ON THE MULTIPLE POSITIVE SOLUTIONS TO A QUASILINEAR EQUATION

SANG DON PARK, SOO HYUN BAE AND *DAE HYEON PAHK

ABSTRACT. In this paper we investigate the multiplicity of positive solutions to a quasilinear Neumann problem;

$$\left\{ \begin{array}{l} \varepsilon^{m}div(|\nabla u|^{m-2}\nabla u)-u|u|^{m-2}+u|u|^{p-2}=0 \qquad \text{in } \Omega \\ \frac{\partial u}{\partial \nu}=0 \qquad \text{on } \partial\Omega, \end{array} \right.$$

making use of Ljusternik Schnirelmann category theory

1. Introduction

In this paper we investigate the multiplicity of positive solutions to a quasilinear Neumann problem;

$$\begin{aligned} (\mathbf{P}_{\varepsilon}) \qquad & \left\{ \begin{array}{l} \varepsilon^{m} div(|\nabla u|^{m-2}\nabla u) - u|u|^{m-2} + u|u|^{p-2} = 0 \qquad \text{ in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 \qquad \text{ on } \partial \Omega, \end{array} \right. \end{aligned}$$

where $1 < m < N, \ N \geq 2, \ \varepsilon > 0, \ m is a smooth bounded domain in <math>\mathbb{R}^N$ and ν is the unit outer normal vector to $\partial\Omega$. It stems from a chemoactic aggregation model, which was initially studied by C.H.Lin, W.M.Nl, I.Takagi, [6, 7] in case of m=2. In [12], Z-Q. Wang investigated the influence of the topology of Ω on the solutions of (P_{ε}) in case of m=2.

Received June 2, 1996. Revised March 18, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 35J70.

Key words and phrases: Lagrange multiplier rule, concentration compactness, Ljusternik Schnirelmann category.

^{*}Supported partly by GARC, KOSEF 95-0701-04-01-3 and BSRI 96-1421, Ministry of Educations.

On the view of variational method, the critical points of the functional $J_{\varepsilon}: W^{1,m}(\Omega) \to \mathbb{R}$ defined by

(1.1)
$$J_{\varepsilon}(v) = \frac{1}{m} \int_{\Omega} \varepsilon^{m} |\nabla v|^{m} + |v|^{m} dx - \frac{1}{p} \int_{\Omega} |v|^{p} dx$$

are the solutions of (P_{ε}) .

Let $E_{\varepsilon}(u) = \int_{\Omega} \varepsilon^m |\nabla u|^m + |u|^m dx$ and $V(u) = \int_{\Omega} |u|^p dx$ and set $M_1 = \{u \in W^{1,m}(\Omega) \mid V(u) = 1\}$. Suppose u is a critical point of E_{ε} on M_1 , then by Lagrange multiplier rule $\tilde{u} = E_{\varepsilon}(u)^{1/(p-m)}u$ is a solution of (P_{ε}) . This idea is not void since E_{ε} is coercieve and weakly lower semicontinuous (see [3]) and hence E_{ε} is bounded below so that $c_{\varepsilon} = \min_{u \in M_1} E_{\varepsilon}(u)$ is achieved, which is a critical value.

Now let $E_{\varepsilon}^{c_{\varepsilon}+\delta} = \{u \in M_1 \mid E_{\varepsilon} \leq \varepsilon + \delta\}$. We are to show that $\operatorname{cat}(E_{\varepsilon}^{c_{\varepsilon}+\delta}) \geq 2\operatorname{cat}(\partial\Omega)$ for all sufficiently small ε and small $\delta(\varepsilon)$ (Lemma 4.2). Then Ljusternik Schnirelmann category theory (see e.g., Theorem 27.2,[8]) shows that there are at least $2\operatorname{cat}(\partial\Omega)$ critical points of E_{ε} . On the other hand these critical points do not change their sign (Theorem 4.3). Therefore there exist at least $2\operatorname{cat}(\partial\Omega)$ critical points of I_{ε} , which do not change sign. Consequently there are at least $\operatorname{cat}(\partial\Omega)$ positive solutions since (P_{ε}) is odd equation in u (Theorem 4.4).

2. Preliminary

There is 1-1 correspondence between the solutions of (P_{ε}) and the solutions of

$$(\mathrm{P}_\varepsilon') \qquad \left\{ \begin{array}{l} \operatorname{div}(|\nabla u|^{m-2}\nabla u) - u|u|^{m-2} + u|u|^{p-2} = 0 \quad \text{ in } \Omega_{1/\varepsilon} \\ \partial u/\partial \nu \, = \, 0 \quad \text{ on } \partial \Omega_{1/\varepsilon} \end{array} \right.$$

where $\Omega_{1/\varepsilon} = \{x \mid \varepsilon x \in \Omega\}$. In fact, the change of variable $u(x) = v(\varepsilon x)$ for each v solving (P_{ε}) gives the 1-1 correspondence. We associate (P'_{ε}) with the following functional

$$\tilde{E}_{1/arepsilon}(v) \,=\, \int_{\Omega_{1/arepsilon}} |
abla v|^m + |v|^m dx, \qquad v \in M_1(\Omega_{1/arepsilon})\,,$$

where $M_1(\Omega_{1/\varepsilon}) = \{u \in W^{1,m}(\Omega_{1/\varepsilon}) | \int_{\Omega_{1/\varepsilon}} |u|^p dx = 1\}$. Now define for each $v \in M_1(\Omega)$,

$$\sigma(v)(x) \stackrel{def}{=} \varepsilon^{N/p} v(\varepsilon x)$$
.

It is easy to see that $\sigma(v) \in M_1(\Omega_{1/\varepsilon})$.

Lemma 2.1. For any $v\in M_1(\Omega),\ \tilde E_{1/\varepsilon}(\sigma(v))=\varepsilon^{-N(p-m)/p}E_\varepsilon(v)$ and

$$\min_{v \in M_1(\Omega_{1/\varepsilon})} \tilde{E}_{1/\varepsilon}(v) = \varepsilon^{-N(p-m)/p} \min_{v \in M_1(\Omega)} E_{\varepsilon}(v).$$

PROOF. It suffices to show the first equality.

$$\begin{split} \tilde{E}_{1/\varepsilon}(\sigma(v)) &= \int_{\Omega_{1/\varepsilon}} |\nabla(\varepsilon^{N/p} v(\varepsilon x))|^m + |\varepsilon^{N/p} v(\varepsilon x)|^m dx \\ &= \varepsilon^{Nm/p} \int_{\Omega} (\varepsilon^m |\nabla v|^m + v^m) \varepsilon^{-N} dy \\ &= \varepsilon^{-N(p-m)p} E_{\varepsilon}(v) \,. \end{split}$$

For each $S \subset \mathbb{R}^N$, Define $M_{\alpha}(S) = \{ u \in W^{1,m}(S) | \int_S |v|^p dx = \alpha \}$, and

$$(\mathrm{i}) \hspace{1cm} m(r,\,\alpha) \,=\, \min\{\, \int_{\Omega} \,\, |\nabla u|^m + |u|^m dx \,\mid u \in M_{\alpha}(\Omega) \,\},$$

$$(\mathrm{ii}) \qquad m(+,\alpha) \, = \, \min \{ \int_{\mathbb{R}^N_+} |\nabla u|^m + |u|^m dx \mid \, u \in M_{\boldsymbol{\alpha}}(\mathbb{R}^N_+) \, \},$$

$$(\mathrm{iii}) \qquad m(\infty, lpha) = \min\{\int_{\mathbb{R}^N} |
abla u|^m + |u|^m dx \mid u \in M_lpha(\mathbb{R}^N)\}\,,$$

where $\mathbb{R}_+^N = \{ x = (x_1, \dots, x_N) \mid x_N \geq 0 \}$. We remark that there exists positive, radially symmetric, nonincreasing solution ω of the quasilinear elliptic equation

(I)
$$-div(|\nabla u|^{m-2}|\nabla u) + u|u|^{m-2} - u|u|^{p-2}$$

so that ω minimizes the energy J(v), i.e, the functional on $W^{1,m}(\mathbb{R}^N)$ corresponding to the equation (I), which is defined by

$$J(v) = rac{1}{m} \int_{\mathbb{R}^N} |\nabla v|^m + |v|^m dx - rac{1}{p} \int_{\mathbb{R}^N} |v|^p dx.$$

Here ω minimizes the enrgy J in the sense that $J(v) \geq J(\omega)$ for any nontrival v solving (I). Confer [1, 2] for details in case m=2 and [11] in geneal case. We call ω the ground state solution. From these definitions, it is easy to observe the following lemma.

LEMMA 2.2. For $r \ge 1$, $\alpha > 0$, we have

- (1) $m(\infty,1) = \int_{\mathbb{R}^N} |\nabla \tilde{\omega}|^m + |\tilde{\omega}|^m dx$, where ω is a ground state solution of (I) and $\tilde{\omega} = \omega/\|\omega\|_{L_p(\mathbb{R}^N)}$
- (2) $m(r,\alpha) = \alpha^{m/p} m(r,1)$ (r may be + or $+\infty$),
- (3) $m(+\infty,2) = 2m(+,1)$.

PROOF. Let u be a minimizer of $E(u)=\int_{\mathbb{R}^N}|\nabla u|^m+|u|^mdx$ on $M:=\{u\in W^{1,m}(\mathbb{R}^N)\mid \int_{\mathbb{R}^N}|u|^p=1\}$. Then $\tilde{u}=E(u)^{1/(p-m)}u$ is again a solution of (I). It is easy to see that $J(\tilde{u})=(p-m)/pmE(u)^{p/(p-m)}$. On the other hand, if ω is a ground state solution of (I), $\tilde{\omega}:=\omega/\|\omega\|_{L_p}\in M$ and $E(\tilde{\omega})=(\int_{\mathbb{R}^N}|\omega|^p)^{-m/p}E(\omega)$. Since $\int_{\mathbb{R}^N}\omega^pdx=E(u)$ and $E(u)=pm/(p-m)J(\omega)$, and since ω is a energy minimizing solution, we have

$$E(\tilde{\omega}) = \left(\frac{pm}{p-m}J(\omega)\right)^{(p-m)/p} \leq \left(\frac{pm}{p-m}J(\tilde{\omega})\right)^{(p-m)/p} = E(u).$$

Hence $\tilde{\omega}$ is a minimizer of E(u) on M and this shows (1). (2) and (3) are easy to see.

3. Some asymptotic estimates

In this section we give the asymptotic estimates of m_{ε} as $\varepsilon \to 0$. We denote a minimizer corresponding to $m_{\varepsilon} = \min_{u \in M_1} E_{\varepsilon}(u)$ by u_{ε} . Let $v_{\varepsilon} = \sigma(u_{\varepsilon})$. In the following, we also write v_{ε} to denote $\chi_{\Omega_{1/\varepsilon}} v_{\varepsilon}$, where χ_A is a characteristic function.

Proposition 3.1. As $\varepsilon \to 0$,

$$m_{\varepsilon} = \varepsilon^{N(p-m)/p} \left(m(+,1) + o(1) \right).$$

To show this proposition, we need to define some functions. Let η be smooth, nonincreasing function defined on $[0, +\infty)$ such that $\eta(t) = 1$ for $0 \le t \le 1$, $\eta(t) = 0$ for $t \ge 2$ and $|\eta'| \le 2$. We also define $\eta_r(t) = \eta(t/r)$. Let ρ be a (to be chosen properly) positive constant. Define for each $y \in \partial\Omega$,

$$(3.1) \psi_{\varepsilon}(y)(x) \, = \, \eta_{\rho}\left(\left|\, x - y\,\right|\right) \omega\left(\frac{x - y}{\varepsilon}\right) x \in \Omega\,,$$

and define $\varphi_{\varepsilon}(y) = \frac{\psi_{\varepsilon}(y)}{\|\psi_{\varepsilon}\|_{L^p}}$. Note then that $\varphi_{\varepsilon}(y) \in M_1(\Omega)$.

PROOF. It is obvious that $m_{\varepsilon} \leq \varepsilon^{N(p-m)/p}(m(+,1)+o(1))$, if we take the function φ_{ε} into consideration. So it remains to show $m_{\varepsilon} \geq \varepsilon^{N(p-m)/p}(m(+,1)+o(1))$. Suppose to the contrary that there exists α , $0 \leq \alpha \leq m(+,1)$ satisfying

(3.2)
$$\liminf_{\varepsilon \to 0} \varepsilon^{-N(p-m)/p} m_{\varepsilon} = \alpha < m(+,1)$$

i.e., there exists $\varepsilon_n \to 0$ and $u_{\varepsilon_n} \in M_1(\Omega)$ (in the following, we write u_n for the sake of simplicity) such that

$$m_{\varepsilon_n} = E_{\varepsilon_n}(u_n), \qquad \lim_{n \to \infty} \varepsilon_n^{-N(p-m)/p} E_{\varepsilon_n}(u_n) = \alpha.$$

To lead a contradiction, we investigate the concentration compactness of $v_n (= \chi_{\Omega_1/\epsilon_n} \sigma(u_n))$. For the concentration compactness theory, confer [9]. We show that $(v_n)_{n\geq 1}$ does not provide vanishing-case or dichotomycase i.e., there happens compactness with $(v_n)_{n\geq 1}$. First, we assume the following two lemmas whose proofs are deferred for the time being. \square

LEMMA 3.2. Suppose that for any R > 0, $\lim_{n \to \infty} \sup_{y \in \mathbb{R}^N} \int_{B_R(y)} v_n^p dx = 0$, where v_n is as above, then we obtain $\lim_{n \to \infty} \int_{\mathbb{R}^N} v_n^p dx = 0$.

LEMMA 3.3. $(v_n)_{n>1}$ does not make dichotomy.

Lemma 3.2 shows that $(v_n)_{n\geq 1}$ is not vanishing. Due to above two lemmas we can assume the compactness of the sequence $(v_n)_{n\geq 1}$ that is, there exists $y_n \in \mathbb{R}^N$ such that for any $\varepsilon > 0$, there exists R > 0 satisfying

$$\int_{y_n+B_R} \chi_n |v_n|^p dx \ge 1 - \varepsilon.$$

We assume the following lemma whose proof is deferred for the time being.

LEMMA 3.4. There exists $\bar{c} > 0$ such that dist $(y_n, \partial \Omega_n) \leq \bar{c}$.

By virtue of Lemma 3.4, there exists $t_n \in \partial \Omega$ such that

$$\operatorname{dist}\left(y_{n}, \tilde{q}_{n}\right) \leq \bar{c}, \text{ where } \tilde{q}_{n} = t_{n}/\varepsilon_{n} \in \partial\Omega_{n}.$$

Now let's choose a unitary matrix U_n such that $\tilde{\Omega}_n = U_n(\Omega_n - \tilde{q}_n)$ has y^N as inner normal direction of $\partial \Omega_n$ at the origin. Then it is easy to see the following lemma.

LEMMA 3.5. For any fixed $R_1 > 0$, $U_n(\Omega_n - \tilde{q}_n) \cap B_{r_1}(0)$ converges to $B_{R_1}^+(0) = \{ x \in B_{R_1}(0) \mid x^N \geq 0 \}$ in the following sense; for any $\delta > 0$, there exist K_1 and there exists n_{δ} such that

$$(3.3) \qquad \{ x \in B_{R_1}^+(0) \, | \, x^N \ge \delta \} \subset U_n(\Omega_n - \tilde{q}_n) \qquad \text{for } n \ge n_\delta$$

$$(3.4) \qquad \left| \left\{ x \in U_n(\Omega_n - \tilde{q}_n) \cap B_{R_1}(0) \, | \, x^N \leq \delta \right\} \right| \leq K_1 \delta.$$

Finally we assume the following lemma.

LEMMA 3.6. $||v_n||_{L^{\infty}(\Omega_n)}$ is uniformly bounded.

Now by Lemma 3.4, if we put $R_1=R+\bar{c}$, we have $\int_{B_{R_1}(\bar{q}_n)} v_n^p dx \geq 1-\varepsilon$. From (3.3), (3.4) and Lemma 3.6, for given $\varepsilon>0$, there exist $\delta_1>0$ and n_{δ_1} such that

Let
$$x_{\delta_1} = (0, \dots, 0, \delta_1)$$
 and

$$\tilde{v}_n(x) = \eta_{R_1}(|x|)v_n(U_n(x+x_{\delta_1})+\tilde{q}_n), \quad x \in R_+^N.$$

Then we obtain

$$(3.6) \qquad \int_{\Omega_n} (|\nabla v_n|^m + v_n^m) \, dx - \int_{R_+^N} (|\nabla \tilde{v}_n|^m + |\tilde{v}_n|^m) \, dx \ge -2\varepsilon.$$

Now for n large enough, by (3.5) and (3.6)

$$\alpha = \lim_{n \to \infty} \int_{\Omega_n} |\nabla v_n|^m + v_n^m dx$$

$$\geq \lim_{n \to \infty} \int_{R_+^N} |\nabla \tilde{v}_n|^m + |\tilde{v}_n|^m dx - 2\varepsilon$$

$$\geq (1 - \varepsilon)^{m/p} m(+, 1) - 2\varepsilon.$$

Hence $A \ge m(+,1)$, which contradicts our assumption (3.2).

Now we give the proofs of the lemmas used in proposition 3.1.

PROOF OF LEMMA 3.2. Let $\bar{p} = 1 + \frac{m-1}{m}p$, $1 < \bar{p} < p$ and follow the proof of Lemma 2.2 of [12]. Then we get a positive constant C independent of n and ε_n , satisfying for all $\alpha, 1 < \alpha < \frac{N}{N-1}$,

(3.7)
$$\int_{\Omega_n} |v_n|^{\alpha \bar{p}} dx \leq C \varepsilon_n^{\alpha - 1}.$$

When $\frac{1}{m} - \frac{1}{p} < \frac{1}{N}$, take $\alpha = \frac{p}{\bar{p}}$. Then $\alpha < \frac{N}{N-1}$, which shows our assertion. If $\frac{1}{m} - \frac{1}{p} \ge \frac{1}{N}$, take any $\alpha \in (0, \frac{N}{N-1})$ and let $A_n = \{x \in \Omega_n \mid v_n(x) \ge 1\}$ and $B_n = \Omega_n - A_n$. Then $|A_n| \to 0$ and therefore,

$$\begin{split} \int_{\Omega_n} |v_n|^p dx &= \int_{A_n} |v_n|^p dx + \int_{B_n} |v_n|^p dx \\ &\leq C^p |A_n| + \int_{B_n} |v_n|^{\alpha \bar{p}} dx \to 0 \end{split}$$

П

PROOF OF LEMMA 3.3. Suppose not. Then

$$Q_n(t) = \sup_{y \in \mathbb{R}^N} \int_{y+B_t} v_n^p dx, \quad Q(t) = \lim_{n \to \infty} Q_n(t)$$

satisfy

$$\lim_{t \to \infty} Q(t) = \lambda, \quad \text{with } 0 < \lambda < 1.$$

Hence for any $\varepsilon > 0$, there exists $R_0 > 0$ such that $Q(R_0) \ge \lambda - \varepsilon/4$ and there exist $y_n \in \mathbb{R}^N$, $n_0 \in \mathbb{N}$ such that

$$Q_n(R_0) = \int_{y_n + B_{R_0}} v_n^p dx \ge \lambda - \varepsilon/2, \quad \text{for all } n \ge n_0.$$

Also by definition, there exists a sequence $R_n \to \infty$ such that

$$Q_n(2R_n) \leq \lambda + \varepsilon/2.$$

Let $\xi = 1 - \eta$ and set

$$v_n^1(x) = \chi_n(x)\eta\left(\frac{|x - y_n|}{R_0}\right)v_n(x),$$

$$v_n^2(x) = \chi_n(x)\xi\left(\frac{|x - y_n|}{R_n}\right)v_n(x).$$

Then we obtain

$$\lambda - \varepsilon/2 \le \int_{y_0 + B_{R_0}} v_n^p \, dx \le \int_{\mathbb{R}^N} (v_n^1)^p \, dx \le \int_{y_n + B_{2R_n}} (v_n)^p \, dx \le \lambda + \varepsilon/2.$$

Hence

$$\left| \int_{\mathbb{R}^N} |v_n^1|^p \, dx - \lambda \, \right| \leq rac{1}{2} arepsilon, \qquad \left| \int_{\mathbb{R}^N} |v_n^2|^p \, dx - (1-\lambda) \, \right| < rac{1}{2} arepsilon.$$

Thus

(3.8)
$$\begin{cases} \int_{\mathbb{R}^N} |v_n^1|^p dx &= \lambda + \varepsilon_n^1 & |\varepsilon_n^1| \le \varepsilon, \\ \int_{\mathbb{R}^N} |v_n^2| dx &= (1 - \lambda) + \varepsilon_n^2 & |\varepsilon_n^2| \le \varepsilon. \end{cases}$$

Moreover, we can choose R_0 so large for fixed $\varepsilon > 0$ that

(3.9)
$$\int_{\mathbb{R}^{N}} (|\nabla v_{n}|^{m} + |v_{n}|^{m}) dx - \int_{\Omega_{n}} (|\nabla v_{n}^{1}|^{m} + |v_{n}^{1}|^{m}) dx - \int_{\Omega_{n}} (|v_{n}^{2}|^{m} + |v_{n}^{2}|^{m}) dx \ge -2\varepsilon.$$

Now by (3.7), (3.8), (3.9) and Lemma 3.2,

$$\begin{split} &\alpha = \lim_{n \to \infty} m \left(\frac{1}{\varepsilon_n}, 1 \right) \\ &= \lim_{n \to \infty} \int_{\Omega_n} |\nabla v_n|^m + v_n^m \\ &\geq \lim_{n \to \infty} \left(\int_{\Omega_n} |\nabla v_n^1|^m + |v_n^1|^m \, dx + \int_{\Omega_n} |\nabla v_n^2|^m + |v_n^2|^m \, dx \right) - 2\varepsilon \\ &\geq \lim_{n \to \infty} \left(m \left(\frac{1}{\varepsilon_n}, \lambda - 2\varepsilon \right) + m \left(\frac{1}{\varepsilon_n}, (1 - \lambda) - 2\varepsilon \right) \right) - 2\varepsilon \\ &= \lim_{n \to \infty} \left((\lambda - 2\varepsilon)^{m/p} m \left(\frac{1}{\varepsilon_n}, 1 \right) + (1 - \lambda - 2\varepsilon)^{m/p} m \left(\frac{1}{\varepsilon_n}, 1 \right) \right) - 2\varepsilon \\ &= \left((\lambda - 2\varepsilon)^{m/p} + (1 - \lambda - 2\varepsilon)^{m/p} \right) \alpha - 2\varepsilon. \end{split}$$

Letting $\varepsilon \to 0$, we have

$$\alpha \ge \left(\lambda^{m/p} + (1-\lambda)^{m/p}\right)\alpha > \alpha,$$

which leads a contradiction.

PROOF OF LEMMA 3.4. Suppose it is not true i.e., $\operatorname{dist}(y_n, \partial \Omega_n) \to +\infty$. Since

$$(3.10) \qquad \int_{y_n+B_R} \chi_n |v_n|^p dx \ge 1 - \varepsilon.$$

we may assume $y_n \in \Omega_n$. Now for a fixed $\varepsilon > 0$, there exists R > 0 such that (3.10) holds. We may assume $y_n + B_{2R} \subset \Omega_n$ for sufficiently large n. Put $w_n = \eta\left(\frac{x-y_n}{R}\right)v_n(x)$. Then $w_n(x) \in W^{1,m}(\mathbb{R}^N)$. Also as noted above, we can choose so large R satisfying

$$\int_{\Omega_n} |
abla v_n|^m + |v_n|^m \, dx - \int_{\mathbb{R}^N} |
abla w_n|^m + w_n^m \, dx \, \geq \, -2arepsilon.$$

Hence with $\lambda_n = \int_{\mathbb{R}^N} |\, w_n\,|^p\, dx$ we have

$$\int_{\Omega_n} |\nabla v_n|^m + v_n^m dx \ge \int_{\mathbb{R}^N} |\nabla w_n|^m + w_n^m dx - 2\varepsilon$$

$$\ge m(\infty, \lambda_n) - 2\varepsilon$$

$$\ge \lambda^{m/p} m(\infty, 1) - 2\varepsilon$$

$$\ge (1 - \varepsilon)^{m/p} 2^{1 - m/p} m(+, 1) - 2\varepsilon$$

Then $A \ge m(+, 1)$ which is against the assumption (3.2).

PROOF OF LEMMA 3.6. Note that $(E_{\varepsilon}(u_n)^{1/(p-m)}u_n)_{n\geq 1}$ satisfy (P_{ε_n}) and hence they are uniformly bounded and that from Lemma 2.1,

$$E_{\varepsilon_n}(u_n) = \varepsilon_n^{N(p-m)/p} \tilde{E}_{1/\varepsilon_n}(v_n).$$

Since $v_n(x) = \varepsilon_n^{N/p} u_n(\varepsilon_n x)$,

$$\begin{split} E_{\varepsilon_n}(u_n)^{1/(p-m)}u_n(x) &= \left(\varepsilon_n^{N(p-m)/p}\right)^{1/(p-m)} \left(\tilde{E}_{1/\varepsilon_n}(v_n)\right)^{1/(p-m)} \varepsilon_m^{-N/p} v_n \\ &= \tilde{E}_{1/\varepsilon_n}(v_n)^{1/(p-m)} v_n. \end{split}$$

Since $\tilde{E}_{1/\varepsilon_n}(v_n)$ tends to $\alpha + o(1), (v_n)_{n \geq 1}$ is uniformly bounded. \square

Looking closely into the proof of proposition 3.1, we easily obtain the following result.

LEMMA 3.7. Suppose (ε_n) be a sequence of positive numbers which decreases to 0. If $v_n \in M_1(\Omega_{1/\varepsilon_n})$ satisfies

$$\int_{M_1(\Omega_{1/\varepsilon_n})} |\nabla v_n|^m + |v_n|^m dx \to m(+,1)$$

as $n \to \infty$, then there exists a subsequence of v_n and a positive constant \bar{c} independent of n such that for any δ , there exists R satisfying

$$\int\limits_{B_R(y_n)\cup\Omega_{1/arepsilon_n}} |v_n|^p dx \, \geq \, 1-\delta \quad ext{ and } \quad dist(y_n,\partial\Omega_{1/arepsilon_n}) \, \geq \, ar{c} \, .$$

Proposition 3.8. $\varphi_{\varepsilon}: \partial\Omega \to M_1(\Omega)$ is a continuous function and

$$E_{\varepsilon}(\varphi_{\varepsilon}(y)) = \varepsilon^{N(p-m)/p}(m(+,1)+o(1))$$

uniformly on $\partial\Omega$

PROOF. It is similar as the proof for Proposition 2.2,[12].

4. Multiplicity of positive solution of (P_{ε})

Now we introduce a mass-centre, c(u) of $u \in M_1(\Omega)$ by means of $L_p(\Omega)$, that is $c(u) = \int_{\Omega} |u|^p x \, dx$. It is obvious that c(u) is continuous.

PROPOSITION 4.1. Let $\rho > 0$ be given in the proof of Proposition 3.1. Then there exist $\delta_1 > 0$ and $\varepsilon_1 > 0$ such that for all ε , $0 < \varepsilon < \varepsilon_1$

$$c(u) \in N_{\rho}(\partial\Omega), \qquad \text{ for all } u \in E_{\varepsilon}^{m_{\varepsilon} + \delta_{1}\varepsilon^{N(p-m)/p}}$$

PROOF. Suppose the assertion is not true. Then there exist $\varepsilon_n \to 0$ and $\delta_n \to 0$ satisfying

$$(4.1) u_n \in E_{\varepsilon_n}^{m_{\varepsilon_n} + \delta_n \varepsilon_n^{N(p-m)/p}} \text{but} c(u_n) \notin N_{\rho}(\partial\Omega).$$

Then from (4.1), we have

$$m_{\varepsilon_n} \varepsilon_n^{-N(p-m)/p} \leq \varepsilon_n^{-N(p-m)/p} E_\varepsilon(u_n) \leq m_{\varepsilon_n} \varepsilon_n^{-N(p-m)/p} + \delta_n \,.$$

By Proposition 3.1, we obtain

$$\varepsilon_n^{-N(p-m)/p} E_{\varepsilon}(u_n) \to m(+,1) \text{ as } n \to \infty.$$

Let $v_n = \sigma(u_{\varepsilon_n})$ i.e., $\varepsilon_n^{N/p} u_{\varepsilon_n}(\varepsilon_n x)$. Then $v_n(x) \in M_1(\Omega_{1/\varepsilon_n})$ and

$$\int_{\Omega_{1/arepsilon_n}} |
abla v_n|^m + |v_n|^m dx
ightarrow m(+,1).$$

For simplicity we write $u_{\varepsilon_n} = u_n$ and $\Omega_{1/\varepsilon_n} = \Omega_n$. By Lemma 3.7, we can choose $y_n \in \mathbb{R}^N$ and a constant $\bar{c} > 0$ independent of n such that for each $\delta > 0$ there exists $R_{\delta} > 0$ satisfying

$$\int_{B_R(y_n)\cap\Omega_n} |v_n|^p dx \ge 1 - \delta$$

with $\operatorname{dist}(y_n, \partial \Omega_n) < \bar{c}$. Thus, there is $q_n \in \partial \Omega$ such that $\operatorname{dist}(y_n, q_n/\varepsilon_n) \le \bar{c}$. Then there exists $R_1 > 0$ such that for sufficiently large n,

$$\int_{B_{R_1}(q_n/\varepsilon_n)\cap\Omega_n} |v_n|^p dx \ge 1 - \delta.$$

We may assume $q_n \to q \in \partial \Omega$ and $z_n = c(u_n) \to 0$. Note that

$$\int_{\Omega_n} x |v_n|^p dx = \int_{\Omega_n} \varepsilon_n^N u_n^p(\varepsilon_n x) x dx$$
$$= \frac{1}{\varepsilon_n} \int_{\Omega} u_n^p(x) x dx$$
$$= \frac{z_n}{\varepsilon_n}.$$

Since $q \neq 0$, we may assume $q_1 > 0$, where $q = (q^1, \dots, q^N)$. Let $\gamma = \min\{y^1 \mid y \in \partial\Omega\}$. Then for n large enough, we have

$$\begin{split} \frac{z_n^1}{\varepsilon_n} &= \int_{\Omega_n} x^1 |v_n| dx \\ &= \int_{B_{R_1}(q_n/\varepsilon_n)} |v_n|^p x^1 dx + \int_{\Omega_n \setminus B_{R_1}(q_n/\varepsilon_n)} |v_n|^p x^1 dx \\ &\geq \left(\frac{z_n^1}{\varepsilon_n} - R_1\right) (1 - \delta) - \frac{|\gamma|}{\varepsilon_n} \delta. \end{split}$$

Therefore,

$$z_n^1 \ge (q_n^1 - R_1 \varepsilon_n)(1 - \delta) - |\gamma|\delta \rightarrow q^1 > 0,$$

which leads a contradiction.

LEMMA 4.2. Let $\delta_1 > 0$ be given as in the above Proposition 4.1. For any δ , $0 < \delta < \delta_1$, there exists $\varepsilon_\delta > 0$ such that for all $0 < \varepsilon < \varepsilon_\delta$ such that

$$cat(E_{\varepsilon}^{m_{\varepsilon}+\delta\varepsilon^{N(p-m)/p}}) \geq 2cat(\partial\Omega).$$

PROOF. Let δ_1 be chosen as above. Then there exists $\varepsilon_{\delta} > 0$ such that for ε , $0 < \varepsilon < \varepsilon_{\delta}$, it follows that

$$\begin{split} \varphi_{\varepsilon} \, : \, \partial\Omega \to E_{\varepsilon}^{m_{\varepsilon} + \delta_{\varepsilon}} \cap M_{1}^{+} \\ c \, : \, E_{\varepsilon}^{m_{\varepsilon} + \delta_{\varepsilon}} \to N_{\rho}(\partial\Omega), \qquad \delta_{\varepsilon} = \varepsilon^{N(p-m)/p} \delta \end{split}$$

are both continuous maps, where $M_1^+ = \{u \in M_1(\Omega) \mid u \geq 0 \quad a.e.\}$. Note further that

(4.2)
$$c \circ \varphi_{\varepsilon}(y) \in N_{2\rho}(y)$$
, for all $y \in \partial \Omega$.

Let $P: N_{2\rho}(\partial\Omega) \to \partial\Omega$ be a homotopy with $P|_{\partial\Omega} = id_{\partial\Omega}$. Set $A_+ = E_{\varepsilon}^{m_{\varepsilon} + \delta_{\varepsilon}} \cap M_1^+$ and assume cat $(A_+) = k$. Then there exist k closed and contractible subsets of A_+ , say A_1, A_2, \dots, A_k such that

$$A_+ = \bigcup_{i=1}^k A_i.$$

Let $B_i = \varphi_{\varepsilon}^{-1}(A_i) \subset \partial \Omega$, $i = 1, \dots, k$. Then $\bigcup_{i=1}^k B_i = \partial \Omega$. Therefore

$$\cot(\partial\Omega) \le \sum_{i=1}^k \cot_{\partial\Omega}(B_i).$$

We assert that every non-empty B_i is contractible. Since A_i is contractible in A_+ , there exists a contraction $H_i \in C([0, 1] \times A_i, A_+)$ such that

$$\begin{cases} H_i(0,\zeta) = \zeta & \text{for all } \zeta \in A_i \\ H_i(1,\zeta) = \zeta_i \in A_+ & \text{for all } \zeta \in A_i . \end{cases}$$

Define a map $\overline{H}: [0, 2] \times \to \partial \Omega$ by

$$\overline{H}(t,y) = \begin{cases} P(y - t[y - c \circ H_i(0, \cdot) \circ \varphi_{\varepsilon}(y)]) & 0 \le t \le 1, \ y \in B_i \\ P \circ c \circ H_i(t - 1, \cdot) \circ \varphi_{\varepsilon}(y) & 1 \le t \le 2, \ y \in B_i \end{cases}$$

By (4.2), \overline{H} is well-defined and it is easy to see that $\overline{H}(0, y) = y$ for all $y \in B_i$ and $\overline{H}(2, y) = P \circ c(\zeta_i)$. This shows $\cot_{\partial\Omega}(B_i) = 1$ and therefore we obtain

$$\cot (\partial \Omega) \leq k = \cot (A_+).$$

In a similar manner with $-\varphi_{\varepsilon}$, we have for $A_{-}=E_{\varepsilon}^{m_{\varepsilon}+\delta_{\varepsilon}}\cap M_{1}^{-}(\Omega)$,

$$cat(A_{-}) \geq cat(\partial\Omega)$$
.

Since A_{-} and A_{+} are disjoint in $E_{\varepsilon}^{m_{\varepsilon}+\delta_{\varepsilon}}$, we have

$$\operatorname{cat}(E_{\epsilon}^{m_{\epsilon}+\delta_{\epsilon}}) \geq 2\operatorname{cat}(\partial\Omega).$$

LEMMA 4.3. If u is a critical point of E_{ε} on M_1 with $E_{\varepsilon}(u) < 2^{(p-m)/p}m_{\varepsilon}$, then u does not change sign.

PROOF. Suppose $u = u_+ + u_-$ with $u_{\pm} \neq 0$. Then $m_{\varepsilon} \leq E_{\varepsilon}(u/\|u_+\|_{L^p})$, that is

Since $E_{\varepsilon}(u)^{1/p-m}u$ is a solution of (P $_{\varepsilon}$), we obtain by taking u_{+} as a test function

$$(4.4) \qquad \int_{\Omega} \varepsilon^m |\nabla u_+|^m + u_+^m dx = E_{\varepsilon}(u) \int_{\Omega} u_+^p dx.$$

By (4.3), (4.4) and the given condition, we have $||u_+||_{L^p}^p > \frac{1}{2}$ and similarly $||u_-||_{L^p}^p > \frac{1}{2}$. Then

$$1 = \|u\|_{L^p}^p = \|u_+\|_{L^p}^p + \|u_-\|_{L^p}^p > \frac{1}{2} + \frac{1}{2} = 1,$$

which is absurd.

THEOREM 4.4. Suppose $p \geq 2$. Then for all sufficiently small ε , (P ε) has at least cat $(\partial\Omega)$ distinct non-constant positive solutions.

PROOF. Note that $m_{\varepsilon} = \varepsilon^{N(p-m)/p}(m(+,1)+o(1))$. For $\delta_1 > 0$ in Proposition 4.1, choose $\delta_0 > 0$ satisfying

$$\delta_0 < \min(\delta_1, (2^{p-m/p} - 1)m(+, 1)).$$

Since $m(+,1) = m_{\varepsilon} \varepsilon^{-N(p-m)/p} + o(1)$ as $\varepsilon \to 0$, we can find $\varepsilon_0(<\varepsilon_1)$ satisfying for all $\varepsilon < \varepsilon_0$.

$$\delta_0 < (2^{p-m/p}-1)m_{\varepsilon}\varepsilon^{-N(p-m)/p}$$

equivalently,

(4.5)
$$m_{\varepsilon} + \delta_0 \varepsilon^{N(p-m)/p} < 2^{(p-m)/p} m_{\varepsilon}.$$

For this δ_0 , we can choose $\bar{\varepsilon}(<\varepsilon_0)$ satisfying for all $0<\varepsilon<\bar{\varepsilon}$,

$$\operatorname{cat}(E_{\varepsilon}^{m_{\varepsilon}+\delta_{\varepsilon}}) \geq 2\operatorname{cat}(\partial\Omega), \quad \delta_{\varepsilon} = \delta_{0}\varepsilon^{N(p-m)/p}$$

By (4.6) and Ljusternik-Schnirelmann category Theorem, there exist at least $2\text{cat}(\partial\Omega)$ critical points. By (4.5) and Lemma 4.3, these critical points do not change sign. Consequently there exist at least $\text{cat}(\partial\Omega)$ positive solutions since (P_{ε}) is odd.

References

- [1] H. Berestycky, P. L. Lions, Nonlinear scalar field equations I, Existence of ground state, Arch. Rational Mech. 82 (1983), 313-375.
- [2] S. Coleman, V. Glazer, A. Martin, Action minima among solutions to a class of Euclidean scalar field equations, Comm. Math. Phys. 58 (1979), 211-221.
- [3] D. H. Pahk, S. D. Park, L_q estimation on the least energy solutions, jour. of KMS 32 (1993), 329-339.
- [4] M. Guedda, L. Veron, Quasilinear equations involving critical Sobolev exponents, Nonlinear Analysis, Theory and Methods.
- [5] Gray M Liberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis, Theory and Methods and Appl. 12 (1988), 1203-1219.

- [6] C. H. Lin, W. M-Ni, I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Diff. Eq. 72 (1988), 1-27.
- [7] W. M-Ni, I. Takagi, On the shape of least energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. XLIV (1991), 819-851.
- [8] K. Deimling, Nonlinear functional analysis, Springer Verlag, 1985.
- [9] P. L. Lions, Concentration compactness principle, in the calculus of variations, I. The locally compactness case, Ann. Inst. Henri Poincaré 1 (1984), 109-145.
- [10] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.
- [11] B. Franch, E. Lanconelli, J. Serrin, Existence and uniqueness of non negative solutions of quasilinear equations, preprint (1993).
- [12] Z. Q. Wang, On the existence multiple, single peaked solutions for asemilinear equations, Arch. Rational. Math. Anal. (1992).

Soo Hyun Bae and Dae Hyeon Pahk Department of Mathematics Yonsei University Seoul 120-749, Korea

Sang Don Park Department of Mathematics National Ansung industry University Kyunggido 456-749, Korea