?(H_ . dpu).

We review briefly Dirichlet forms and the associated processes [22]
on a separable real Hilbert space (9.(-,-)) == L?*(Q.du). A pair
(£.D(£)) is a form on $H if D(E) is a linear subspace of § and & :
D(&) x D(E) — R is non-negative symmetric bilinear form. Given a
form (£.D(&)) and o > 0, we <ot £, = & +a’-.-), D&, = D(&).
(£, D(€)) is said to be closed if the pre-Hilbert space (£,.D(&))) is
complete and closable if it has a closed extension, i.e.. there exists a
closed form (E.D(é)) on $ such that D(&) C D(E) and £ = £ on
D(E). A form (€. D(E)) on a Hilbert space L2(Q.dp) is said to be
Markovian if for each € > 0 there exists a real function o1, t € R,
such that ¢ (1) =t for 0 <t < 1, —2 < ¢ (1) T 1 + ¢ for any t € R,
0 < @e(t) —de(s) < t—s whenever s << ¢ and for any v € D(E). it holds
that ¢.(u) € D(E) and E(p.(u), d.(u)) < E(u, e . A Dirichlet form on
a real Hilbert space L2(Q. dyu) is defined to be a closed Markovian form
(E,D(E)) on L2 (. dp).

We return to the form defined in (2.16) ((2.18)). We have the fol-
lowing result:

THEOREM 2.7. Let yt be a Gibbs measure with interaction ®. Under
Assumption 2.1, the form (€,, FCp*) defined by (2.16) is closable on
L*(H_,dp) and its closure is a svinmetric Dirichlet form.

Next, we consider the associated diffusion process. Let (£, D(E)) be
an arbitrary Dirichlet form on L2(Q.du). Here we do not restrict Q
and p to any special case. Defin:

D(L) ={ue D(E): v E(u,v) is continious w.r.t. (- );/;) on D(E)}.

and let (L, D(L)) be the linear operator defined by (= Lu.v) = E(u. v).
Then. L is the generator of a strongly continuous Markovian semigroup
(Tt )izo. Loy, Ty = e+ >0, and for all v € LA dp), 0 < u < 1
implies 0 < Tyu < 1,1 > 0. See 22, 37] for detarls. A Markov process
((2]“" (X1)i>0. Pr) with state space Q is said "o be associated with
(£.D(E)) if for any u : Q0 — R, F-measurable. bounded, and + > 0,

(Thu)(r) = /‘ w(Xy)dP, for p—ae xe().
S
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A Markov process associated with (£, D(£)) is called a diffusion process
if it is a Hunt process having continuous sample paths Py-almost surely
for each = € Q [22].

THEOREM 2.8. Let the hypotheses of Assumption 2.1 be satisfied
and p1 € G¥(§2). Then there exists a diffusion process with state space
H . associated with the closure of (£,. D(E,.)).

In fact, under Assumption 2.1 and Assumption 2 9 listed below, the
diffusion process associated to the Dirichlet form for a Gibbs measure
is unique by Theorem 2.11. The proofs of Theorem 2.7 and Theorem
2.8 will be produced in the next section.

We introduce the Dirichlet operaror associated to a Gibbs measure.
Let P(x) and U(x,y;|i — j|) be the one-body and two-body potentials
given in Assumption 2.1. For a € {ijo, let G(2) be an element of H_
given by

(2.19) B(x) = (Bi(x))iezr, 1 € Qiog,
Bi(x) = =V'P(a;) = Y VU (i, x5 1 — 3l),
JGZV
e
where V' is the gradient operator with respect to z; = (z}, -+ ,z%).

In Section 3, we will show that 3(r) € H_ if * € {log. Denote by
C*(H_, B) the set of mappings from H_ into a Banach space B that
are k-times continuously differentiable in the sense of Fréchet. See, e.g.,
[14-2]. Define CF(H_,B) as the subset of C*(H_, 13) which is charac-

terized by the boundedness in usual operator norms of the derivatives
fOH S LH_L(H_, - ,LiH_,B)---)), 1=0,1,2,--- k.

For f:H_ — R, identify f'(-) € £L(H_,R) with the vector f/(-) € Hy
and f”(-) with the operator f”(-) € L(H ., H4) by the formulae

(2.20) Flla)h =< f'{z),h >,
(f"(x)h)g =< f'(z)h.g>», h.geM , z €H_.

For the function f € C = CZ(H_,R) we use the symbol Vf = f" and
Af = Try, (f"”). Notice that Vf is consistent with that of (2.17). We
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introduce in the space C’g the norm

I fllcz = xsel;f_{lf(ér)l @ @)oo 20 )

Define a differential operator H,, on the domain D(H,) = FC¥° by
the formula
(2.21)

1
Hyu(z) = ~%Au(m) —5< B(x), Vu(z) >, uweFCFP zeH_.

In the next section, we will show that H 18 a well-defined symmetric
operator in L?(H_, dp) and that the relation

(2.22) Eu(u,v) = (u, Hyv)pe, u,v € FC,

holds. Since &, is associated to the symmetric operator H,, £, is
closable. We call the operator A, in L3(, du) with D(H,) = FCg®
the Dirichlet operator associated to L.

In order to ensure the essential self-adjointness of H),, we need to

impose additional conditions to the interaction.

ASSUMPTION 2.9. Let P(x) and U(x,y; [i—j}) be the one-body and
two-body interactions introduced in Assumption 2.1. We assume fur-
ther that the following properties hold : P(x) and Ulz,y;li—j]), i,j €
ZV, are three times continuously differentiable functions satisfying the
following conditions:

(a) For any positive real number o > 0, there exists positive constant
M (o) such that the bound

d

8 8
Z rb‘ﬁéﬁp("’)

L k=1

< M(a) explalz|?)

holds.
(b) There exists M € R such rhat

Hess. P(x) > M1, z¢eR°,

where Hess.P(r) is the Hessian of P(z), ie., the d x d matrix whose
l-k elements are given by (5% %P(:r)) Lk=1.2---d.
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(¢) In the case of d > 2. there 9\'1‘51‘ a function () : R — R and an
element b € R such that P(x) = y+box, v e R

(d) The function ¥ of Assumptzou 2.1 (b) is exponentially decreas-
ing: there exist K > 0 and o > 0 such that

Yir)< Ke ™", rel

Furthermore, the bounds

J
i - m+

07 O Wy'?‘"y

() ’d )k

hold and for anv y € R and r € N the third order partial derivatives
of U(x,y;r) with respect to x and y variables assi.me to be bounded

by ¥(r).

REMARK 2.10. We impose the strong regularity condition (Assump-
tion 2.9 (d)) to show the essential self-adjointness of H,. If P(x) is
polynomially bounded, one can replace e~ by (i +1)7%, 0 >v.in
the definition of the norm |r|._. Theu, the bound W([i]) < K(Ji|+1) %7

is sufficient. See the proofs of Lemma 3.1 and Theorem 4.1

Under Assuuption 2.1 and Assumption 2.9, we have the following
result for the Dirichlet operator H,,-

THEOREM 2.11. Assume that the properties in Assumption 2.1 (a)
and Assumption 2.9 hold and y € G*(§). Then, the Dirichlet operator
H, with D(H,,) = FCy* is essentially self-adjoint .n L*(H . du).

The proof of the above theorem wiil be given in Section 4.

Finally, we discuss the log-Sobolev inequality for a Gibbs measure
¢ [14-2, 6-3, 24, 46. 47-3, 30, 35, 51]. Recall the cefinition of 8(r) in
(2.19). Notice that 1 1, — H. and so for r € . the Gateaux
derivative (')(,'—l is well defined in the direction of % € Q). especially
in the directions of Hy \'()('t(nw I et us define for each @ € {1y, an
operator R, () Hy — H -

(2.23) R, (r)(h) = — 20 e g, e My
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Since p(Shog) =1 for any € ¢*(Q), R,(-)h, h € H,, is well defined
p-a.e. In Lemma 5.1 we will show that R, (z) € £(H,,H_). We notice
that in [15] R, () was defined to be — (), however, we cannot define
#'(x) in the Fréchet sense because 3 is not everywhere defined in H_ .
See Section 5 for the details.

DEFINITION 2.12. We say that a Gibbs measure 18 uniformly log-
concave (R, -positive) if and only if there exists A\ > 0 such that for
any y € Hy and x € Q5. the bound

< Ru(ry,y >> Ayla

holds for p-a.a. r € H_.

Let us fix a dense linear subset X C ‘H,. We say that a measure
p € P(H_) is K-ergodic if and only if the only measurable subset of
H_. which are K-invariant has p-measure zero or one. We recall that a
p-measurable set A CH_ is K-invariant if VA € K, p((A\ Ap) U (An \
A)) =0, where Ay = A+ h={r+h:aze A}

We define the space Wy (u) and W2(u) as the closures of C? in the
norins

]

b = [l + 90 e

(2.24) Hu“fvzg(#) = ”“’”%V;(p) + /H Tryg, (u” - ") dp,

respectively.
As in [8], we denote by Pe(H ) C P(H..) the set of all probability
measures in H . which is characterized by the foliowing two conditions:
(a) For any p1 € Py, (H_) there exists the square integrable logarith-
mic derivative 3 of p and therefore the Dirichlet operator H, is well
defined on CZ(H_) by the formula (2.21).
(b) H,, is essentially self-adjoint in L?(H_, du with a core C2(H_).
If 1t € Poa(H_). we will use the same notation H,, for the closure of
H, for simplicity. The following theorem was proven in 8].

THEOREM 2.13 ([8, THEOREM 2]). Suppose jo € Py (H_) is uni-
formly log-concave with a constant A > (). Then.
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(a) D(H,) C W3(p).

(b) If the measure  is K-ergodic, then the poin: O € R is a simple
eigenvalue of H,,.

(c) If the measure i is K-ergodic, then there is a gap in the lower
end of the spectrum of H,; moreover, H, > A/4 on the orthogonal
complement of constants in L*((), djt).

For the uniform log-concavity of (:ibbs measures we have the folloing
result.

THEOREM 2.14. Suppose that the hypotheses ‘n Assumption 2.1
and Assumption 2.9 hold. In addition, suppose that Assumption 2.9
(d) hold with a positive constant M > 0, i.e., 3M > 0 such that

Hess.P(zx) > M1, reR%
Furthermore, suppose that

M =24 Y (i) < M.

PETV 340

Then, the Gibbs measure exists uniquely and the unique Gibbs measure
is uniformly log-concave with a concavity constant X = M — M’ > 0.

The proof of the above Theoremn will be given in Section 5. Let
us take K C H, in Theorem 2.13 to be the speciil one {lg, defined
in (2.12). We say that a Dirichlet formn (£, D(£, )) is irreducible if
for any u € D(&,) with &,(u,u) = 0 it follows hat w is constant
p-a.e. [9]. In [9], it was shown that the irreducibility of (€,. D(E,))
is equivalent with the extremality of ;¢ on the set of measures that
have the same logarithmic derivatives. Moreover, by Theorem 3.4 ond
Theorem 3.7 of [9], the irreducibility in turn is equvalent with (space)
ergodicity of g under the condition (3.2) of [9]. For Gibbs measures,
by the equilibrium condition, the c¢ondition (3.2) of [9] holds true for
any k € g, through equation (3.3) of [9]. On the other hand, since
the Gibbs measure exists uniquely under the condition of uniform log-
concavity, the unique Gibbs measure is automatical y an extremal one.
Thus, we state as a corollary the following result.
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COROLLARY 2.15. Suppose that the hypotheses in Theorem 2.14
hold and let ;1 € G®(Q) be the unigue Gibbs measure. Then, the
conclusions (a), (b), and (c¢) of Theorem 2.13 hold for the Dirichlet
operator H,,.

From now on, we discuss the log-Sobolev inequality for Gibbs mea-
sures. Let us recall that a probability measure ;- satisfies a log-Sobolev
inequality if and only if there exists some constant ¢, > 0 such that
for all f € W, the following inequality holds [21]:

/H F)

(2.25) < ¢ /H IV f(x)

“log | f(x)|du )

2du(z) + ||f”i2(, ) log 1l L2

The coefficient ¢, is called a Sobolev coefficient.
We have the following result for the log-Sobclev inequality.

THEOREM 2.16. Suppose that the hypotheses in Theorem 2.14 hold.
Then, the unique Gibbs measure p € G®(Q) satisfies the log-Sobolev
Inequality with a Sobolev coefficient c,, = A™1, where A = M — M.

The proof of the theorem w:ll be given in 3ection 5. An impor-
tant consequence of the log-Sobolev inequality is that the semi-group
{Ti}+>0 in L?(p) defined by

(2.26) T i=exp(—tH,). t>0.

is hypercontractive [24]. From Theorem 2.16 and Rothaus-Simon mass
gap theorem [36, Sim|, we have that 0 € R is a simple eigenvalue for
H, and H, > (2¢,)"" on the orthogonal complement to the constants
in L?(i). By the spectral theorem, this implies the L*-ergodicity of
the semigroup T3, t > O

(2.27)

t X .
HTff';Eﬂf“LQ(;L) < €xXp <_2() ” f— Ey.f”LQ(;L>) v f < LZ(,“)» vi> 0.
g
where E,f = [, f(x)du(z).

Before closing this section, it may be worth to give a typical example
for which all the results in this paper are valid.
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EXAMPLE 2.17. Let P(x) and U(x,y;7) be the one-body and two-
body potentials given as follows:

(2.28) P(r)= Z ag ), e RY,
I=1

where ag,, >0, ax > 0,and ay >0 (=2, ,n— ).

(2200 Ulrgli—il) = fli = iDley). oy e R

where f: N — R. Assume that ther: exist constants £ > 0 and ¢ > 0
such that |f(]i — j|)| < K exp(—20|: — j|). Then, all the conditions in
Assumption 2.1 and Assumption 2.9 are satisfied. Furthermore, if the
strict inequality

2dK Z exp( -2clj|) < az

2

JEZY:
1#0

holds, then the uniform log-concavity (R,-positivit:) holds.

3. Dirichlet forms and associated diffusion processes

In this section we produce the proofs of Theorem 2.7 and Theorem
2.8. We first establish the relation (2.22) by using the equilibrinun
condition (Definition 2.4) and then «how that for any Gibbs measure p
the Dirichlet operator H,, is a well-defined symmetric operator. Then,
the proof of Theorem 2.7 follows from the relation (2.22). For the proof
of Theorem 2.8 we use the well-known method deve'oped by Albeverio
and Rockner [13].

Recall the definition of (4, in (2 11) and Qg, in 2.12). The follow-
ing inclusions

Qe CHL CHo C Qg CH-CQ

hold and for any Gibbs measure g, p1(£),) = 1. See Remark 2.6 (b).
In the rest of this section we assurne that the properties in Assumption
2.1 hold and a Gibbs measure ;t € G*((2) is given. We begin with the
following result:
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LEMMA 3.1. Let 3 be defined as in (2.19). Then |3(z)|_ is finite
! € L*(H.,dp).

Proof. Notice that

(3.1) B(x))2 =" e 3]

I'_TT/'(/

Using the Schwarz inequality and Assumption 2 1 (b) one obtains that
for r = (:T,'),',Ez;v € Ql(,g

(32)  13(n)? <2V'P(x |‘*+MZ\P!1--JI eil? o+ o))

1#7

for some constant M > (. It follows from Assuraption 2.1 (a) and the
definition of (o that [3(z)] - < >0 for any & € Qoq. Since p(Qog) = 1.
|8]— : H- — RU {—o00, 00} is finite g-a.e. Due to the regularity of s
and Assumption 2.1 (a), there exist positive constants c¢. M;. and AL,
such that the bounds

/ IV P(x;)|du(x) < ¢ / |VP(r)|? exp(—A*|x|?) da
JH R4

< M
and
/ (Jas | + |5]?) dp() < 2c/ 2] exp(—A*|2|?) dr
S JR
< Ay
hold. The lemma follows from (:.1) and the above bounds. dJ

Define for A € H_, 7, : H_ — H. by 7e(x) ==  + k. and let 7 ()
be the image measure of g under 7. If 7. (s1) is absolutely continuous
with respect to p, we set

) = dn (N) x).

arlo (]/L

For £ € Qg, we show that the ogarithmic dervative @, of u in the
direction k& exists.
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PROPOSITION 3.2. (a) For any k € Qg, and s € R, Tsx (1) Is abso-
lutely continuous with respect to yu. Furthermore,

d
Bk = E(} *Sk‘s:()
is an element in L*(H_,dy).
(b) If ()" denotes the adjoint of 2, then CZ(H_,R) C D((Z)")
for any k € Qg and for any k € Qg, and u € C’f, the relation

o\ J
(5]:) uw= TRt Bru

Proof. We use the equilibrium condition and the regularity of p
extensively for the proof. Let k& = (k;);ezv € Qgn be such that there
exists finite subset A € C so that k; = 01if¢ ¢ A. Using the equilibrium
condition (Definition 2.4) for u we obtain that for any A € B(H_)

holds.

re)(4) = [ u@{23'@ [ des expl-V(a) - Wiea 7ao)
<L ay(@aTac) )

:‘/ du(ii){Z;‘(;E)/ dza exp[=V(za) — W(za.Fac)]
< La(ra(a)iac) .

where 14 is the indicator function of A. We use the change of variables
Tsk(Ta) — A and the equilibrium condition once again to get

(3.3) .
Tok (1) (A) :/ du(x) exp{ - Z[P’m — ski) — P(w)]
A 1EA
— Z U(z; - ski,x, — sk i — j|) -- Uz, xy; )i — 1))

{1.7}CA

— Y WUl skrili = gl) = Ul i - 1))

€A, jEAC
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The above relation implies that for any s € K, 7 (n) is absolutely
continuous w.r.t. 4 with the Radon-Nikodym derivative asi the factor
exp{---} in (3.3). From this fact it follows that

(34) Bi(z) ==Y (V'P(z) k) = > N (VU (wia: )i — 1), k)
iezv i€ZY jezv:
i
where for each i € Z¥, (y;, k;) denotes the inner product in RY. With
the notation in (2.19) and (2.20) we write

(3.5) Br(r) =< B3(x). k> .

Since |Gy (x)| < |B(x)|_|k|y, Br e L*(H_,dy) by Lemma 3.1.

(b) The part (b) of the lemma follows from the part (a) and Propo-
sition 4.5 of [12]. See also [15, 26]. In fact we can show the part (b)
directly by using the equilibrium condition and an integration by parts
formula as follows: Let {e! : i€ 2" 1=1,2,... ,d} be the standard
basis for Ho. Then for any u.v € C? and ¢! one has

/ zx(r)gel—}I(T) du(x)

i

Ov
:/u(a:zm{,;}a)—éﬁ(@;r:{f}f)du(m)

- / an(®){ 2} (@) / d, expl—Pla;) — Wiy 70y )]

N ov ,
X u(:zr,,;m{,;}r)*—,(-lfi”’{z‘}")
Ox;

_ / au(r) | - %(m{i}c) - B(a)u()|v(a),

where 8!(z) =< (), el > . Here we have used the integration by parts
formula and the equilibrium condition to obtain the third equality.
Since any k € (g, is a finite linear combination of elements in the
standard basis, we proved the part (b) of the lemma completely. [

We now establish the relation (2.22). In fact we have the following
result:
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ProproOSITION 3.3. The Dirichlet operator

) 1 . 1 . .
Hu(r) = —§Au(:r,) 5 Blr). Vu(z) > ueCE
is a positive-definite symmetric operator in L?. Furthermore. H,, is
associated with the form E,(u,v) of (2.16) by the equality £,(u,v) =
(u, Hyv)pz.

Before proving the proposition we give some comments. Since the
embeddings H; C Ho and Hp C ‘H_ are Hilbert Schmidt operators,
Au = Tryg,u” is well-defined for any u € CZ. For u € C£, the function
< B(-), Vu(-) > is finite p-a.e. and belongs to L?(H_,du) by Lemma
3.1, and so H,, is well-defined on C?.

Proof of Proposition 3.3. The proposition follows from the definition
of £, in (2.16) and Proposition 3.2 together with a suitable choice of an
orthonormal basis {k;} € Qg,. For an instance, we choose the standard
basis {e! : i€ Z¥ | =1.---,d}. From (2.16) and Proposition 3.2 it
follows that

d .

1 dJu Ov
5“(7/'»'“) = 5 Z((_j(_i Z):i)lz

1€ 1=1
d
1 9 Gv
2 N G i R
2 ez 1:1( ( el ei)(f)ef )Lz
l g - v
- 5(“’ —Av) e+ (u,— < B, Ve >

See also the proof of Theorem 1 of [26] for the proof with arbitrary
orthonormal basis. O

We now turn to the proof of Theorem 2.7.

Proof of Theorem 2.7. Since FC° C C¢ and (£, FC) is associ-
ated to the symmetric operator H,, with the domain FC°. (€, FCP©)
is closable by Proposition 3.3. The Markov property of (£,. FCp*) fol-
lows from a well-known method [12, 37]. See the proof of Proposition

4.5 of [37). O
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We next consider a diffusion process associated to the Dirichlet form
for given Gibbs measure p. We start with the following lemma.

LEMMA 3.4. FCp< is dense iu LP(H_ dp), = < p < .

Proof. Here we present a proof which we learnt from B. Schmuland
[40]. It is easy to show that any Borel set in H_ is also a Borel set
in Q and so one may consider ;¢ as a Borel neasure on H_. Since
for any vector & € Qg,. (1) <€ g (Proposition 3.2 (a)) and Qg is
dense in ‘H__, we can show that g is supported in H_ (i.e.. WUy >0
for any open U € H. ). First, we show that there exists a countable
family in FCP® which separates points in H_. Let {r,, € R?: m ¢ N}
be an emuneration of the family of vectors in RY which have rational
coordinates. For each m, n € N. define smooth “unctions am and ay,, ,
on RY by a,,(y) = (17,,,1/) and ap, . (y) = nsia,,(y)/n). For each
v e ZV. let fima(r) = ayn(2i). @ = (2:)iezr & H_. and define G to
be the class of those functions f',:‘,,,‘n, € Z%, m,n € N. Clearly, G
Is a countable subclass of FCP and separates points in H_ because
lim,, o nsin{t/n) = t. for any + € R. Since H_ is a Polish space,
the a-algebra gencrated by G, and hence the o-algebra generated by
FCpe, s the entire Borel g-algebra B(H _) ([18], Corollary 8.6.8). Now,
denote by B the familv of functions « € By(H_) for which there exists

a sequence {u, } in FCX such that [ |u, —u|Pdy — 0 as n — sc. Then
by a Monotone Class fll(‘Ol(‘IIl [41]. A0.6). we see that B = By(H..)
and we conclude that FCP is d»nso in LP(H -, ). O

We now turn to the proof of Theorem 2.8. [n [13], Albeverio and
Réckner gave sufficient conditions for the construction of the associated
diffusion process. We will check that all the conditions are satisfied
in our case. Let (E,, D(Eu)) be the closure of (£,, FCP®), and let
Eunlu vy =& (u,v) + ] wvdp, wv € FCP°. For any open U C H_.
define the capacity [22] of U by

Cap(U) = inf{c‘:},‘l(n‘ u): € D(gﬂ), w>lonlU jp—ae ).

and for any A C H_ Cap(A) = inf{Cap(U) : AC U, U open }.

Let us now consider the following conditions introduced in [13]:

(i) There exist K, C H_, n < N, K, compact, such that lim,, _,
Cap(H. \ K,,) = 0.
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(ii) There exists a countable set L) of bounded continuous functions

on H_ separating the points of H_ which is dense in 2(£,,) with respect
to gull.

(iii) Sx“(u,v) = 0 if u,v € D(£,;, continuous, such that supp uN
supp v = 0.

(iv) There exist f, : H. — R, n € N, generating the topology of
"

The following is a main result of 13]:

THEOREM 3.5 ([13], THEOREM 2.7). Assume that the conditions
(i) - (iv) listed above are satisfied. Then, there exists a diffusion process
with state space H_ associated witl (€,,, D(E,)).

In order to prove Theorem 2.8, we prepare as follows. Let us fix
p > v and define

1/2
(3.6) Q) = <Z (7] + 1)_”].1,[2) ., T ={(r)ezr € H_,

and
(3.7) Qo= {reH_:Q(x) <o}

Since Qog C Qo, 11(Q0) = 1.

Proof of Theorem 2.8. By Theorem 3.5, we only need to check the
conditions (i) - (iv) listed above. The condition (i) is satisfied by
Proposition 2.6 of [13]. (iii) is obvious and (iv) is sutisfied since H_ is
a complete metric space. Thus, it only remains to check the condition
(i).

Notice that the validity of the condition (i) follows from Proposition
3.2 of [37]. Here, for concreteness, we construct a sequence {K, }nen of
compact sets in H_ such that lim, ... Cap(H_\ K, ) = 0 directly. Put
F. = {x € Qy:Q(r) <r}, where Q(x) and g heve been defined in
(3.6) and (3.7), respectively. Notice that (Yo is a reflexive Banach space
(a Hilbert space) and the embedding 2o — H_ is a Hilbert-Schmidt
operator. Thus, F, is weakly compact and the embedding image of F,.
in H_. is compact. Let K,,, n € N, he the compact mage of F,, in H._.
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Following [27], we introduce a smooth increabing function ¢ on R such
that (1) = 0if t <n?, ¢(t) =1ift > (n+1)% and |¢'(1)] < 2/(n+1).
t € R. Define u(r) = ¢(Q(x)?), © € H_, with the convention that
(o) = 1. By the regularity of Gibbs measures, it can be checked that
Q € L*(p) Thus, it follows that u € D(é,,,) (Leinma 3.1, Chapter TV,
of [37]).

We note that H_\ K4 is openand wu(x) > Lon H_\ K, . Thus.

(3.8) Cap(H_\ Kpn41) <& (u.u) + / wx)? dplr).

Let {(35 ez, =12, d} be the standard basis of Hy. Theri.
with the notation Vi = %

(u, ) Z Z / |V ou(e)|? dulr

=13 / (& (@201 + 12, 2 dular)
(3.9) <4 /((,Z) (Q(x)*N2Q(x)? du(x).

Since ¢'(#) < 2/(n+ 1) and ¢'(¢(x)?) =0 on K, and on H_ \ K, 4.
the right hand side of (3.9) is bounded by

: 4 \2
(3.10) / (mm—) (n+ 1% du(x) — 0. asmn - .
Koy \Kn \TPF 1

Here, we have used the fact that ;1(Qp) = 1. On the other hand,
(3.11) / u(r) dulr) < / dup(e) — 0, asn — oc.
. JH K,

Combining (3.8) - (3.11), we corclude that
Cap(H \K, —0, asn — .

This completes the proof of Theorem 2.8. ]
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4. Essential self-adjointness of the dirichlet operator

Let H, be the Dirichlet operator with D(H,) = CZ. We first show
that H, is essentially self-adjoint and then show that FC? is also a
core for the self-adjoint extension of H,. The proof of essentially
self-adjointness will be relied on the basic criterium of essential self-
adjointness given in [6]. We state the main result in this section.

THEOREM 4.1. Let € G¥(Q). UUnder Assumption 2.1 and Assump-
tion 2.9, the Dirichlet operator H,, with D(H,) = C% is essentially
self-adjoint in L*(H_, dp).

The basic criterium of essential self-adjointness of [6] in the form
applicable to our case is the following:

ProrosITION 4.2 ([6, THEOREM 1]). Let H,, be the Dirichlet op-
erator with D(H,,) = CE. Suppose |3|.. € L? and that there exists a
sequence {b, : n € N}, b, : H_ — H_, n €N, such that

(a) for any n € N, b, € CZH(H_, H_),

(b) |b, — 8] — 0in L? asn — o,

(c) there exists a constant ¢ € R such that for any » € H_, h €
H_. neN,

(8, (0)h.h) - < clhf?.
Then H,, is esseutially self-adjoint ;u L*(H._. dp).

Due to Lemma 3.1, it is sufficient to construct a sequence {bp,. n€
N} satisfying the conditions (a) - (=) of Proposition 4.2.

Proof of Theorem 4.1. We will construct a sequence {b,, n € N}
which satisfies the properties in Proposition 4.2. Let g : R — R be a
C*°-function satisfying the following conditions:

(a) g is an odd function: g(—t) == —g(#).

(b) g(t) =t fort € (-1,1),

(¢) g is monotonic increasing: 0 < ¢/(t) < 1,

(d) g(t) — 2 as t — oc.

For n € N we set

(41) gn(t> = 'll_(](f/n).

Then for each n € N, g,, is a monotonic increasing function such that
gn(t) =t fort € (=n,n) and |g,(#)| < 2n for any t € R.
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For # = (x',--- %) € R4 we define g, (z) == (gn(x!), - . gn(x%)
€ R?. Recall the definition 3(x) in (2.19) and the one-body interaction
P(r) in Assumption 2.9 {(c¢) for d > 2. For any n € N and » =
(r,)iczr € H_ we define b, : H_ — H_ by

bn(r) = ()n i ))76Zw

(42) b'n,,i,(:r) = ,, i ) + b ( )

where

(4 3) b(l) "P'(Qr;,(~"1i))~ d=1

- na —Ql(gﬂ(h‘l‘))ﬁ_b’ d>2

and

(4.4) By == 3" VU (gn(ri) gnlzs: fi = 1),
JEZ:
J#i

We prove that b, satisfies the desired properties in Proposition 4.2
through the following steps. We will consider the case d > 2 only. The
case d = 1 can be dealt with similary.

Step 1. The fact that b, € (Z(H_,H_) follows directly from the
definition of b,,, n € N.

Step 2. Let us show that |b,
(2.19) and (4.2) - (4.4) we see that

5 lon() = B2

_ —0in L*(p) as n — oo. From

) —olil| oy i
< Z Q (\r,| (gn(. i) T
1LY I l |J/7/|
+Ze (Tz'—mj;|’i—'j|)
icZv JEZ":
J#
- Z VIU(g7z<I1) - (J17(T7)~ |7’ - ]D
Jjez”:
JF1

= Li(x:n) + Io(r; 1),
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By the regularity of 1 and Assumption 2.1(a) we have for some 0 <
a < A* that

| ntndute)

—ali —A* |z
<D e ’/mz Q" (Jz:]) — Q' (gn(Jz:]))|Pe™ 4 e +od,

1€EZV
<y e‘“""”Ml/ e~ lnl gy,
ezv B, (0)*
(4.5)
— 0, asn-— oo,

where B, (0) is the ball in R? with radius and centered at 0. We
consider I5(x;n). Denote by B, the subset of R¢ x R¢ defined by

By ={(z.y) e R xRY : |z| >nor |y >n}.

Using the property of g,, in (4.1), Assumption 2.1 (b) and the Schwarz
inequality, we see that there exists a constant My such that

Iy(x;n)

<y e-am( S e—oli—jl) Y etelivi

i€Zv ez jex
J#i J#

VU s =520 = §) = VU gn() = gnlay)ii = )P
<My Y e Y T et I ) (P s ), (1, 25).

1EZV JEZY:
IF#1

Let us put
Ko = [ (el 4 1), (o) expl= A" (of? + [yl .
JR2¢

It is obvious that K, — 0 as n — oo. From the regularity of Gibbs
measure p and Assumption 2.9 (d) it follows that for some constant
M, >0,

(4.6) /]2(.77;71)(1#(.7“.) <MK, —0 asn —oc.
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Combining (4.5) — (4.6) we prove that |b, — 3|_ — 0 in L%(y) as
n — OC0.

Step 3. We prove that the property (c¢) in Proposition 4.2 holds. Let
h = (h;)iczr € H_. From (4.2) - (4.4), it follows that

(b b, (x)h) - = > eV (hy, (¥, ()R);).

1eZ”
(b (0)h)i = = Q" (gn(l:1))gh ()5,

+ Qi) (1 1 TN el |

—V""{ > [(V’U(gn(;u),gn(rvj);Ii—jl)uhz)

1€ZY:
J#i
1 (VU (gn (), gn(2)i [ = 1), 1) }
(4.7) = g™ (w:h) + ¢ (21 1)
In the above, we have used the notation : for = € Rd, ZT 18 the d x d
matrix whose [ — k element is given by (F%); = zla*, Lk =1,--- .d.
First we consider (h;, g( )( h)). Due to Assumprion 2.9 we obtain that
(4.8) |(hy, g% (2 h)] < d Z (Ji — gDkl LRl + b))
7~/ i

Notice that by Assumption 2.9 (d),
(4.9) e 12y (| — ile o2 < ge—cli=il,

By (4.8) and (4.9) and the Schwarz inequality we see that

1S el hi gl (s 1)

VeV
(4.10) Ser Y e TR = eh)t

€2V
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for some constant ¢;.

In order to control }, ., €™l ‘(h , (T h)) we use the following
trick. Choose an ¢ > 0 and let M, := M — ¢, where M is the constant
given in Assumption 2.9 (b). We revxute Q(| |) as

Qlxl) = Q= ) + AIVV

Then g, )(1 h) i1s devided into two parts:
g o) = = | Q" ail)gh () 7o /s
+ Qg (a0 (1 = &/ 2) ffesl|
- [9:1(|-’1771|)% (1- If T)g f}'ﬂl"“}h
(4.11) =gV (ein) + ¢ (erh).

Since g, (|z;]) = 0 and 0 < %rl‘) <. 1, it is obvious that

(4.12) (hi gt (7)) > 0.

1

On the other hand since Hess. P(x) > M1 by Assumption 2.9 (b), we
see that R
Hess.Q(|x|) = Hess. P(a) — M1 > €l.

Therefore, 4 B > 0 such that

(4.13) ||>() and Q”||>01f|]/
Thus from (4.11),

(4.14) (hy. gtV (z:h) <0 if |z| > R

Finally, since Hess.Q(x) is a real symmetric matrix, its eigenvalues
are real. Let m(x) be the minimum of the eigenvalues of Q( ') and put
m = inf{m(x) : [x] < R}. Then, we sce that

(hy gD (2 h)) = —{h;, Hess. C:)(:r,)n,,,v)

(4.15) —mlhi?, if |¢| < R.

IN
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From (4.10), (4.12), and (4.14) - (4.15), we conclude that

(h, b, (x)h)_ < c|h|®, ¢ =min{c;, = —mn}.

YN

The proof of Theorem 4.1 is now completed. 0

Finally, we present the proof of Theorem 2.131 by using the method
employed in the proof of Corollary 2 of [6]. See [6] for the details.

Proof of Theorem 2.11. For each finite subset A € C of ZV. let Pa
be the orthogonal projection from Hy to (R4)? ¢ H,.. Here, we have
identified (RY)® as the subspacc {r € H_ : z;, =0, Vi ¢ A} of H_.
Then P extends by continuity to continuous prajection from H.. into
H,4 with range PAH_ = (R%)2. If f € C2(H_). then the function
fa(x) = f(Pax) is cylindrical. The relations

Sale) = Paf'(Par). fX(r)=Paf"(Pac)Pa, reM

show that fa € FCZ(H-).

Let Pa, . n € N, be a sequence of projections such that U, Pa, H _
is dense in H . It is not hard to show that for the sequence {fa,
n € N} € FC} we have convergence H, fa, — H,f in L? as n — oc.
By a standard approximation fo: functions from C#(R™) by elements
of Cp°(R™), for any f € CZ(H_ ). we can choose a sequence f; €
FC(H_) such that H,f; — F,f in L? as j -» oc. This completes
the proof of Theorem 2.11. J

5. Log-Sobolev inequality for Gibbs measures

As stated in Introduction, th= Dirichlet operator plays an impor-
tant role when the Gibbs measure satisfies the log-Sobolev inequality,
which implies the strong convergence of the senii-group generated by
the Dirichlet operator. The log-Sobolev inequality was firstly proved
by Gross [24] for the case of Gaussian measures on RY. The Gross
inequality leads to hypercontractivity for the semigroup generated by
Dirichlet operators and to a wide range of appications [19]. In sta-
tistical mechanics, the log-Sobolov inequality fcr Gibbs measures for
bounded spin systems have been established tnder the Dobrushin-
Schlosman uniqueness criterion [16, 47-3]. The log-Sobolev inequality
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for unbounded spin systems of finite range interactions has been also
proven in [8] and [51]. In this section we produce the proof of the
uniform log-concavity (Theorem 2.14) and the log-Sobolev inequality
for the Gibbs measure (Theorem 2.16). We begin with the following
result:

LEMMA 5.1. Suppose that the nvpotheses of Assumption 2.1 and
Assumption 2.9 hold. Let R, be defined as in (2.23). Then, R,(x) €
L(H 4, H_) for any = € So,.

Proof. For v € o, and h € H4 we have

(Ru(r)h), = VIV P(a;), hs)
+ Z VANV U Qe ag i— Gl k) + (VU (2, x5 i — §

IF

), }17)} .

Using the conditions in Assumption 2.9 (a) and (d), we see that for
some small a > 0

(R (0)h), 12 <2d? M (a)2e 17+ |y |2

+2d2( > w(i— (il + V’:v‘l.))
JEL":
J#

2

Since x € {115, there exists an N ¢ N such that |a,;] < Nlog(]i| + 1),
i € Z¥. Substituting this into the above we see after some calculation
that

(Ru(x)h)]2 = Z "Ry (2)h)if?

€L

< I\[h]“;

for some constant K. This proves that R, () € LiH . H_) (actually
it holds that R, (z) € L(Ho.H-) for each = € Q. 0

We prove the uniform log-concavity of the Gibbs measure, i.e., The-
orem 2.14.
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Proof of Theorem 2.14. The uniqueness of the Gibbs measure under
the hypotheses of Theorem 2.14 can be proved by the method similar
to that used in [10-2]. The basic idea is the Dobrushin’s criterion
of uniqueness of Gibbs measures [21], in which one considers the in-
terdependence between particles via the Wasserstein distance between
the distributions of single site specifications. In [10-2]. for unbounded
quantum spin systems, the Wasserstein distance was controlled by the
log-Sobolev inequality for the single site specifications. The method
used in [10-2] can be directly applied to the systems that we are deal-
ing with in this paper. For the details, we refer the reader to [10-2].

Thus, it remains only to show the uniform log-concavity of the Gibbs
measure. Suppose that g € G®/Q) is the unique Gibbs measure and
Yy = (yi)iezw € Hy, o = (2;)iczv € Qiog. Then, it follows that

<y Ru(@)y) > = (i (Ru(x)y))

’iEZ"

= (w. V' (V'P(xi), )

IEZV
+ Y Al V(YU 2yl - ), w)
jezr:
VS
+ (0 VI (VU (551 = 1)) |
=< y,Rf, Na)y >+ <y, RLQ)(:r)y > .
By the assumptions in the Theorem we see that
(5.1) <y.RD(x)y >= > (yi. Hess P(x)y;) > M|yl3

ieZ

and

| <y, R (x)y > |
<d Yyl Y wi = 3D (wil® 4 lwil?)
<yiAd i
(5.2) <MY il = Mlyl3.

i€z
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Combining (5.1) and (5.2) we have proved Theorenm 2.14. O

Let us now prove Theoremn 2.16. For given A € € and z € G, let
yf\z ) be the local Gibbs measure given by [28]

: 1
(5.3) d/zf\"} == exp[=V(aa) — W(xa, za¢)]da,
A

where Z‘(\z) is the normalization constant. It was shown in [28] that

for any sequence {A,}, A, T Z¥, the sequence of local Gibbs measures
{uff)} has a limit point in G*(9). Since G®(£)) consists of only one
element we may assume that the unique Gibbs measure y is a limit of
(z)
Ha -
Proof of Theorem 2.16. We may assume that g = lim, .o /z,ff i
the local convergence topology. We notice first the following fact. Let
Rf\z)(:rA") be defined by

(5.4) RV (ea,) = VA, Va, (V ra,) + Wias, zac)) s

where Vy, is the gradient operator with respect to the variables {a;
i € Ay} By the exactly same method used in the proof of Theorem
2.14 we see that the uniform log-concavity

(5.5) < B (ra)ya,ya, >2 Mya, P A= M - ML,

holds uniformly in n € N. Since, under the condition stated in the
theorem, the Dirichlet operator is essentially self-adjoint with a core
FCp° by Theorem 2.11, it is enough to show the theorem only for
the functions f € FCP®. So let us fix an f € FCX and suppose that
flr) = f(xa) for some A € C. Then, for any A, = A, the condition
(5.5) implies, by the Bakry-Emery criterion (16], the following log-

Sobolev inequality (sec [19, Theoren: 6.2.42]) :
/ |f(ra, ) log | f(xa, 1’(1/15\2) (ra,)
(R«i):\,, n
1
AL
2 X ,
+ ll‘flllAz(;Lf\Z,;’) log ”f”LQ(ﬂX A

AN

i

/ <V, flra,), Va, floa,) > d“f@(-’"A,, )
(R")"\“ !
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uniformly in » and z. By letting n go to infinity, we obtain the desired
log-Sobolev inequality for any ; € FC{® with a Sobolev coefficient
Cp = % This completes the proof. ]
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