ON THE SUPERSTABILITY OF SOME FUNCTIONAL INEQUALITIES WITH THE UNBOUNDED CAUCHY DIFFERENCE f(x + y) - f(x)f(y)

Soon-Mo Jung

ABSTRACT. Assume $H_i: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ (i=1,2) are monotonically increasing (in both variables), homogeneous mappings for which $H_1(tu,tv)=t^pH_1(u,v)$ (p>0) and $H_2(tu,tv)=H_2(u,v)^{t^q}$ $(q\leq 1)$ hold for $t,u,v\geq 0$. Using an idea from the paper of Baker, Lawrence and Zorzitto [2], the superstability problems of the functional inequalities $||f(x+y)-f(x)f(y)||\leq H_i(||x||,||y||)$ shall be investigated.

1. Introduction and main results

Baker, Lawrence and Zorzitto [2] and Baker [1] proved the Hyers-Ulam stability of the functional equation

$$f(x+y) = f(x)f(y),$$

i.e., if the Cauchy difference f(x+y) - f(x)f(y) of a complex-valued mapping f defined on a normed space is bounded for all x, y then either f is bounded or f(x+y) = f(x)f(y) for all x, y. In particular, such a phenomenon for some functional equation is called superstability.

In this paper, we shall investigate the superstability problems for the case when the Cauchy difference f(x+y) - f(x)f(y) is not bounded.

Throughout the paper, let X be a normed space over the complex numbers. Assume that $(Y, +, \cdot)$ is a field and $(Y, +, \|\cdot\|)$ is a normed space such that $\|y_1y_2\| = \|y_1\|\|y_2\|$ for any $y_1, y_2 \in Y$, i.e., the norm on Y is multiplicative. Suppose $H_i : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ (i = 1, 2) to be monotonically increasing (in both variables), homogeneous mappings for which $H_1(tu, tv) = t^p H_1(u, v)$ and $H_2(tu, tv) = H_2(u, v)^{t^q}$ hold for

Received November 15, 1996. Revised March 15, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 39B72.

Key words and phrases: Functional equation, superstability.

some p > 0, $q \le 1$ and for all $t, u, v \in \mathbb{R}_+$. For a, b, c > 0, $au^p + bv^p$ and $cu^{p/2}v^{p/2}$ are examples for $H_1(u, v)$, and $\exp(au^q + bv^q)$ and $\exp(cu^{q/2}v^{q/2})$ are examples for $H_2(u, v)$. Let $f: X \to Y$ be a mapping such that

(1)
$$||f(x+y) - f(x)f(y)|| \le H_i(||x||, ||y||)$$

for all $x, y \in X$. The following theorems are main results of this note.

THEOREM 1. If f satisfies the functional inequality (1) for i=1 then it holds either $||f(x)|| = o(||x||^p)$ as $||x|| \to \infty$ or else f(x+y) = f(x)f(y) for every $x, y \in X$.

THEOREM 2. If f satisfies the functional inequality (1) for i=2 then it holds either $||f(x)|| \leq H_2(||x||, ||x||) + 1$ for all $x \in X$ or else f(x+y) = f(x)f(y) for every $x, y \in X$.

2. Proofs of Theorems

PROOF OF THEOREM 1. By induction on n we first prove that

(2)
$$||f(nx) - f(x)^n|| \le \sum_{i=1}^{n-1} H_1(i||x||, ||x||) ||f(x)||^{n-i-1}$$

for all $n \ge 2$. In view of (1), it is trivial for n = 2. If we assume that (2) is true for some $n \ge 2$ then we get for n + 1

$$||f((n+1)x) - f(x)^{n+1}|| \le$$

$$\le ||f((n+1)x) - f(nx)f(x)|| + ||f(x)|| ||f(nx) - f(x)^n||$$

$$\le H_1(n||x||, ||x||) + \sum_{i=1}^{n-1} H_1(i||x||, ||x||) ||f(x)||^{n-i}$$

$$\le \sum_{i=1}^n H_1(i||x||, ||x||) ||f(x)||^{n+1-i-1}$$

by using (1) and (2). By multiplying $||f(x)^{-n}|| = ||f(x)||^{-n}$ (remind that $f(x)^{-n}$ is the inverse element of $f(x)^n$ and ||e|| = 1 where e is the multiplicatively neutral element of Y) on both sides in (2), we get

$$||f(nx)f(x)^{-n} - e|| \leq \sum_{i=1}^{n-1} H_1(i||x||, ||x||) ||f(x)||^{-i-1}$$

$$\leq \sum_{i=1}^{\infty} i^p H_1(||x||, ||x||) ||f(x)||^{-i-1}$$

$$\leq (H_1(||x||, ||x||) / ||f(x)||) \sum_{i=1}^{\infty} i^p / ||f(x)||^i$$

for all $n \geq 2$. Assume that $||f(x)|| \neq o(||x||^p)$ as $||x|| \to \infty$, i.e., there exist some c > 0 and a sequence (x_k) in X such that $||x_k|| \to \infty$ as $k \to \infty$ and $||f(x_k)|| \geq c||x_k||^p > 1$ for sufficiently large k. We can then let the series $\sum_i i^p / ||f(x_k)||^i$ converge to a value < c/2 by taking k sufficiently large, since $||x_k||^p \to \infty$ as $k \to \infty$. Hence, it follows from (3) and the above consideration that

(4)
$$||f(nx_k)f(x_k)^{-n} - e|| < 1/2$$

for some sufficiently large k and any $n \geq 2$. Since the fact $||f(x_k)|| > 1$ implies

$$n^p H_1(||x_k||, ||x_k||) = o(||f(x_k)||^n)$$
 as $n \to \infty$,

we can easily show

(5)
$$n^p H_1(||x_k||, ||x_k||) = o(||f(nx_k)||) \text{ as } n \to \infty$$

by (4). Now let $x, y \in X$ be arbitrarily given. If k is sufficiently large then we have

$$||f(nx_{k})|| ||f(x+y) - f(x)f(y)||$$

$$\leq ||f(x+y)f(nx_{k}) - f(x+y+nx_{k})||$$

$$+ ||f(x+y+nx_{k}) - f(x)f(y+nx_{k})||$$

$$+ ||f(x)|| ||f(y+nx_{k}) - f(y)f(nx_{k})||$$

$$\leq H_{1}(||x+y||, n||x_{k}||)$$

$$+ H_{1}(||x||, ||y+nx_{k}||) + ||f(x)||H_{1}(||y||, n||x_{k}||)$$

$$\leq CH_{1}(n||x_{k}||, n||x_{k}||)$$

$$\leq Cn^{p}H_{1}(||x_{k}||, ||x_{k}||)$$

for some C > 0 and all sufficiently large n. It then follows from (5) and (6) that f(x+y) = f(x)f(y).

PROOF OF THEOREM 2. Assume that there exists an $x_0 \in X$ such that

$$||f(x_0)|| > H_2(||x_0||, ||x_0||) + 1.$$

As in the proof of Theorem 1 we can verify that for all $n \geq 2$

$$||f(nx_{0})f(x_{0})^{-n} - e||$$

$$\leq \sum_{i=1}^{n-1} H_{2}(i||x_{0}||, ||x_{0}||) ||f(x_{0})||^{-i-1}$$

$$\leq \sum_{i=1}^{\infty} H_{2}(||x_{0}||, ||x_{0}||)^{i^{q}} ||f(x_{0})||^{-i-1}$$

$$\leq ||f(x_{0})||^{-1} \sum_{i=1}^{\infty} (H_{2}(||x_{0}||, ||x_{0}||) / ||f(x_{0})||)^{i}$$

$$\leq H_{2}(||x_{0}||, ||x_{0}||) / (||f(x_{0})||^{2} - ||f(x_{0})||H_{2}(||x_{0}||, ||x_{0}||))$$

$$\leq c < 1$$

by the hypothesis. As in the proof of Theorem 1, on account of (7) and the hypothesis, we get

(8)
$$H_2(||x_0||, ||x_0||)^n = o(||f(nx_0)||) \text{ as } n \to \infty.$$

Now let $x, y \in X$ be arbitrarily given. By (1) we have

$$||f(nx_{0})|| ||f(x + y) - f(x)f(y)||$$

$$\leq ||f(x + y)f(nx_{0}) - f(x + y + nx_{0})||$$

$$+ ||f(x + y + nx_{0}) - f(x)f(y + nx_{0})||$$

$$+ ||f(x)|| ||f(y + nx_{0}) - f(y)f(nx_{0})||$$

$$\leq H_{2}(||x + y||, n||x_{0}||)$$

$$+ H_{2}(||x||, ||y + nx_{0}||) + ||f(x)||H_{2}(||y||, n||x_{0}||)$$

$$\leq CH_{2}(n||x_{0}||, n||x_{0}||)$$

$$\leq CH_{2}(||x_{0}||, ||x_{0}||)^{n}$$

Superstability of
$$f(x + y) = f(x)f(y)$$

291

for some C > 0 and all sufficiently large n. Finally, by (8) and (9), we conclude that f(x + y) = f(x)f(y).

REMARK. More precisely, we can replace $H_2(||x||, ||x||) + 1$ in Theorem 2 by

$$\frac{1}{2}\left(H_{2}\left(\left\Vert x\right\Vert ,\left\Vert x\right\Vert \right)+\sqrt{H_{2}\left(\left\Vert x\right\Vert ,\left\Vert x\right\Vert \right)^{2}+4H_{2}\left(\left\Vert x\right\Vert ,\left\Vert x\right\Vert \right)}\right).$$

ACKNOWLEDGEMENT. The author would like to thank the referee for his/her valuable suggestions.

References

- J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411-416.
- [2] J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), 242–246.

Mathematics Section College of Science & Technology Hong-Ik University Chochiwon 339-800, Korea