Comm. Korean Math. Soc. 12(1997), No. 2, pp. 211-219

A CHARACTERIZATION OF REFLEXIVITY
OF NORMED ALMOST LINEAR SPACES

SUNG Mo IM AND SANG HAN LEE

ABSTRACT. In [6] we proved that if a nals X is reflexive, then X =
Wx + Vx. In this paper we show that, for a split nals X = Wx + Vy,
X is reflexive if and only if Vx and Wx are reflexive.

1. Preliminaries

G. Godini [3,4,5] introduced a normed almost linear space(nals), a
concept which generalizes normed linear space. An example of a nals
is the collection of all nonempty, bounded and convex subsets of a real
normed linear space. In [6], we defined the notion of reflexivity of a
nals. Also, we proved that if a nals X is reflexive then X is split as
X = Wx + Vx. In this note, we characterizes the reflexivity of a nals X
(without basis). First of all we recall some definitions and results which
are needed in this paper.

An almost linear space (als) is a set X together with two mappings
s: X xX — Xand m: RxX — X satisfying the conditions (L) —(Ls)
given below. For z,y € X and A € R we denote s(z,y) by z + y
and m(\,z) by Az, when these will not lead to misunderstandings. Let
z,y,2 € X and A, p € R. (L1) z+(y+2) = (z+y)+z; (L2) 4y = y+u;
(L3) There exists an element 0 € X such that 2 +0 = z for each z € X
(L4) 1z = z; (Ls) M +y) = Az + Ay; (Le) 0z = 0; (L7) AMpz) = (Ap)a;
(Lg) A+ p)x = Mz + pzx for A > 0, p > 0. We denote —1z by —z, if
there is no confusion likely, and in the sequel x — y means z + (—y).

A nonempty subset Y of an als X is called an almost linear subspace
of X, if for each y;,y2 € Y and XA € R, s(y1,y2) € Y and m(A\, 1) € Y.
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An almost linear subspace Y of X is called a linear subspace of X if
$:YXY —>Yandm:RxY — Y satisfy all the axioms of a linear
space.

For an als X we introduce the following two sets;

(1.1) Vx ={ze€X:z—-z=0},

(1.2) Wx={zeX:z=-z}.

Then, we have the following properties: (1) The set Vx is a linear
subspace of X, and it is the largest one. (2) The set Wy is an almost
linear subspace of X and Wy = {z —~z :z ¢ X} (3)Anals X is a
linear space <= Vx = X <= Wx = {0}, and Vx NWx = {0}.

Let X and Y be two almost linear spaces. A mapping T : X - Y is
called a linear operator if T(\ 1z + Aoxa) = MT(z1) + AT (z2) for all
Ai€Randz; € X,i=1,2. An 1somorphism T of an als X onto an als
Y is a bijective mapping which preserves the two algebraic operations of
an als; that is, T': X — Y is a bijective linear operator. Then Y is said
to be isomorphic with X. The following is well known.

PROPOSITION 1.1. Let T be a linear operator from an als X into an
als Y. Then

(1) T(Vx) C Wy, T(Wx) C Wy.
(2) If X =Vx + Wx, then T(X) = T(Vx) + T(Wx). In particular,
if T' is an isomorphism, then Y = T(X) = Vy + Wy,

Let X be an als. A function f : X — R is called an almost linear
functional if the conditions (1.3) — (1.5) are satisfied.

(1.3) fle+y)=f@)+ fly) (z,y€X)

(1.4) fz)=Xx-f(z) (A>0, z € X)

(1.5) flw)>0 (we Wx).
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A functional f : X — R is called a linear functional on X if it satisfies
(1.3), and (1.4) for each A € R. Then (1.5) is also satisfied. Note that
an almost linear functional is not a linear operator from X to R, but a
linear functional is a linear operator.

Let X# be the set of all almost linear functionals defined on an als X.
We define two operations s : X# x X# — X# and m : R x X# — X#
as follows:

s(f1, f2)(x) = fi(z) + falz) (f1, f2 € XF),

m(A, f)(z) = f(Az) (A €R, feX¥)

for all z € X. Clearly, s(f1, f2) € X#, m(), f) € X#, and s, m satisfy
(L1) = (Lg) with 0 € X# being the functional which is 0 at each = € X.
Therefore X# is an als. X# is called the algebraic dual space of an als
X. We denote s(f1, f2) by f1 + f2 and m(X, f) by Ao f.

PROPOSITION 1.2 ([6]). Let X be an als. Then X# = Wx# + Vyx«.

ProrosiTION 1.3 ([3]). If f is an almost linear functional on an als
X, then f € Vx« if and only if flw, = 0.

PROPOSITION 1.4. Let X beasplit alsas X =Wx + Vx. If f is an
almost linear functional on X, then f € Wy if and only if f|y, =0.

PROOF. Suppose that f € Wy . Then for each v € Vx we have
f)+f(v) = f(v) + (=10 f)(v) = f(v) + f(=v) = flv—v) = f(0) =0,
since —1 o f = f. Therefore f|y, =0.

Conversely, suppose that f|y, =0 and ¢ =v+w € X with v € Vx,
w € Wx. Since f(v) = f(—v) = 0, we have

(=Llo f)(z) = f(—=) = f(w —v) = f(w) + f(-v)
= flw) + f(v) = flw+v) = f(=).

Therefore f € Wxx. O
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2. Reflexivity of NALS

A norm on an als X is a functional || - || : X — R satisfying the
conditions (N1)—(N3) below. Let z,y,2 € X and A € R. (N1) lz—2z|| <
lz = yll + lly = 2ll; (N2) Azl = IAlllell; (Ns) f|zfl = 0 iff = = 0.

Using (N7) we get

(2.1) lz+yll <zl + vl (2,5 € X)

(2.2) le =yl > llz] =yl (z,y € X).

By the above axioms it follows that ||z|| > 0 for each z € X.
An als X together with |- || : X — R satisfying (N1) — (N3) is called
a normed almost linear space (nals).

When X is a nals, for f € X#, we define, as in the case of a normed
linear space,

(2.3) 171l = sup{|f ()| : = € X, |lz|| < 1},
and let
X*={feX¥:|f|l <oo}.

Then X* is a nals[4], called the dual space of X. We denote the dual
space (X*)* of X* by X** and call it the second dual space of X.
For a nals X and f € X*, an equivalent formula for the norm of fis

(2.4) 17 = sup |f(z)] = sup L&,
=1 z#0 |z
hence
£ ()] < || flllz]l.

In the theory of a normed linear space an important tool is the Hahn-
Banach theorem. An analogous theorem is no longer true in a nals [3,
4.5. Example]. But we have the following Propositions.

ProposiTION 2.1 ([5]). Let (X, | -||) be a nals. Then for eachz € X
there exists f, € X* such that ||f.|| = 1 and f,(z) = lz||.
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PROPOSITION 2.2 ([4]). Let (X,| - ||) be a nals. Then for each f €
(Wx)* there exists fi € Wx- such that fi|lw, = f and | fi]| = || f|l-

ProrosiTION 2.3 ([4]). Let (X,|| - ||) be a nals and split as X =
Wx + Vx. Then for each f € (Vx)* there exists fi € Vx- such that

flvx = f and |1l = 7]

PROPOSITION 2.4. For any z in a nals X, we have

|f ()]

”x”::S“p{ ]

feX*f#O}

ProOF. For any z € X, by Proposition 2.1, there exists f, € X*
such that ||f.|]| = 1 and f.(z) = ||z||. So, we have

@ (@
el = e < { MR e xs 20},
From |f(z)| < || fllz|l, we have
|f(=)| |
sup (U pex 20 <l
for each f € X*. Hence ||:1:||:sup{1|[|fxlf fex, f;é()} O

An isomorphism T of a nals X onto a nals Y is a bijective linear
operator T': X — Y which preserves the norm, that is, for all z € X,

T (@) = l]]-

Then X is called isomorphic with Y.

For z € X let , be the functional on X* defined, as in the case of a
normed linear space, by

(2.5) Qz(f) = f(z) (feX™).

Then @, is an almost linear functional on X™* and

(2.6) |Qall < [l
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Hence Q. is an element of X**, by definition of X**. This defines a
mapping

(2.7) C:X— X

by C(z) = Q.. C is called the canonical mapping of X into X **.
If the canonical mapping C of a nals X into X** defined by (2.7) is
an isomorphism, then X is said to be reflezive.

PROPOSITION 2.5. For a nals X, the canonical mapping C defined
by (2.7) is a linear operator and preserves the norm.

PROOF. By (2.4) and Proposition 2.4, we have

o120 1)
1@l = sup = = s

= |lz|

for each € X. Hence C preserves the norm.
Let z,y € X and o € R. For each f € X*, we have

Qe+y(f) = fl@ +y) = f(2) + f(y) = Q=(f) + Qy (),

Qaa(f) = flaz) = (a0 f)(z) = (a0 Qz)(f).

Thus, C(z +y) = C(z) + C(y) and C(az) = a o C(z). Therefore C is a
linear operator. O

THEOREM 2.6 ([6]). If a nals X is reflexive, then X = Wy + V.

THEOREM 2.7. If a nals X splits as X = Wx + Vx, then

(1) V- is isomorphic with (Vx)*,
(2) Wx- is isomorphic with (Wx)*.

PROOF. Since z*|y, € (Vx)* for each z* € Vx., we can define an
operator

T:Vxe — (Vx)*
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by T'(z*) = z*|v, for each z* € Vx~. For *,y* € Vx- and , 8 € R, we
have

T(aoz" +foy")(v) = (aoz” + Boy™)(v)
= z*(av) +y"(Bv)
= T'(z*)(av) + T(y")(Bv)
= (aoT(z"))(v) + (BoT(y"))(v)
= [aoT(z") +BoT(y")|(v)

for each v € Vx. Hence T is a linear operator.

If * # y* € Vx., then z*(v) # y*(v) for some v € Vx by Proposition
1.3. So, T'(z*) # T(y*). Hence T is injective.

For each v* € (Vx)*, there exists £* € Vx- such that z*|y, = v* by
Proposition 2.3. Hence T is surjective.

For any v* € Vx., |[v*]| > {|[v*|v, ]l = || T(@*)]- Also, if z = v+ w €
X, veVx, we Wx with ||z|| <1, then ||v|| <1 and v*(z) = v*(v). So
we have

[v*]l = sup{|v™(z)| : x € X, ||| < 1}

< sup{|v*(v)| : v € Vx,|v|| <1}

= sup{|T(v")(v)| : v € Vx, |Jv|| < 1}
1T ()l

I

Hence T preserves the norm. Therefore, Vx. is isomorphic with (Vx)*.

Similarly, applying Proposition 1.4 and Proposition 2.2, we can show
that an operator TV : Wx. — (Wx)*, T'(z*) = z*|w, (z* € Wx-), is
an isomorphism. O

COROLLARY 2.8. If a nals X splits as X = Wx + Vx, then

(1) Vx.- is isomorphic with (Vx)**,
(2) Wx.~ is isomorphic with (W )**.

An arbitrary normed almost linear subspace of a nals X need not be
reflexive even if X is reflexive. But, we have the following result:
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THEOREM 2.9. If a nals X is reflexive, then Vy and Wx are reflexive.

ProOF. By Theorem 2.6, X = Wy + Vx since X is reflexive. Let
C : X — X™ be the canonical isomorphism, and let ¢’ : Vy — (Vx)**
be the canonical mapping. We will show that C’ is bijective. Let v** ¢
(Vx)™. By Theorem 2.7, T : Vx. — (Vx)*, T(v*) = vy, (vF € Vxs),
is an isomorphism. Since z*|y, € (Vx)* for each z* € X*, we can define
a functional

T XY >R

by 7 (z*) = v™*(z*|v,) for each z* € X*. Then v** € Vy-... Since
C is an isomorphism of X onto X**, there exists v € Vx such that
C(v) = v**. For this v € Vx, C'(v) = v**. Indeed, for each v* € (Vx)*,
there exists 7* € Vx. such that 7|y = v* by Proposition 2.3. So, we
have v™*(v*) = v*™*(T*|yy ) = T (T*) = C(v)(T") = v*(v) = v*(v) =
C’(v)(v*). Hence C’ is surjective.

If v1 # v2 in Vx, then C(v1) # C(vs) in X** since C is an isomor-
phism. Choose f € X* such that C(v1)(f) # C(v2)(f), i.e, f(v1) #
f(vQ)' For this feXr, f’Vx € (VX)*- And f’Vx (’U]) 7£ f‘Vx(UZ)' So,
we have C'(v1) # C’(v2). Hence C’ is injective. Therefore C' is an
isomorphism. Similarly, we can show that Wy is reflexive. ]

THEOREM 2.10. Let X be a split nals as X = Wy + Vx. If Vx and
Wx are reflexive, then X is reflexive.

PROOF. Note that X* = Wx. + Vx. and X** = Wy + Vyen.
Let C" : Vx — (Vx)** and C" : Wx — (Wx)** be the canonical
isomorphism, and let C : X — X** be the canonical map. We will
show that C is bijective. Let v** € Vx... By Proposition 1.3, we have
v (z*) = v**(v*) for each z* = v* + w* € X*, v* € Vy., w* € Wy..
And v™*|Vx. € (Vx-)*. Recall that T : Vx- — (Vx)*, T(v*) = ¥ vy
(v* € Vx-), is an isomorphism. Define a functional

7T (V)" = R
by 7™ (v*]yy ) = v™*(v"), for each v*|y, € (Vx)*. Then T** € (Vx)**.

Since €' is an isomorphism of Vy onto (Vx)**, there exists v € Vy such
that C’(v) = 7**. For thisv € Vx, C(v) = v**. Indeed, v**(z*) = v (v*)
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=T (v |vy) = C'() (v |vx) = v*lvi (v) = v*(v) = 27 (v) = C(v)(z")
for each z* = v* + w* € X* with v* € Vx., w* € Wx-.

Similarly, for each w** € Wx.~, there exists w € Wx such that
C(w) = w**. Hence, for each z** = v** + w** € X" with v™* € Vx.-,
w** € Wy, there exists z = v+ w € X with v € Vx, w € Wx such
that

C(z) =C(w)+ Clw) =v*"" +w*™ =z™.

Hence C is surjective.

If wi # wy in Wy, then C”(wy) # C"'(w2) in (Wx)** since C” is an
isomorphism. Choose f € (Wx)* such that C"(w1)(f) # C"(w2)(f),
i.e., f(w1) # f(wz). By Proposition 2.2, there exists f; € X™* such that
filwx = f and ||f1]| = [|f|. For this f1, we have C(w1)(f1) # C(w2)(f2)
since fi(wy) # f1(wz2). Hence C(w;) # C(wsg). Similarly, C(v;) # C(v2)
for v; # v in Vx. Therefore C is injective since (' is a linear operator.

O

From Theorein 2.9 and Theorem 2.10, we have the following theorem:

THEOREM 2.11. Let X be a split nals as X = Wx + Vx. Then X is
reflexive if and only if Vx and Wx are reflexive.
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