A CHARACTERIZATION OF REFLEXIVITY OF NORMED ALMOST LINEAR SPACES

SUNG MO IM AND SANG HAN LEE

ABSTRACT. In [6] we proved that if a nals X is reflexive, then $X = W_X + V_X$. In this paper we show that, for a split nals $X = W_X + V_X$, X is reflexive if and only if V_X and W_X are reflexive.

1. Preliminaries

G. Godini [3,4,5] introduced a normed almost linear space(nals), a concept which generalizes normed linear space. An example of a nals is the collection of all nonempty, bounded and convex subsets of a real normed linear space. In [6], we defined the notion of reflexivity of a nals. Also, we proved that if a nals X is reflexive then X is split as $X = W_X + V_X$. In this note, we characterizes the reflexivity of a nals X (without basis). First of all we recall some definitions and results which are needed in this paper.

An almost linear space (als) is a set X together with two mappings $s: X \times X \to X$ and $m: \mathbb{R} \times X \to X$ satisfying the conditions $(L_1) - (L_8)$ given below. For $x, y \in X$ and $\lambda \in \mathbb{R}$ we denote s(x, y) by x + y and $m(\lambda, x)$ by λx , when these will not lead to misunderstandings. Let $x, y, z \in X$ and $\lambda, \mu \in \mathbb{R}$. $(L_1) x + (y + z) = (x + y) + z$; $(L_2) x + y = y + x$; (L_3) There exists an element $0 \in X$ such that x + 0 = x for each $x \in X$; $(L_4) 1x = x$; $(L_5) \lambda(x + y) = \lambda x + \lambda y$; $(L_6) 0x = 0$; $(L_7) \lambda(\mu x) = (\lambda \mu)x$; $(L_8) (\lambda + \mu)x = \lambda x + \mu x$ for $\lambda \geq 0$, $\mu \geq 0$. We denote -1x by -x, if there is no confusion likely, and in the sequel x - y means x + (-y).

A nonempty subset Y of an als X is called an almost linear subspace of X, if for each $y_1, y_2 \in Y$ and $\lambda \in \mathbb{R}$, $s(y_1, y_2) \in Y$ and $m(\lambda, y_1) \in Y$.

Received January 9, 1996. Revised March 18, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46B99, Secondary 46A15.

Key words and phrases: almost linear space, normed almost linear space, almost linear functional.

An almost linear subspace Y of X is called a *linear subspace* of X if $s: Y \times Y \to Y$ and $m: \mathbb{R} \times Y \to Y$ satisfy all the axioms of a linear space.

For an als X we introduce the following two sets;

$$(1.1) V_X = \{x \in X : x - x = 0\},$$

$$(1.2) W_X = \{x \in X : x = -x\}.$$

Then, we have the following properties: (1) The set V_X is a linear subspace of X, and it is the largest one. (2) The set W_X is an almost linear subspace of X and $W_X = \{x - x : x \in X\}$. (3) An als X is a linear space $\iff V_X = X \iff W_X = \{0\}$, and $V_X \cap W_X = \{0\}$.

Let X and Y be two almost linear spaces. A mapping $T: X \to Y$ is called a *linear operator* if $T(\lambda_1x_1 + \lambda_2x_2) = \lambda_1T(x_1) + \lambda_2T(x_2)$ for all $\lambda_i \in \mathbb{R}$ and $x_i \in X$, i = 1, 2. An *isomorphism* T of an als X onto an als Y is a bijective mapping which preserves the two algebraic operations of an als; that is, $T: X \to Y$ is a bijective linear operator. Then Y is said to be *isomorphic* with X. The following is well known.

PROPOSITION 1.1. Let T be a linear operator from an als X into an als Y. Then

- (1) $T(V_X) \subset V_Y$, $T(W_X) \subset W_Y$.
- (2) If $X = V_X + W_X$, then $T(X) = T(V_X) + T(W_X)$. In particular, if T is an isomorphism, then $Y = T(X) = V_Y + W_Y$.

Let X be an als. A function $f: X \to \mathbb{R}$ is called an almost linear functional if the conditions (1.3) - (1.5) are satisfied.

(1.3)
$$f(x+y) = f(x) + f(y) \quad (x, y \in X)$$

(1.4)
$$f(\lambda x) = \lambda \cdot f(x) \quad (\lambda \ge 0, \ x \in X)$$

$$(1.5) f(w) \ge 0 (w \in W_X).$$

A functional $f: X \to \mathbb{R}$ is called a *linear functional* on X if it satisfies (1.3), and (1.4) for each $\lambda \in \mathbb{R}$. Then (1.5) is also satisfied. Note that an almost linear functional is not a linear operator from X to \mathbb{R} , but a linear functional is a linear operator.

Let $X^{\#}$ be the set of all almost linear functionals defined on an als X. We define two operations $s: X^{\#} \times X^{\#} \to X^{\#}$ and $m: \mathbb{R} \times X^{\#} \to X^{\#}$ as follows:

$$s(f_1, f_2)(x) = f_1(x) + f_2(x) \quad (f_1, f_2 \in X^\#),$$
 $m(\lambda, f)(x) = f(\lambda x) \quad (\lambda \in \mathbb{R}, \ f \in X^\#)$

for all $x \in X$. Clearly, $s(f_1, f_2) \in X^\#$, $m(\lambda, f) \in X^\#$, and s, m satisfy $(L_1) - (L_8)$ with $0 \in X^\#$ being the functional which is 0 at each $x \in X$. Therefore $X^\#$ is an als. $X^\#$ is called the algebraic dual space of an als X. We denote $s(f_1, f_2)$ by $f_1 + f_2$ and $m(\lambda, f)$ by $\lambda \circ f$.

PROPOSITION 1.2 ([6]). Let X be an als. Then $X^{\#} = W_{X^{\#}} + V_{X^{\#}}$.

PROPOSITION 1.3 ([3]). If f is an almost linear functional on an als X, then $f \in V_{X^{\#}}$ if and only if $f|_{W_X} = 0$.

PROPOSITION 1.4. Let X be a split als as $X = W_X + V_X$. If f is an almost linear functional on X, then $f \in W_{X^\#}$ if and only if $f|_{V_X} = 0$.

PROOF. Suppose that $f \in W_{X^{\#}}$. Then for each $v \in V_X$ we have

$$f(v) + f(v) = f(v) + (-1 \circ f)(v) = f(v) + f(-v) = f(v - v) = f(0) = 0,$$

since $-1 \circ f = f$. Therefore $f|_{V_X} = 0$.

Conversely, suppose that $f|_{V_X} = 0$ and $x = v + w \in X$ with $v \in V_X$, $w \in W_X$. Since f(v) = f(-v) = 0, we have

$$(-1 \circ f)(x) = f(-x) = f(w - v) = f(w) + f(-v)$$
$$= f(w) + f(v) = f(w + v) = f(x).$$

Therefore $f \in W_{X^{\#}}$.

2. Reflexivity of NALS

A norm on an als X is a functional $\|\cdot\|: X \to \mathbb{R}$ satisfying the conditions $(N_1)-(N_3)$ below. Let $x,y,z\in X$ and $\lambda\in\mathbb{R}$. $(N_1)\|x-z\|\leq \|x-y\|+\|y-z\|$; $(N_2)\|\lambda x\|=|\lambda|\|x\|$; $(N_3)\|x\|=0$ iff x=0.

Using (N_1) we get

$$||x+y|| \le ||x|| + ||y|| \quad (x,y \in X)$$

$$||x - y|| \ge |||x|| - ||y||| \quad (x, y \in X).$$

By the above axioms it follows that $||x|| \ge 0$ for each $x \in X$.

An als X together with $\|\cdot\|: X \to \mathbb{R}$ satisfying $(N_1) - (N_3)$ is called a normed almost linear space (nals).

When X is a nals, for $f \in X^{\#}$, we define, as in the case of a normed linear space,

$$||f|| = \sup\{|f(x)| : x \in X, ||x|| \le 1\},\$$

and let

$$X^* = \{ f \in X^\# : ||f|| < \infty \}.$$

Then X^* is a nals[4], called the *dual space* of X. We denote the dual space $(X^*)^*$ of X^* by X^{**} and call it the second dual space of X.

For a nals X and $f \in X^*$, an equivalent formula for the norm of f is

(2.4)
$$||f|| = \sup_{\|x\|=1} |f(x)| = \sup_{x \neq 0} \frac{|f(x)|}{\|x\|},$$

hence

$$|f(x)| \le ||f|| ||x||.$$

In the theory of a normed linear space an important tool is the Hahn-Banach theorem. An analogous theorem is no longer true in a nals [3, 4.5. Example]. But we have the following Propositions.

PROPOSITION 2.1 ([5]). Let $(X, \|\cdot\|)$ be a nals. Then for each $x \in X$ there exists $f_x \in X^*$ such that $\|f_x\| = 1$ and $f_x(x) = \|x\|$.

PROPOSITION 2.2 ([4]). Let $(X, \|\cdot\|)$ be a nals. Then for each $f \in (W_X)^*$ there exists $f_1 \in W_{X^*}$ such that $f_1|_{W_X} = f$ and $\|f_1\| = \|f\|$.

PROPOSITION 2.3 ([4]). Let $(X, \|\cdot\|)$ be a nals and split as $X = W_X + V_X$. Then for each $f \in (V_X)^*$ there exists $f_1 \in V_{X^*}$ such that $f_1|_{V_X} = f$ and $\|f_1\| = \|f\|$.

PROPOSITION 2.4. For any x in a nals X, we have

$$||x|| = \sup \left\{ \frac{|f(x)|}{||f||} : f \in X^*, f \neq 0 \right\}.$$

PROOF. For any $x \in X$, by Proposition 2.1, there exists $f_x \in X^*$ such that $||f_x|| = 1$ and $f_x(x) = ||x||$. So, we have

$$||x|| = \frac{|f_x(x)|}{||f_x||} \le \sup \left\{ \frac{|f(x)|}{||f||} : f \in X^*, f \neq 0 \right\}.$$

From $|f(x)| \leq ||f|| ||x||$, we have

$$\sup\left\{\frac{|f(x)|}{\|f\|}:f\in X^*,f\neq 0\right\}\leq \|x\|$$

for each
$$f \in X^*$$
. Hence $||x|| = \sup \left\{ \frac{|f(x)|}{||f||} : f \in X^*, f \neq 0 \right\}$.

An isomorphism T of a nals X onto a nals Y is a bijective linear operator $T: X \to Y$ which preserves the norm, that is, for all $x \in X$,

$$||T(x)|| = ||x||.$$

Then X is called *isomorphic* with Y.

For $x \in X$ let Q_x be the functional on X^* defined, as in the case of a normed linear space, by

(2.5)
$$Q_x(f) = f(x) \ (f \in X^*).$$

Then Q_x is an almost linear functional on X^* and

Hence Q_x is an element of X^{**} , by definition of X^{**} . This defines a mapping

$$(2.7) C: X \to X^{**}$$

by $C(x) = Q_x$. C is called the *canonical mapping* of X into X^{**} .

If the canonical mapping C of a nals X into X^{**} defined by (2.7) is an isomorphism, then X is said to be reflexive.

PROPOSITION 2.5. For a nals X, the canonical mapping C defined by (2.7) is a linear operator and preserves the norm.

PROOF. By (2.4) and Proposition 2.4, we have

$$||Q_x|| = \sup_{f \neq 0} \frac{|Q_x(f)|}{||f||} = \sup_{f \neq 0} \frac{|f(x)|}{||f||} = ||x||$$

for each $x \in X$. Hence C preserves the norm.

Let $x, y \in X$ and $\alpha \in \mathbb{R}$. For each $f \in X^*$, we have

$$Q_{x+y}(f) = f(x+y) = f(x) + f(y) = Q_x(f) + Q_y(f),$$

$$Q_{\alpha x}(f) = f(\alpha x) = (\alpha \circ f)(x) = (\alpha \circ Q_x)(f).$$

Thus, C(x+y) = C(x) + C(y) and $C(\alpha x) = \alpha \circ C(x)$. Therefore C is a linear operator.

THEOREM 2.6 ([6]). If a nals X is reflexive, then $X = W_X + V_X$.

THEOREM 2.7. If a nals X splits as $X = W_X + V_X$, then

- (1) V_{X^*} is isomorphic with $(V_X)^*$,
- (2) W_{X^*} is isomorphic with $(W_X)^*$.

PROOF. Since $x^*|_{V_X} \in (V_X)^*$ for each $x^* \in V_{X^*}$, we can define an operator

$$T: V_{X^*} \to (V_X)^*$$

by $T(x^*) = x^*|_{V_X}$ for each $x^* \in V_{X^*}$. For $x^*, y^* \in V_{X^*}$ and $\alpha, \beta \in \mathbb{R}$, we have

$$T(\alpha \circ x^* + \beta \circ y^*)(v) = (\alpha \circ x^* + \beta \circ y^*)(v)$$

$$= x^*(\alpha v) + y^*(\beta v)$$

$$= T(x^*)(\alpha v) + T(y^*)(\beta v)$$

$$= (\alpha \circ T(x^*))(v) + (\beta \circ T(y^*))(v)$$

$$= [\alpha \circ T(x^*) + \beta \circ T(y^*)](v)$$

for each $v \in V_X$. Hence T is a linear operator.

If $x^* \neq y^* \in V_{X^*}$, then $x^*(v) \neq y^*(v)$ for some $v \in V_X$ by Proposition 1.3. So, $T(x^*) \neq T(y^*)$. Hence T is injective.

For each $v^* \in (V_X)^*$, there exists $x^* \in V_{X^*}$ such that $x^*|_{V_X} = v^*$ by Proposition 2.3. Hence T is surjective.

For any $v^* \in V_{X^*}$, $||v^*|| \ge ||v^*||_{V_X}|| = ||T(v^*)||$. Also, if $x = v + w \in X$, $v \in V_X$, $w \in W_X$ with $||x|| \le 1$, then $||v|| \le 1$ and $v^*(x) = v^*(v)$. So we have

$$||v^*|| = \sup\{|v^*(x)| : x \in X, ||x|| \le 1\}$$

$$\le \sup\{|v^*(v)| : v \in V_X, ||v|| \le 1\}$$

$$= \sup\{|T(v^*)(v)| : v \in V_X, ||v|| \le 1\}$$

$$= ||T(v^*)||$$

Hence T preserves the norm. Therefore, V_{X^*} is isomorphic with $(V_X)^*$.

Similarly, applying Proposition 1.4 and Proposition 2.2, we can show that an operator $T': W_{X^*} \to (W_X)^*$, $T'(x^*) = x^*|_{W_X} \ (x^* \in W_{X^*})$, is an isomorphism.

COROLLARY 2.8. If a nals X splits as $X = W_X + V_X$, then

- (1) $V_{X^{**}}$ is isomorphic with $(V_X)^{**}$,
- (2) $W_{X^{**}}$ is isomorphic with $(W_X)^{**}$.

An arbitrary normed almost linear subspace of a $nals\ X$ need not be reflexive even if X is reflexive. But, we have the following result:

THEOREM 2.9. If a nals X is reflexive, then V_X and W_X are reflexive.

PROOF. By Theorem 2.6, $X = W_X + V_X$ since X is reflexive. Let $C: X \to X^{**}$ be the canonical isomorphism, and let $C': V_X \to (V_X)^{**}$ be the canonical mapping. We will show that C' is bijective. Let $v^{**} \in (V_X)^{**}$. By Theorem 2.7, $T: V_{X^*} \to (V_X)^*$, $T(v^*) = v^*|_{V_X}$ ($v^* \in V_{X^*}$), is an isomorphism. Since $x^*|_{V_X} \in (V_X)^*$ for each $x^* \in X^*$, we can define a functional

$$\overline{v}^{**}:X^*\to\mathbb{R}$$

by $\overline{v}^{**}(x^*) = v^{**}(x^*|_{V_X})$ for each $x^* \in X^*$. Then $\overline{v}^{**} \in V_{X^{**}}$. Since C is an isomorphism of X onto X^{**} , there exists $v \in V_X$ such that $C(v) = \overline{v}^{**}$. For this $v \in V_X$, $C'(v) = v^{**}$. Indeed, for each $v^* \in (V_X)^*$, there exists $\overline{v}^* \in V_{X^*}$ such that $\overline{v}^*|_{V_X} = v^*$ by Proposition 2.3. So, we have $v^{**}(v^*) = v^{**}(\overline{v}^*|_{V_X}) = \overline{v}^{**}(\overline{v}^*) = C(v)(\overline{v}^*) = \overline{v}^*(v) = v^*(v) = C'(v)(v^*)$. Hence C' is surjective.

If $v_1 \neq v_2$ in V_X , then $C(v_1) \neq C(v_2)$ in X^{**} since C is an isomorphism. Choose $f \in X^*$ such that $C(v_1)(f) \neq C(v_2)(f)$, i.e, $f(v_1) \neq f(v_2)$. For this $f \in X^*$, $f|_{V_X} \in (V_X)^*$. And $f|_{V_X}(v_1) \neq f|_{V_X}(v_2)$. So, we have $C'(v_1) \neq C'(v_2)$. Hence C' is injective. Therefore C' is an isomorphism. Similarly, we can show that W_X is reflexive.

THEOREM 2.10. Let X be a split nals as $X = W_X + V_X$. If V_X and W_X are reflexive, then X is reflexive.

PROOF. Note that $X^* = W_{X^*} + V_{X^*}$ and $X^{**} = W_{X^{**}} + V_{X^{**}}$. Let $C': V_X \to (V_X)^{**}$ and $C'': W_X \to (W_X)^{**}$ be the canonical isomorphism, and let $C: X \to X^{**}$ be the canonical map. We will show that C is bijective. Let $v^{**} \in V_{X^{**}}$. By Proposition 1.3, we have $v^{**}(x^*) = v^{**}(v^*)$ for each $x^* = v^* + w^* \in X^*$, $v^* \in V_{X^*}$, $w^* \in W_{X^*}$. And $v^{**}|V_{X^*} \in (V_{X^*})^*$. Recall that $T: V_{X^*} \to (V_X)^*$, $T(v^*) = v^*|_{V_X}$ $(v^* \in V_{X^*})$, is an isomorphism. Define a functional

$$\overline{v}^{**}: (V_X)^* \to \mathbb{R}$$

by $\overline{v}^{**}(v^*|_{V_X}) = v^{**}(v^*)$, for each $v^*|_{V_X} \in (V_X)^*$. Then $\overline{v}^{**} \in (V_X)^{**}$. Since C' is an isomorphism of V_X onto $(V_X)^{**}$, there exists $v \in V_X$ such that $C'(v) = \overline{v}^{**}$. For this $v \in V_X$, $C(v) = v^{**}$. Indeed, $v^{**}(x^*) = v^{**}(v^*)$

$$= \overline{v}^{**}(v^*|_{V_X}) = C'(v)(v^*|_{V_X}) = v^*|_{V_X}(v) = v^*(v) = x^*(v) = C(v)(x^*)$$
 for each $x^* = v^* + w^* \in X^*$ with $v^* \in V_{X^*}$, $w^* \in W_{X^*}$.

Similarly, for each $w^{**} \in W_{X^{**}}$, there exists $w \in W_X$ such that $C(w) = w^{**}$. Hence, for each $x^{**} = v^{**} + w^{**} \in X^{**}$ with $v^{**} \in V_{X^{**}}$, $w^{**} \in W_{X^{**}}$, there exists $x = v + w \in X$ with $v \in V_X$, $w \in W_X$ such that

$$C(x) = C(v) + C(w) = v^{**} + w^{**} = x^{**}.$$

Hence C is surjective.

If $w_1 \neq w_2$ in W_X , then $C''(w_1) \neq C''(w_2)$ in $(W_X)^{**}$ since C'' is an isomorphism. Choose $f \in (W_X)^*$ such that $C''(w_1)(f) \neq C''(w_2)(f)$, i.e., $f(w_1) \neq f(w_2)$. By Proposition 2.2, there exists $f_1 \in X^*$ such that $f_1|_{W_X} = f$ and $||f_1|| = ||f||$. For this f_1 , we have $C(w_1)(f_1) \neq C(w_2)(f_2)$ since $f_1(w_1) \neq f_1(w_2)$. Hence $C(w_1) \neq C(w_2)$. Similarly, $C(v_1) \neq C(v_2)$ for $v_1 \neq v_2$ in V_X . Therefore C is injective since C is a linear operator. \Box

From Theorem 2.9 and Theorem 2.10, we have the following theorem:

THEOREM 2.11. Let X be a split rals as $X = W_X + V_X$. Then X is reflexive if and only if V_X and W_X are reflexive.

References

- [1] M. M. Day, *Normed linear spaces*, Berlin-Göttingen-Heidelberg, Springer-Verlag, 1962.
- [2] N. Dunford and J. Schwarz, *Linear operators*. Part I, Pure and applied Mathematics, 7, New York, London, Interscience, 1958.
- [3] G. Godini, An approach to generalizing Banach spaces: Normed almost linear spaces, Proceedings of the 12th Winter School on Abstract Analysis (Srni 1984). Suppl. Rend. Circ. Mat. Palermo II. Ser. 5 (1984), 33-50.
- [4] _____, A framework for best simultaneous approximation: Normed almost linear spaces, J. Approximation Theory 43 (1985), 338-358.
- [5] _____, On Normed Almost Linear Spaces, Math. Ann. 279 (1988), 449-455.
- [6] S. H. Lee, Reflexivity of normed almost linear spaces, Comm. Korean Math. Soc. 10 (1995), 855-866.

Department of Mathematics Chungbuk National University Cheongju 360-763, Korea