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ON THE MULTIPLE POSITIVE SOLUTIONS
TO A QUASILINEAR EQUATION

SANG DON PARK, S00 HYUN BAE AND *DAE HYEON PAHK

ABSTRACT. In this paper we investigate the multiplicity of positive
solutions to a quasilinear Neumann problem;

?—1{:0 on 92,

{ emdiv(|Vu|™2Vu) — ulu|™ 2 + u|u|P~2 =0 in Q
ov

making use of Ljusternik Schnirelmann category theory

1. Introduction

In this paper we investigate the multiplicity of positive solutions to a
quasilinear Neumann problem;

eMdiv(|Vu|™ 2Vu) — ulu/™2 + ulu|F~2 =0 in &
P,
(Pe) a_u =0 on 0N,

ov

where1<m<N,N22,s>O,m<p<W’—’E%Qisasmooth

bounded domain in RY and v is the unit outer normal vector to Q. It
stems from a chemoactic aggregation model, which was initially studied
by C.H.Lin, W.M.N], I.Takagi, [6, 7] in case of m = 2. In [12], Z-Q.
Wang investigated the influence of the topology of €2 on the solutions of
(P.) in case of m = 2.
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On the view of variational method, the critical points of the functional
Je : W™ () — R defined by

1 1
1.1 JEU:——/emV'um—i— vmd:c——/ v|P dzx
(1.1) (v) — Vo™ + Jo| ’ QH

are the solutions of (P.).

Let E(u) = [,e™|Vu|™ + [u|"dz and V (u) = Jo |luPdz and set
My = {ue W™(Q) | V(u) = 1}. Suppose w is a critical point of
Ee on M, then by Lagrange multiplier rule 4 = E (u)t/ =My ig a
solution of (P ). This idea is not void since E. is coercieve and weakly
lower semicontinuous (see [3]) and hence E. is bounded below so that
Ce = minyepr, E.(u) is achieved , which is a critical value.

Now let E&T0 = {y € M |E, < ¢ + d}. We are to show that
cat(ES10) > 2cat(4Q) for all sufficiently small € and small §(¢) (Lemma
4.2). Then Ljusternik Schnirelmann category theory (see e.g., Theorem
27.2,[8]) shows that there are at least 2cat(8) critical points of E.. On
the other hand these critical points do not change their sign (Theorem
4.3). Therefore there exist at least 2cat(0) critical points of J,., which
do not change sign. Consequently there are at least cat(9€2) positive
solutions since (P¢) is odd equation in u (Theorem 4.4).

2. Preliminary

There is 1-1 correspondence between the solutions of (Pe) and the
solutions of ’

) { div(|Vu|"?Vu) — ufu|™ 2 + ujufP~2 =0 in Qi/e

Ou/ov = 0 on 99 .
where Q;/c = {z | ez € Q}. In fact, the change of variable u(z) =

v(ez) for each v solving (P, ) gives the 1-1 correspondence. We associate
(P.) with the following functional

£

By, (v) :/ Vo™ + ol "z, v e My(Ry,),
1/
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where M (Qy,.) = {u € WH™(Qy,.)] le/E |ulPde = 1}. Now define for

each v € M1(92),

o(v)(z) d:efeN/pv(sx).

It is easy to see that o(v) € M1(y/.).

LEMMA 2.1. For any v € M;(f2), El/e(a(v)) = ¢~ NE-m/PE, (v)
and

min E = g~ Np—-m)/p in F )
enlin 17¢(v) N (v)

ProOOF. It suffices to show the first equality.
Binlo) = [ IV leo)|™ + ¥/ Poex) " do
Q1/5

= gNm/p / (™| Vo™ +v™)e Ndy
Q
— E—N(p~m)pE€(v).
U

For each S C R, Define M,(S) = {u € WH™(S)| [ [v[Pdz = a},
and

(1) m(r, a) = min{/Q [Vu|™ + ju|"dz | u e My(2) },
(i) m(+,a) = min{/RN V™ + |u|™dz | u e Ma(RY)},
(i) m(oo,a) = min{/RN V™ + ju[™dz | ue Ma(®Y)},

where RY = {z = (1, -~ ,2n) | zy > 0}. We remark that there exists
positive, radially symmetric, nonincreasing solution w of the quasilinear
elliptic equation

(1) —div(|Vu|™ 2| Vu) + ufu|™ 2% — ululP~2
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so that w minimizes the energy J(v), i.e, the functional on W1™(RN)
corresponding to the equation (I), which is defined by

1 1
J(v) = ——/ |Vo|™ + |v|™ dz — —/ [v|P dx .
m JgrnN D JwN

Here w minimizes the enrgy J in the sense that J(v) > J (w) for any
nontrival v solving (I). Confer [1, 2] for details in case m=2 and [11] in
geneal case. We call w the ground state solution. From these definitions,
1t is easy to observe the following lemma.

LEMMA 2.2. Forr > 1, a > 0, we have

(1) m(o0,1) = [fon |[V&|™ + |&|™dz , where w is a ground state solu-
tion of (I) and & = w/llwllz, @&

(2) m(r,a) = a™Pm(r,1) (r may be + or +c0),

(3) m(4+00,2) =2m (+,1).

PROOF. Let u be a minimizer of E(u) = [i |Vu™ + |u|™dz on
M :={ue WH™RY)| fon [uff = 1}. Then @ = E(u)/ -y is again
a solution of (I). It is easy to see that J(4) = (p—m)/pmE(u)?/P=™) On
the other hand, if w is a ground state solution of (I), @ := w/llwll, € M
and E(0) = (fgn [w|P)"™PE(w). Since Jgw wPdz = E(u) and E(u) =
pm/(p — m)J(w), and since w is a energy minimizing solution, we have

B ( om J(w)> (p—m)/pS (pl,—mmJ(&)><p—m)/p: B,

Hence @ is a minimizer of E(u) on M and this shows (1). (2) and (3)
are easy to see, O

3. Some asymptotic estimates

In this section we give the asymptotic estimates of me as € — 0.
We denote a minimizer corresponding to m, = m}lJIl E.(u) by u,. Let
we= My

ve = 0(uc). In the following, we also write v, to denote X . Ve, Where
X4 18 a characteristic function.
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PROPOSITION 3.1. Ase — 0,
me = eNP™/P (m(4,1) + 0(1)).

To show this proposition, we need to define some functions. Let 7 be
smooth, nonincreasing function defined on [0, +o¢) such that n(t) = 1
for0<t<1,n(t) =0fort>2and |n| <2 We also define n.(t) =
n(t/r). Let p be a (to be chosen properly) positive constant. Define for
each y € 99,

(3.1) ws(y)m:npux—yl)w(“y) zeQ,

£

and define . (y) = ﬁ% Note then that ¢.(y) € M1(£2).

PROOF. It is obvious that m. < eN®P="™)/P(m(+,1) + o(1)), if we
take the function . into consideration. So it remains to show m, >
eNP=m)/P(m(+,1) +0(1)). Suppose to the contrary that there exists a,
0 < a < m(+,1) satisfying

(3.2) liminfe " NP~™/Pm, = o < m(+,1)

e—0
i.e., there exists €, — 0 and u.,, € M1(f2) (in the following, we write u,
for the sake of simplicity) such that

me, = B (un), lim e, NP~™/PE, (u,) = a.
n—oo
To lead a contradiction, we investigate the concentration compactness of
vn (= Xq,,.,0(un)). For the concentration compactness theory, confer
[9]. We show that (v,)n>1 does not provide vanishing-case or dichotomy-
case i.e., there happens compactness with (v,),>1. First, we assume the
following two lemmas whose proofs are deferred for the time being. [J

LEMMA 3.2. Suppose that for any R > 0, limyp, ;00 SUPyerny fBR(y) vP
dz = 0, where v,, is as above, then we obtain lim [y vEdx =0.
n—00
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LEMMA 3.3. (vn)n>1 does not make dichotomy.

Lemma 3.2 shows that (Un)n>1 is not vanishing. Due to above two
lemmas we can assume the compactness of the sequence (Un)nzjl that
is, there exists y, € RY such that for any € > 0, there exists R > 0

satisfying
/ Xn|Vn|Pdz>1—¢
y'n+BR

We assume the following lemma whose proof is deferred for the time
being .

LEMMA 3.4. There exists ¢ > 0 such that dist (Yn, O0,) < é.

By virtue of Lemma 3.4, there exists t, € 9Q such that
dist (yn,Gn) < ¢, where §, = tn/en € O0,.

Now let’s choose a unitary matrix U, such that §; Y = Upn(Qn — @) has
y" as inner normal direction of 99, at the origin. Then it is easy to see
the following lemma.

LEMMA 3.5. For any fixed Ry > 0, U, (2, —qrn)N B, (0) converges to
Bf, (0) = {2 € Bg,(0)|z" > 0} in the following sense; for any § > 0,
there exist K, and there exists ns such that
(3.3) {z € Bf (0)]2" >4} C Un(Q — Ggn) for n > ns
(3.4) ]{xeUAQH—@JNB&meNgé}kgKﬁ

Finally we assume the following lemma.
LEMMA 3.6. | vy, ||peo(q,,) is uniformly bounded.

Now by Lemma 3.4, if we put R; = R+¢, we have fBR (G, VR dT > 1—¢.
1 n

From (3.3), (3.4) and Lemma 3.6, for given e > 0, there exist 4, > 0 and
ns, such that

(3.5) / R(U e+ Go)de > 1 — 26 for n > ng,.

{z€BL (0)|aN >3, )
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Let x5, = (0,---,0,6;) and

¥n(2) = N, (|2 [)vn(Un(@ + 26,) + dn), = € RY.

Then we obtain

(3.6) /(W%W+¢mm—/(wmw+wﬂmmz—%
Qn

N
Ry

Now for n large enough, by (3.5) and (3.6)

a = lim | Vo, | + vy dz
n—00 Qn

> lim | VO, |™ + | Op |™ da — 2¢
n—00 ﬁ

> (1 —&)™Pm(4,1) — 2.

Hence A > m(+, 1), which contradicts our assumption (3.2).
Now we give the proofs of the lemmas used in proposition 3.1.

PROOF OF LEMMA 3.2. Let p = 1+ mT_lp, 1 < p < p and follow
the proof of Lemma 2.2 of [12]. Then we get a positive constant C
independent of n and ¢, satisfying for all a,1 < a < 7\71!—1—,

(3.7) / |V |*Pdx < Ce271,

Qn
When —%— - % < %, take a = g. Then a < TVLV_“I’ which shows our
assertion. If L — Tl) > +, take any a € (0, %) and let 4, = {z €
Q, |vn(z) > 1} and B, = Q, — A,. Then |A,| -» 0 and therefore,

/ [vnlpda::/ [vnlpd:r+/ |on|Pdx
Qn An Bn

gWMJ+/|m@m~0
B,
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ProoOF oF LEMMA 3.3. Suppose not. Then

Q)= swp [ whds Q) = lim Qu0)
Yy t

yeERN

satisfy
lim Q(t) =\, with 0< A< 1.

t—o0

Hence for any € > 0, there exists Ry > 0 such that Q(Ro) > A —¢/4 and
there exist y, € RV, ng € N such that

Qn(Ro) = / vhdr > A—¢/2, for all n > ny.
yn+BHO

Also by definition, there exists a sequence R,, — 20 such that
Qn(2R,) < XA +¢/2.

Let £ =1 — n and set

() = xulein (222 ) wn(e),

Then we obtain
/\——6/25/ vﬁdmg/ (v}L)deg/ (vp)Pdz < A+e/2.
yo+Br, RN Un+B2r,

Hence

U |02 P dz — X
]RN

1 ) 1
< = 21Pdr — (1 -\ —€.
__26, ‘/RN|vn|d:c ( )‘<2&



On the multiple positive solutions

Thus

(3.8) {fRN|v}l|Pd:c =A+el lel] <e,

fRN|va|da: =(1—-X)+£2 le2 | <e.

Moreover, we can choose Ry so large for fixed € > 0 that

LVl ™yde— [ (0o 1ol ) da
(3.9) "

Now by (3.7), (3.8), (3.9) and Lemma 3.2,

1
a= lim m (—, 1)
n—o00 En
= lim [ Vo, |™ + vt

n—00 [e]
n

n—>00

—/ (02 [™ + 02 |™) dz > —2¢.
Q,

229

> lim (/ |Vv,1L[m+|v,ll|mdm+/ ]val|m+]vfl]mdm)—2e
Qn

Qn

> lim (m (i,)\—.?e) +m<—1—,(1—)\)—25)) — 2
n—00 En En

1
= lim (()\ — 26)™/Pm (—,1) + (1= X—2e)™Pm (l, 1)) — 2
n—00 En En

- ((,\ —2)™P 4 (1 - A— 2e)m/P) a— 2.
Letting e — 0, we have
a > (Am/p + (1 - )\)m/p> a > a

which leads a contradiction.
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PROOF OF LEMMA 3.4. Suppose it is not true i.e., dist (Yn, 0) —
+00. Since

(3.10) / Xn|Un|Pdz>1—¢
yn+BR

we may assume y, € §2,. Now for a fixed € > 0, there exists R > 0 such
that (3.10) holds. We may assume y,, + By C €, for sufficiently large
n. Put w, = n (32) va(z). Then w,(z) € WH™(RN). Also as noted
above, we can choose so large R satisfying

/|an[m+|vn]mdx—/ | Vw, |™ + witdz > —2¢.
IRN

n

Hence with A\, = [ |wn [P dz we have

/ | Vo " + ot dz > / | Vwy, |™ + wi dx — 2¢
Q, RN

> m(oo, Ap) — 2¢

> Am/pm(oo, 1) — 2=

> (1 —e)™/Pol=m/Pp (4 1) — 2¢

Then A > m(+, 1) which is against the assumption (3.2). O

PROOF OF LEMMA 3.6. Note that (B (u,)!/®™u,) _ satisfy (P,.,)
and hence they are uniformly bounded and that from Lemma 2.1,

Ee, (un) = en P"™PEy . (un).

N/p

Since v (z) = en Pun(enz),

—m 1/(p—m) /(p-m) _
Een (un) /07 @) = (1070 ) T (B ) T P,

= By (on) /Py,
Since El/en (vn) tends to a + o(1), (vn)n>1 is uniformly bounded. O

Looking closely into the proof of proposition 3.1, we easily obtain the
following result.
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LEMMA 3.7. Suppose (e, ) be a sequence of positive numbers which
decreases to 0. If v, € M;1(§)y ., ) satisfies

/ Vo™ + |va]™ dz — m(+, 1)
M1(Ry/e,,)

as n — 00, then there exists a subsequence of v,, and a positive constant
¢ independent of n such that for any §, there exists R satisfying

/ |op|Pdz > 1 -6 and  dist(y,,0,) > €.

BR(yn)Ugl/en

PROPOSITION 3.8. ¢, : 02 — M1(f2) is a continuous function and

Ec (pe(y) = eNPT™/P(m(+,1) + o(1))
uniformly on 02

PROOF. It is similar as the proof for Proposition 2.2,[12]. O

4. Multiplicity of positive solution of (P.)

Now we introduce a mass-centre, c(u) of u € M;(Q) by means of
Ly(Q), that is c(u) = [, |u/Pzdz. It is obvious that c(u) is continuous.

PROPOSITION 4.1. Let p > 0 be given in the proof of Proposition 3.1.
Then there exist §; > 0 and €; > 0 such that for alle, 0 < € < g4

N(p—-m)/p

c(u) € N,(09), for all u € EM=T0:¢

PROOF. Suppose the assertion is not true. Then there exist ¢, — 0
and 4,, — 0 satisfying

N(p—m)/p

(4.1) Uy € Efentonen but  c(un) & N,(89).
Then from (4.1), we have

Me, e, VPP < o NP=M/PE (4, )y <m, e NP-™)/P 4§
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By Proposition 3.1, we obtain
e NP=™/PE (4,) — m(+,1) as n — .
Let v, = o(u,) i.e., eﬁ/pugn(enx). Then v, (x) € My(94/e,) and

/ Vo™ + [on|dz — m(= 1).

1/en

For simplicity we write u., = u, and Q;,., = (,. By Lemma 3.7, we
can choose y, € RY and a constant ¢ > 0 independent of n such that
for each J > 0 there exists Rs > 0 satisfying

/ |vp|Pde > 1 -6
Bn(yn)ﬁQn

with dist(y,, 0Qy,) < ¢. Thus, there is ¢, € dQ such that dist(y,,gn/en)
< ¢. Then there exists R; > 0 such that for sufficiently large n,

/ |vp[Pdz > 1 — 6.
Bﬂl (Qn/en)mﬂn

We may assume g, — g € 92 and 2z, = ¢(u,) — 0. Note that

/ a:|vn|pdx=/ eNuP (epx)rde
Qn Q.

= — p :
en/nun(a:)a:da

Since ¢ # 0, we may assume q; > 0, where ¢ = (¢*,--- ,¢"). Let v =
min{y' | y € 0 }. Then for n large enough, we have

1
Zn :/ xt |, |de
En Q,

:/ |vn|px1dac+/ |vn [Pzt da
BRI(Qn/En) Qn\BRl(q",/En)

21

> (2 _ Ry —e) - s,

ey, En
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Therefore,
2y 2 (g — Ragn)(1 = 8) — 416 — ¢" > 0,

which leads a contradiction. O
LEMMA 4.2. Let §; > 0 be given as in the above Proposition 4.1. For

any §, 0 < 4§ < 41, there exists e5 > 0 such that for all 0 < € < €5 such
that

N(p—m)/p

cat (EmeTo¢ ) > 2cat (69).

PROOF. Let §; be chosen as above. Then there exists 5 > () such
that for €, 0 < € < g4, it follows that
pe : O — EMetoe n M
¢ Bt L N,(8Q), 8. =eNPmI/Pg

are both continuous maps, where M{" = {u € M;(Q) |u >0 a.e.}.
Note further that

(4.2) coe(y) € Nop(y), for all y € 99Q.

Let P : Ny, (02) — 00 be a homotopy with Plgg = idag. Set A, =
Emeté 1 Mt and assume cat (A;) = k. Then there exist k closed and
contractible subsets of A, say Ay, Ay, -, Ax such that

k
A+ == U A'i-
i=1

Let B; = p; 1(A;) €8, i=1,--- k. Then Ule B; = 0Q. Therefore

k

cat (0Q2) < Z catpa(B;) -

i=1

We assert that every non-empty B; is contractible. Since A; is con-
tractible in A, there exists a contraction H; € C([0, 1] x A;, A+ ) such

that
{ H;(0,¢) = ¢ for all ¢ € A;
Hi(l,C) = CiFA+ for 311C6A1
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Define a map H : [0, 2]x — 99 by

Tt )_{P(y—t[y—coHi(O,-)Osoe(y)]) 0<t<1, ye B
Y= PocoHi(t—1,-)o¢.(y) 1<t<2, yeB;

By (4.2), H is well-defined and it is easy to see that H(0, y) = y for all
y € By and H(2, y) = Poc(({;). This shows catgn(B;) = 1 and therefore
we obtain

cat (092) < k = cat(Ay).
In a similar manner with —¢., we have for A_ = E™<+% 1 M (Q),
cat (A_) > cat (992).
Since A_ and A, are disjoint in E™<t%  we have
cat (EMet%) > 2cat(89).
O

LEMMA 4.3. If u is a critical point of E. on M; with E.(u) <
2(P~m)/Pm,, then u does not change sign.

PROOF. Suppose u = uy+u_ withuy #0. Thenm, < E.(u/|ut||rr),
that is

(4.3) lus||Tome < /S;em|Vu+|m + uf dz.

Since E.(u)!/P~™u is a solution of (P .), we obtain by taking u, as a
test function

(4.4) /Qem[Vu+|m + ulde = E.(u) /Q uf dz.

By (4.3), (4.4) and the given condition, we have ||u,||¥, > 1 and simi-
larly ||u_||}, > 1. Then

1
L= Jullzy = lutlZ + lu-lize > 5 +5 =1,

DN =

which is absurd. O
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THEOREM 4.4. Suppose p > 2. Then for all sufficiently small e, (P
¢) has at least cat (0R?) distinct non-constant positive solutions.

PROOF. Note that m, = eN®P=™)/P(m(+ 1) 4+ 0(1)). For &, > 0 in
Proposition 4.1, choose §¢ > 0 satisfying

S0 < min(dy, (2P~™/P — 1)m(+,1)).

Since m(+,1) = m.e NP~™)/P 4 o(1) as ¢ — 0, we can find eo(< 1)
satisfying for all € < gg.

do < (2P~™/P _ 1)ym e~ NE-m)/P
equivalently,
(4.5) me + 505N(p~m)/p < 2(p—m)/pm5 _
For this §g, we can choose (< €¢) satisfying for all 0 < e < &,
cat (ET'=1%) > 2cat (8Q), 4. = foe’VP—m)/p

By (4.6) and Ljusternik-Schnirelmann category Theorem, there exist at
least 2cat (0N2) critical points. By (4.5) and Lemma 4.3, these critical
points do not change sign. Consequently there exist at least cat (92)
positive solutions since (P) is odd. O
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