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POSITIVELY EXPANSIVE ENDOMORPHISMS
ON SUBSHIFTS OF FINITE TYPE

YOUNG-ONE KIM AND JUNGSEORE LEE

ABSTRACT. It is shown that if S is a positively expansive endomor-
phism on a one-sided mixing SFT (X,T), then (X, S) is conjugate
to a one-sided mixing SFT, and the Parry measures of (X,T) and
(X, S) are identical.

1. Introduction

Recently Blanchard and Maass [3] obtained remarkable results on
positively expansive one-sided cellular automata. They considered a
positively expansive endomorphism S on a one-sided full shift (X, T),
and proved that (X, S) is a mixing subshift of finite type which is shift
equivalent to a full shift and that the Parry measures of (X,T) and
(X, S) are identical.

In this article, it is attempted to generalize their results to endomor-
phisms on one-sided subshifts of finite type. In Section 3, we prove that
the Parry measure of a transitive subshift of finite type is invariant un-
der a surjective endomorphism. Also we reprove a theorem which was
originally proved by Nasu [4]: any positively expansive endomorphism
on a transitive subshift of finite type is a subshift of finite type. The
main results appear in Section 4. There we show that any positively
expansive endomorphism on a mixing subshift of finite type is mixing
and that the Parry measures coincide. Finally in Section 5, we provide
some examples.
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During the preparation of this article we were informed that M. Boyle
and Fiebigs (2] independently proved our results. It seems that their
proof is rather abstract.

2. Preliminaries

Let A be a finite set equipped with the discrete topology. Then the
product space A is compact Hausdorff, and hence metrizable. The map

0t AV (a)20 = (air)Zp € AN (la)R, € AN

is called the shift map, and the system (A", o) is called the full A-shift.
If X is a closed o—invariant subset of AN for some finite set A, then the
system (X, o|x) is said to be a subshift.

The concept of the subshift can be described in the following invariant
way. For a partition A of a set X let 7 = 74 be the natural projection
from X onto A, defined by z € 7m(z) for z € X. Let (X, d) be a compact
metric space and let T' be a continuous map from X onto itself. We say
that (X, T) is a subshift if there is a partition 4 of X , called an alphabet
for T', satisfying

(i) #A < oo,
(ii) for all a € A, a is both open and closed in X, and

(iii) for all x,y € X if 7(T"z) = n(T*y) for all i € N, then z = Y.

If A is an alphabet for T, then a compactness argument shows that

o0 Tt
JV7ri4
n=0i=0
is a basis for the topology of X. Let us denote the image of X under the
map
X3z (n(T'2))2, € AY

by X4. Then X4 is a closed o-invariant subset of AN, and (X,T)
and (X 4,0) are conjugate systems. A subshift (X.T) is said to be of
finite type, or simply an SFT, if there is an alphabet A, called a Markov
alphabet for (X, T), such that

XA:{fe.AN:&ﬂT*&H#@VieN}.
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It is clear that for any alphabet A if A refines a Markov alphabet, then
A is also Markov.

A subshift (X, T) is called transitive if, for every ordered pair a, b of
nonempty open sets in X, there is an n > 0 for which aNT~"(b) # 0; a
subshift (X, T') is called mizing if, for every ordered pair a, b of nonempty
open sets in X, there is an N > 0 such that aN7"(b) # 0 foralln > N.

The following lemma was first proved by W. Parry [5].

LEMMA 2.1. Let (X,T) be a subshift. Then (X,T) is an SFT if and
only if T' is an open map.

ProoF. If (X,T) is an SFT and A is a Markov alphabet for 7", then
it is clear that o : X 4 — X 4 is open.

Conversely, let Ag be an alphabet for (X,T'), and assume that T is
open. Let a € Ag. Then T(a) is an open subset of X which is also
compact. Since |J77q Vieo T " Ag is a basis for the topology of X, there

is a positive integer N(a) such that the open compact set T'(a) is a union

of members of Vi[\;(g )T ~%Ap. Since #.A < oo, there is a positive integer

N such that for all a € Ap, T'(a) is a union of members of Vf:o T Ayp.
Let A = \/ X, T %Ay, then it is easy to see that for all a € A
T(a) = U{b cA:anT b +# 0},

from which our assertion follows. O

If (X,T) is an SFT with Markov alphabet A, we define M : A x A —

{0,1} as follows. For a,be A
1, if anT b0,
0, otherwise.

M(a,b) = {

The matrix M is called the transition matriz for the system (X, T, A).
In this case, it is clear that (X, T') is conjugate to the topological Markov
subshift (XM, O'jw).

3. Endomorphisms on transitive SFTs

Suppose that (X,T) is a transitive SFT. Then there is a unique 7
invariant probability measure p, called the Parry measure for (X, T),
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such that the measure theoretic entropy of 7' with respect to u is equal
to the topological entropy of T [1]. If A is a Markov alphabet and if M
is the transition matrix, then for w = ag N T~ (a;) N --- N T ™ayn) €
Vico T8 A, w # 0, u(w) is given by

(¥) p(w) = L(ao)R(an)A ™",

where A is the Perron eigenvalue of M, and L, R : A — (0,00) are left
and right eigenvectors of M corresponding to the eigenvalue A which are

normalized so that
> L(a)R(a) = 1.
ac A

A continuous map S : X — X which commutes with T is called an
endomorphism on (X, T).

THEOREM 3.1. Let S be an endomorphism on a transitive SF'T (X,T).

Then S is surjective if and only if u = pS—1, where ( is the Parry mea-
sure of (X, T).

PROOF. Suppose that S is not onto. Then X \ S(X ) is non-empty
and open. From (x), we see that u(X \ S(X)) > 0, and hence 4 is not
S—invariant.

Conversely, assume that S is onto. Let .4 be a Markov alphabet
for T, and let A4,, denote VieoT “A. Then it is enough to show that
p(w) = p(S™H(w)) for all w € Y22y A,. Since S is continuous, there
Is a positive integer N such that Ay refines S—1.4. Then, since ST =
TS, Anyn refines S71 A, for each n = 0, 1,2,---. Therefore for any
n =0,1,2,--- and for each w € Ay, there exists ®(w) € A, such
that w C S~!(®(w)). This defines a map ® from Unen An to U2, A,
Define C : |, 5 Ar — (0,00) as follows:

oo

Clwln(w) =p (S7 w))  (we (A4

n==0

Since S~*(w) is the disjoint union of ®~!(w) for each w € U An, (%)
shows that the range of the function C is finite. Hence there are W,
and wy in | J;24 A such that for all w € [J% , A, we have

Clwm) < Clw) < Clwyy).



Positively expansive endomorphisms 261

For w € A,, define Pred (w) and Succ (w) as follows:
Pred (w) = {a € A:aNT tw # 0},

and
Succ (w) = {a€ A:wnNT " 1a#P}.

Then for each w € A,, we have

T“l(w) — U aﬂT‘-l(w) and w = U me—n-—l(a)'
a€Pred (w) a€Suce (w)

Since the above unions are disjoint,

C(wm)ﬂ(wm)

I

p (S7Hwm))
“ (T_IS_I(wm))
I (S—IT—I(wm))
Z p (S Han T wn))

a€Pred (wpm)

Z ClanNT rw,)pla N T w,y,)
a€Pred (wy,)

> Y Clwmp@nT ‘wn)

a€Pred (wpm)
= C(wm)N(T_lwm)
= C(wm)pw(wm).

Hence we have C(w,,) = C(aNT " !w,,) for all a € Pred (w,,). Similarly,
if war € Ay, then C(wp) = Clwpy NT"1a) for all @ € Succ (wp).
Since T is transitive, we conclude that C(w,,) = C(wys), from which
our assertion is obvious. g

REMARK. Theorem 3.1 generalizes Proposition 2.1 of [3].
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DEFINITION 3.2. An endomorphism S on a subshift (X,T) is called
positively expansive provided that there is a § > 0 such that for all
z,y € X if d(S*(z), S*(y)) < 6 for i = 0,1,2,---, then z = y. In this
case, J is called an expansive constant of S.

Suppose that .S is a positively expansive endomorphism on a transitive
SFT (X, T) with expansive constant §. Then S is bounded to one, so
that (X,T) and (S(X),T) have the same topological entropy. Since
(X,T) is transitive, it follows that X = S(X), i.e. S is onto. Let A be
an alphabet for (X,T"). Then there is a positive integer N such that for
all w € Vﬁfo T~*A the diameter of w is less than d, so that VzN:o T-A
is an alphabet for the system (X, 9), i.e. (X, S) is a subshift. Moreover
Theorem 3.1 implies that the Parry measure p of (X, 7T) is S—invariant,
and consequently the measure theoretic entropy of S with respect to u
does not exceed the topological entropy of S. In Section 4, we will show
that if S is a positively expansive endomorphism on a mixing SFT (X, T)
then the Parry measures of (X,7) and (X, S) coincide.

LEMMA 3.3. Suppose that S is a positively expansive endomorphism
on (X,T) with expansive constant §. Let A be an alphabet for (X, T)
such that the diameter of each element in A is less than 5. Then for
each positive integer M there is a positive integer N such that

M N
VT A Avs! (\/ T"iA,) ,
=0

i=0
where A < B means that B refines A.

PROOF. It is enough to prove the assertion when M = 1. A com-
pactness argument shows that there is a positive integer K such that if
d(S*(z),S'(y)) < S foralli =0, -, K then z and y lie in the same ele-
ment of AV T 1A Since S is continuous, there is an 1 > 0 such that if
d(S(x), S(y)) < 7 then d(S%(z),S*(y)) < S forall i =1,--- , K. Choose
a positive integer N such that for all w € Vfio T~'A, the diameter of w
is less than 7. This completes the proof. O

THEOREM 3.4. Let (X,T) be a transitive SFT and S be a positively
expansive endomorphism on (X,T). Then (X, S) is an SFT.
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Proor. By Lemma 2.1, it suffices to show that S is open. Let A be
a Markov alphabet for (X, T') such that the diameter of each element in
A is less than an expansive constant of S. Then it is enough to show
that for all @ € A, S(a) is open. To get a contradiction, assume that
S(ap) is not open for some ag € A. Then there is a point zo € ag such
that S(xp) is not an interior point of S(ag). From Lemma 3.3, there is
a positive integer N such that AV S~1(\/X  T7%A) refines A v T-1A.

Let S(zg) € up € vazgl T—*A. Then ag N S~ (up) # 0. Since S(zo)
is not an interior point of S(ag), and since A is Markov for T, there is a
vy € \/f\[:0 T—*A such that vy # 0, vy C ug, and agN S~ (vg) = 0. Since
S is onto, there is an a; € A such that a; N S71(wg) # 0. It is obvious
that ag # a,. Since T is transitive, we can find a positive integer K such
that

(a1 N S"l(vo)) NnNT-X (ao N S_l(uo)) # 0.

Take a point z; in the above nonempty set, and let u; and w; be such

that
N+K-1

K
S(lel) € u € \/ T_i.A, 1 € Wy € \/ T_i.A.
i=0 i=0
Now consider v, given by
N+K
v = up N (T—KU()) € \/ T A.
i=0

Since A is Markov for T, and since N > 1, we have v; # @. Since
v1 C wo, it is clear that ag N S~ 1(v;) = 0. On the other hand, we have

a1 NS Hu) Cay NS (uy) C wy,

because

K N+K-1

VT A AvS™ ( \ T“M) :

i=0 . =0
Hence we must have a; NS ! (v1) = 0. (If z € a1 NS~ (v1), then z € wy,
so that T5(z) € ag N S~ (vp) = 0.) Since S is onto, there is an as € A,
as # a; for 1 = 0,1, such that a; N S™(vy) # 0.

Continuing this way, we eventually obtain a nonempty neighborhood

v such that a N S~1(v) = 0 for all a € A, which is a contradiction. [J
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REMARK. This theorem is a generalization of Theorem 3.3 in 3. It
is not too hard to prove that if S is a positively expansive endomorphism
on a transitive two—sided SFT (X, T), then (X, S) is a one-sided SFT,
while we deal with only those on a one-sided SFT in Theorem 3.4.

4. Endomorphisms on mixing SFTs

Let Ay be a Markov alphabet for 7" which is also an alphabet for S.
Then Theorem 3.4 implies that there is a positive integer NV such that

A= VZ —o0S7"Ap is a Markov alphabet for S. Since any alphabet which
refines a Markov alphabet is again Markov, we see that A is a common
Markov alphabet for both S and 7.

THEOREM 4.1. Let (X,T) be a mixing SFT and S be a positively
expansive endomorphism on (X,T). Then (X, S) is a mixing SFT.

PROOF. Let A be a common Markov alphabet for both S and 7.
Then we must show that there is a positive integer K such that for all
k> K and foralla,bc A

anS~*(b) #0.

Since (X, T) is mixing, there is a positive integer L such that for all
a,be A
anT L) £0.
Let K be so large that for all £ > K, Vf:o S A refines T-L A.

Now assume that a,b € A, and kK > K. Take a point z € T-%(a),
and let u be such that

k
TEUE v ST'A.
=0
Since Vf:o S~'A refines T~ 4, it follows that
u C T (a).

Let ¢ = S*(u) € A, and take a point y from the nonempty neighborhood
eNT~L(b). Since A is Markov for S, there is a uniquely determined
point 2z € X such that

Sk(2) =y and zZEu.
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Then it is easy to see the following:
TE(2) € an S7F(b),
from which we obtain the desired result. O

THEOREM 4.2. Let (X,T) be a mixing SFT and S be a positively

expansive endomorphism on (X,T). Then the Parry measures of (X, T)
and (X, S) are identical.

PRrROOF. Let A4y be a common Markov alphabet for S and 7". Let
m and n be so large that \/[_; S™* Ao refines T-' 4y and \/7_, 77 4
refines S~ 1. A4y. Set

A=\ ST 4.
i=0 j=0
Then A is again a common Markov alphabet for S and T, which refines

VIt S=i 4y and \/;L;L(} T—7 Ap. Hence we have the following.

(a) Foralla,b,c € AifanS~1(b) # 0 and bNT~1(c) # @, then there

is a unique d € A such that aNT~1(d) # ® and d N S~1(c) # 0.

(b) For alla,b,c € AifanT~(b) # @ and bNS~(c) # 0, then there

is a unique d € A such that a N S™1(d) # @ and dN T~ (c) # 0.

Let M and N denote the transition matrices of the systems (X, S, A)

and (X,T,.A), respectively. Then (a) and (b) imply that MN = NM.

Since M and N are primitive matrices, it follows that if V is a left(right)

Perron eigenvector of M, then V is also a left(right) Perron eigenvector

of N. This means that for all e € A we have ug(a) = pr(a), where pg
and p7 are the Parry measures of S and T, respectively. Since

UV Vs s
m,n \i=03;=0
is a basis for the topology of X, the proof is complete. U

REMARK. Theorems 4.1 and 4.2 are generalizations of Theorems 3.8
and 3.9 in [3], respectively.
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5. Examples

On seeing Theorem 4.1, we ask a natural question: is a positively
expansive endomorphism on a transitive SFT transitive? The answer is
negative as we see in the following two examples.

EXAMPLE 5.1. (One-sided case) Let (X, T) be a transitive one-sided
SFT whose transition matrix M has period p > 1. Let S = 7. Clearly
S is a positively expansive endomorphism on (X, T), but (X, S) is not
transitive since the transition matrix MP is reducible.

EXAMPLE 5.2. (Two-sided case) Fix two positive integers p and q.
Let P denote the set of residue classes modulo p and Q the set of residue
classes modulo ¢. Let X be the collection of bi-infinite sequences (ai)iez
where either ay; € P and ag;47 € Q for each i € Z or ay; € ) and
aziy1 € P for each ¢ € Z. Let T be the shift map on X. Then (X, T)

N

is a transitive two-sided SFT whose transition matrix is (2 ‘g ) We

define an endomorphism S : X — X by

a;—2 +a;42 modp ifa; €P,

S(ardiez)s = {

a;—2+a;12 modgq ifa; €Q.

It is easy to see that S is positively expansive and that (X,S) is not
2 2
¢ 0 )

transitive. In fact, the transition matrix of (X, S) is ( 0 g

One of the main results in [3] asserts that if S is a positively expansive
endomorphism on a full N-shift then S is shift equivalent to a full K-
shift where K and N have the same prime factors. For the converse
part, they constructed a positively expansive endomorphism on the full
N-shift, which is conjugate to the full K—shift, for each integer K < N
with same prime factors as N. In the following example we see that the
converse is true even for K > N.

EXAMPLE 5.3. For any positive integer n, let X[n] denote the full
n-shift with the shift map T'[n]. Fix a positive integer N with prime
factorization

Ti

N =p " p"% - p,
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Then clearly (X [N],T[N]) is conjugate to

(X[p1], Tlpa]™) > -+ > (X[pe], Tlpe]™).

Suppose that another integer K = p1*' ... p,*t, k; > 0, is given. Consider
the endomorphism S = T'[p;]*1 x - - x T[ps]** on (X [p1], T[p1]™) x - - - x
(X [pe], T[pe]™). Then S is positively expansive if and only if k; > 1 for
alli =1,--- ,¢t. Obviously S is conjugate to the full K-shift.
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