ON THE BEREZIN TRANSFORM ON D^n

JAESUNG LEE

ABSTRACT. We show that if $f \in L^{\infty}(D^n)$ satisfies Sf = rf for some r in the unit circle, where S is any convex combinatiom of the iterations of Berezin operator, then f is n- harmonic. And we give some remarks and a conjecture on the space

$$M_2 = \{f \in L^2(D^2, m \times m) | Bf = f\}.$$

1. Introduction

Let m be the Lebesque measure on C normalized to m(D) = 1 for the unit disc D, and B be the Berezin operator on the polydisc D^n defined by

For $f \in L^1(D^n, m \times \cdots \times m)$

$$(Bf)(z_1,\cdots,z_n) \ = \ \int_D \cdots \int_D \ figg(arphi_{z_1}(x_1),\cdots,arphi_{z_n}(x_n)igg) \ dm(x_1)\cdots dm(x_n)$$

where

$$\varphi_a(w) = \frac{a-w}{1-\bar{a}w}.$$

In [5], the author showed that if $f \in L^{\infty}(D^n)$ satisfies Bf = f, then f is n- harmonic (Theorem 3.1). In this paper we extend that result to more generalized cases (Theorem 2.5).

Also in [5], the author showed that for $1 \le p < \infty$ there are joint eigenfunctions of invariant Laplacians with uncountably many eigenvalues which are invariant under the Berizin transform in $L^p(D^n, m \times \cdots \times m)$.

Received March, 8, 1997. Revised April 1, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 47A15, 46C15.

Key words and phrases: Berezin transform, joint eigenspaces, Hilbert space, n-harmonic.

This research is partially suppoted by TGRC-KOSEF.

In this paper, we try to characterize $f \in L^2(D^2, m \times \cdots \times m)$ which satisfy Bf = f by proposing a conjecture and support that conjecture in some special cases.

2. Functions fixed by Berezin transform

Here we generalize the Theorem 3.1 of [5]. Following definitions coincide with those of [5].

DEFINITION 2.1. The invariant measure μ on D is defined by $d\mu(z) = (1-|z|^2)^{-2} dm(z)$, which satisfies

$$\int_D \, u \circ \psi \; d\mu \; = \; \int_D \, u \; d\mu, \quad \text{for all } u \in L^1(D,\mu), \text{ and for all } \psi \in Aut(D).$$

Then we define $L_R^p = L_R^p(D^n)$ the subspace of $L^p(D^n, \mu \times \cdots \times \mu)$ consists of radial functions i.e

$$L_R^p = \{ f \in L^p(D^n, \mu \times \cdots \times \mu) \mid f(|z_1|, \cdots, |z_n|) = f(z_1, \cdots, z_n) \}.$$

For $f \in L^p(D^n, \mu \times \cdots \times \mu), g \in L^q(D^n, \mu \times \cdots \times \mu)$ we denote

$$\langle f, g \rangle = \int_D \cdots \int_D f \cdot g \ d\mu \cdots d\mu.$$

By the same methods as Lemma 3.3 of [5], we immediately get the following

LEMMA 2.2. For $1 \le p \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$ $(p = \infty \text{ means } q = 1)$

- (a) B is a bounded linear operator on $L^p(D^n, \mu \times \cdots \times \mu)$ with $||B|| \leq 1$.
- (b) For $f \in L^p(D^n, \mu \times \cdots \times \mu)$, $g \in L^q(D^n, \mu \times \cdots \times \mu)$ we have $\langle Bf, g \rangle = \langle f, Bg \rangle$.

Lemma 2.3. For $f \in L^1_R(D^n)$

$$\lim_{n\to\infty} \|B^n f\|_1 = 0 \quad \text{if and only if} \quad \int_D \cdots \int_D f \ d\mu \cdots d\mu = 0.$$

PROOF. (\Rightarrow) Obvious from the fact that

$$\int_D \cdots \int_D B^n f \ d\mu \cdots d\mu \ = \ \int_D \cdots \int_D \ f \ d\mu \cdots d\mu \quad \text{for all } n \ge 0.$$

(\Leftarrow) The proof is very similar to that of Lemma 3.5 of [5]. We give an outline. B is the linear contraction on $L^1_R(D^n)$ with the spectrum.

$$\sigma(B) = \{ h(\alpha_1) \cdots h(\alpha_n) \mid 0 \leq Re \alpha_i \leq 1, i = 1, \dots, n \}$$

where

$$h(z) = \frac{\pi z(1-z)}{\sin \pi z}.$$

Hence by 2.7 of [5], $\sigma(B)$ intersects the unit circle only at a point z = 1. Thus by Theorem 1 of [4]

$$\lim_{n\to\infty} \|B^n f\|_1 = 0, \quad \text{for all } f \in (I-B)L^1_R.$$

Now define

$$X = \left\{ f \in L^1_R \mid \int_D \cdots \int_D f \ d\mu \cdots d\mu = 0 \right\}.$$

Then we immediately get $(I-B)L_R^1 \subset X$. But from Theorem 3.1 of [5] we know if $g \in L_R^{\infty}(D^n)$ satisfies Bg = g then g is a constant.

Combine this and Lemma 2.2 , then using the Hahn-Banach theorem we get that $(I-B)L_R^1$ is dense in X.

Hence

$$\lim_{n \to \infty} \|B^n f\|_1 = 0, \text{ for all } f \in X.$$

PROPOSITION 2.4. If $f \in L^{\infty}(D^n)$, $f \not\equiv 0$ satisfies $B^m f = rf$ for some r with |r| = 1 and for some $m \in \mathbb{N}$, then f is n-harmonic and r = 1.

PROOF. First assume that f is radial. Suppose $f \in L_R^{\infty}(D^n)$ satisfy $B^m f = rf$ for some $m \in \mathbb{N}$ and |r| = 1. Pick any $g \in L_R^1(D^n)$ satisfying

$$\int_{D} \cdots \int_{D} g \ d\mu \cdots d\mu = 0.$$

Then by Lemma 2.3, we get

$$\lim_{k\to\infty} \parallel B^{mk}g \parallel_1 = 0.$$

Hence

$$\lim_{k\to\infty} \; \big| \; \langle \; B^{mk}g, \; f \; \rangle \; \big| \; \leq \; \|f\|_{\infty} \; \lim_{k\to\infty} \; \| \; B^{mk}g \; \|_1 \; = \; 0.$$

But for all $k \ge 0$

$$\langle B^{mk}g, f \rangle = \langle g, B^{mk}f \rangle$$
 by 2.2 (b)
= $r^{mk}\langle g, f \rangle$

Hence $\langle g, f \rangle = 0$. This implies that f is a constant, which implies r = 1 since $f \neq 0$. For a general $f \in L^{\infty}(D^n)$, the radialization Rf satisfies

$$B(Rf) = R(Bf) = rRf.$$

Hence Rf is a constant and r = 1.

The remaining part of the proof is identical to the step (ii) of 3.6 in [5].

Theorem 2.5. Let $0 < \alpha_k < 1$ satisfy

$$\sum_{k=1}^{\ell} \alpha_k = 1$$

and m_k be positive integers for $k = 1, 2, \dots, \ell$. If $f \in L^{\infty}(D^n)$ satisfies

$$\left(\sum_{k=1}^{\ell} \alpha_k B^{m_k}\right) f = rf$$

for some |r| = 1, then f is n-harmonic.

PROOF. Let

$$S = \sum_{k=1}^{\ell} \alpha_k B^{m_k}$$
 and $X = \{ f \in L^{\infty}(D^n) \mid Sf = rf \}.$

Now fix j $(1 \le j \le \ell)$ and define U on $L^{\infty}(D^n)$ by

$$U = \frac{1}{1 - \alpha_j} \sum_{k \neq j} \alpha_k B^{m_k}.$$

Pick any $f \in X$, then

$$SB^{m_j}f = B^{m_j}Sf = rB^{m_j}f.$$

Hence $B^{m_j} f \in X$.

By the same way, $Uf \in X$. Then by Lemma 2.1, B^{m_j} and U are contractions on the Banach Space X. And on $L^{\infty}(D^n)$,

$$(1) S = \alpha_j B^{m_j} + (1 - \alpha_j)U$$

If we show that $B^{m_j}=rI$ on X, then by the previous proposition, X consists of n- harmonic functions and r=1, which completes the proof. \Box

Now let P be an operator on X defined by

$$P = \alpha_i B^{m_j} - \alpha_i r I \quad (\text{on } X)$$

Let X^* be the dual space of X, and $(B^{m_j})^*, U^*, P^*$ be the adjoints of B^{m_j}, U, P on X^* , respectively. For $g \in X^*$, we denote

$$(B^{m_j})^*q = q_1$$
 and $U^*q = q_2$.

Since B^{m_j} , U are contractions on X, we get

$$||q_1|| \le ||q||$$
 and $||q_2|| \le ||q||$ on X^* .

Now let A^* be the closed unit ball of X^* . Assume that q is an extreme point of A^* . From (1),

$$rI = \alpha_i B^{m_j} + (1 - \alpha_i)U$$
 on X .

hence we get

$$rq = \alpha_j q_1 + (1 - \alpha_j) q_2.$$

Since q is an extreme point, this forces

$$q = \frac{q_1}{r} = \frac{q_2}{r}.$$

Therefore on X^* ,

$$P^*q = \alpha_j (B^{m_j})^*q - \alpha_j rq = \alpha_j q_1 - \alpha_j rq = 0.$$

But by Krein-Milman, A^* is the closed convex hull of the set of its extreme points. It follows that $P^* \equiv 0$ on A^* .

Hence $P \equiv 0$ on X. From (2), it is equivalent to saying that $B^{m_j} = rI$ on X.

This completes the proof.

3. On the space $M_2 = \{ f \in L^2(D^2, m \times m) \mid Bf = f \}$

In [5], the author showed that the space

$$M_p = \{ f \in L^p(D^2, m \times m) \mid Bf = f \}$$

has eigenfunctions with uncountably many joint eigenvalues of invariant Laplacians $\tilde{\Delta}_1$ and $\tilde{\Delta}_2$, when $1 \leq p < \infty$.

In [1], the author showed that when $n \geq 12$ the space

$$M = \{ f \in L^1(B_n) \mid T_0 f = f \}$$

is the direct sum of finitely many eigensapces of invariant Laplacian. (Here T_0 is the Berezin transform on the n- dimensional unit ball B_n) Our attempt to characterize the space M_2 , like [1] did in the unit ball, was not successful. Instead, we have the following.

3.1 Conjecture

"The space M_2 is generated by the point eigenfunctions of $\tilde{\Delta}_1$ and $\tilde{\Delta}_2$ in M_2 ." (i.e the set of all finite sum of the joint eigenfunctions in M is dense in M.

We will be back to mention about the conjecture later. Here like [5], we will write T as the Berezin transform on D. i.e for $u \in L^1(D, m)$

$$egin{aligned} ig(Tuig)(z) &= \int_D uig(arphi_z(x)ig) \; dm(x) \ &= \int_D u(x)K(z,x) \; dm(x) \end{aligned}$$

where

$$K(z,x) = \frac{(1-|z|^2)^2}{|1-\bar{z}x|^4}.$$

Next proposition shows that B is bounded on L^2 , which leads the boundedness of invariant Laplacian on M_2 , in the proof we use similar technique to that of [3].

PROPOSITION 3.2. B is a bounded operator on $L^p(D^2, m \times m)$ when p > 1, but not bounded on $L^1(D^2, m \times m)$.

PROOF. Step (i): First we will prove that the operator T is bounded on $L^p(D,m)$ when p>1. For p>1, let q=p/(p-1) so that 1/p+1/q=1.

By 1.4.10 of [6] and simple calculation , there exist $c_1, c_2 > 0$ such that

(2)
$$\int_{D} K(z,x) (1-|x|^{2})^{-\frac{1}{p}} dm(x) \leq c_{1} (1-|z|^{2})^{-\frac{1}{p}}$$

and

(3)
$$\int_D K(z,x) (1-|z|^2)^{-\frac{1}{q}} dm(z) \le c_2 (1-|x|^2)^{-\frac{1}{q}}.$$

Now for $u \in L^1(D, m)$, we have

$$|Tu(z)| \leq \int_{D} K(z,x)|u(x)| \ dm(x)$$

$$= \int_{D} K(z,x)^{\frac{1}{q}} (1-|x|^{2})^{-\frac{1}{pq}} K(z,x)^{\frac{1}{p}} (1-|x|^{2})^{\frac{1}{pq}} |u(x)| \ dm(x)$$

$$\leq \left\{ \int_{D} K(z,x) (1-|x|^{2})^{-\frac{1}{p}} \ dm(x) \right\}^{\frac{1}{q}} \cdot \left\{ \int_{D} K(z,x) (1-|x|^{2})^{\frac{1}{q}} |u(x)|^{p} \ dm(x) \right\}^{\frac{1}{p}}$$

$$\leq c_{1}^{\frac{1}{q}} (1-|z|^{2})^{-\frac{1}{pq}}$$

$$\left\{ \int_{D} K(z,x) (1-|x|^{2})^{\frac{1}{q}} |u(x)|^{p} dm(x) \right\}^{\frac{1}{p}} \text{ by (2)}$$

Hence

$$\int_{D} |Tu(z)|^{p} dm(z)
\leq \int_{D} c_{1}^{\frac{p}{q}} (1 - |z|^{2})^{-\frac{1}{q}} \int_{D} K(z, x) (1 - |x|^{2})^{\frac{1}{q}} |u(x)|^{p} dm(x) dm(z)
= c_{1}^{\frac{p}{q}} \int_{D} (1 - |x|^{2})^{\frac{p}{q}} |u(x)|^{p}
\int_{D} K(z, x) (1 - |z|^{2})^{-\frac{1}{q}} dm(z) dm(x) \text{ by Fubini}
\leq c_{1}^{\frac{p}{q}} \int_{D} (1 - |x|^{2})^{\frac{1}{q}} |u(x)|^{p} c_{2} (1 - |x|^{2})^{-\frac{1}{q}} dm(x) \text{ by (3)}
= c_{1}^{\frac{p}{q}} c_{2} \int_{D} |u(x)|^{p} dm(x)$$

Hence if we let $c=c_1^{\frac{1}{q}}\ c_2^{\frac{1}{p}}$, then we have

$$(4) ||Tu||_p \le c||u||_p.$$

Step (ii) : Let $f \in L^1(D^2, m \times m)$, then

$$(Bf)(z,w) = \int \int_{D^2} f(x,y) K(z,x) K(w,y) dm(x) dm(y).$$

Thus

$$\int \int_{D^{2}} |Bf(z,w)|^{p} dm(z) dm(w)
\leq \int \int_{D^{2}} \left\{ \int \int_{D^{2}} |f(x,y)| K(z,x) K(w,y) dm(x) dm(y) \right\}^{p} dm(z) dm(w)
= \int \int_{D^{2}} \left\{ \int_{D} K(w,y) \left(\int_{D} |f(x,y)| K(z,x) dm(x) \right) dm(y) \right\}^{p} dm(z) dm(w)
\leq \int \int_{D^{2}} c^{p} \left(\int_{D} |f(x,y)| K(z,x) dm(x) \right)^{p} dm(z) dm(w) \quad \text{by (4)}
\leq \int \int_{D^{2}} c^{2p} |f(z,w)|^{p} dm(z) dm(w)$$

This proves that B is a bounded operator on $L^p(D^2, m \times m)$, for p > 1. When p = 1.

From its definition, the norm of B on $L^1(D^2, m \times m)$ is

$$||B||_{1} = \sup_{(x,y)\in D\times D} \int \int_{D^{2}} K(z,x) K(w,y) dm(z)dm(w)$$

$$= \sup_{(x,y)\in D\times D} \int_{D} \frac{(1-|z|^{2})^{2}}{|1-x\overline{z}|^{4}} dm(z) \int_{D} \frac{(1-|w|^{2})^{2}}{|1-y\overline{w}|^{4}} dm(y)$$

But by 1.4.10 of [6], we get

$$\int_{D} \frac{(1-|z|^{2})^{2}}{|1-z\overline{x}|^{4}} dm(z) \approx \log \frac{1}{1-|x|^{2}}$$

which is unbounded on D. Hence B is not bounded on $L^1(D^2, m \times m)$ and this completes the proof of proposition.

DEFINITION 3.3. For $f \in L^1(D^2, m \times m)$ and $k, \ell = 0, 1, 2, \cdots$, we define the operator $T_{k,\ell}$ on $L^1(D^2, m \times m)$ by

$$ig(\ T_{k,\ell} f \ ig)(z,w) = \ (k+1)(\ell+1) \cdot \ \int \int_{D^2} (1-|x|^2)^k (1-|y|^2)^\ell f(arphi_z(x),arphi_w(y)) \ dm(x) \ dm(y)$$

and by replacing x, y by $\varphi_z(x)$ and $\varphi_w(y)$ we get

$$\int \int_{D^2} \left(\frac{(1-|x|^2)^k (1-|z|^2)^{k+2}}{|1-z\overline{x}|^{2k+4}} \cdot \frac{(1-|y|^2)^\ell (1-|w|^2)^{\ell+2}}{|1-w\overline{y}|^{2\ell+4}} \right) \cdot \frac{f(x,y) \ dm(x) \ dm(y)$$

In our definition we can see $T_{0,0} = B$.

Using the same method as Proposition 3.2 we get the following corollary.

COROLLARY 3.4. For $k, \ell \geq 0, T_{k,\ell}$ is a bounded operator on $L^p(D^2, m \times m)$ when p > 1.

The following properties of $T_{k,\ell}$ can be obtained using methods of [1], [5] and some straightforward calculations.

3.5 Properties of $T_{k,\ell}$.

- (a) For $k, \ell \geq 0, \psi \in Aut(D^2), f \in L^1(D^2, m \times m)$ $(T_{k,\ell}f) \circ \psi = T_{k,\ell}(f \circ \psi).$
- (b) For $k, \ell > 0, T_{k,\ell}$ is a bounded linear operator on $L^1(D^2, m \times m)$.
- (c) For $f \in L^1(D^2, m \times m)$

$$\tilde{\Delta}_1 T_{k,\ell} f = 4(k+1)(k+2) (T_{k,\ell} f - T_{k+1,\ell} f)$$

$$\tilde{\Delta}_2 T_{k,\ell} f = 4(\ell+1)(\ell+2) (T_{k,\ell} f - T_{k,\ell+1} f)$$

And

$$T_{k,\ell}f = G_k(\tilde{\Delta}_1)G_\ell(\tilde{\Delta}_2)Bf$$

Where

$$G_k(z) = \prod_{i=1}^k \left(1 - \frac{z}{4i(i+1)}\right).$$

- (d) On $L^1(D^2, m \times m)$, the operators B and $T_{k,\ell}$ commute for all $k, \ell \geq 0$.
- (e) For all $f \in L^1(D^2, m \times m)$,

$$\lim_{n\to} \parallel f - T_{n,n}f \parallel_1 = 0.$$

3.6 On the space $M_2 = \{ f \in L^2(D^2, m \times m) | Bf = f \}$

In an attempt to characterize M_2 as [1] did in the unit ball B_n , we use the following approach.

The space M_2 is a closed Hilbert space which consists of real analytic functions. For convenience, we denote Δ_1 (Δ_2) as the restriction of $\tilde{\Delta}_1$ ($\tilde{\Delta}_2$) to M_2 . Then by 3.5 (c), for $f \in M_2$ we get

$$\Delta_1 f = \Delta_1 B f = 8 \big(f - T_{1,0} f \big)$$

and $T_{1,0}$ is bounded on $L^2(D^2)$ (corollary 3.4), and by 3.5(d),

$$B(\Delta_1 f) = 8(Bf - BT_{1,0}f)$$

= $8(f - T_{1,0}Bf)$
= $8(f - T_{1,0}f) = \Delta_1 f$

Hence

 Δ_1 is a bounded operator on M_2 .

Furthermore, for $f \in M_2$

$$T_{n,n}f = G_n(\Delta_1)G_n(\Delta_2)f$$
 by 3.5 (c)

If we define an entire function

$$G(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{4n(n+1)}\right)$$

then $G_n(\Delta_1) \to G(\Delta_1)$ in the operator norm since $G_n \to G$ uniformly on compact set of \mathbb{C} .

Now take $n \to \infty$, by 3.5 (e) we get

$$f = G(\Delta_1)G(\Delta_2)f.$$

Therefore,

 $G(\Delta_1)G(\Delta_2)$ is the identity operator on M_2 .

On the other hand, from 3.5 (c) and 3.6 (3) of [5], we get

$$G(\lambda) = \frac{\sin(\pi \alpha)}{\pi \alpha (1 - \alpha)}$$

where $\lambda = -4\alpha(1-\alpha)$.

Hence, if we define

$$\Omega_2 \ = \ \{ \ \lambda = -4\alpha(1-\alpha) \ | \ -\frac{1}{2} < Re \ \alpha < \frac{3}{2} \ \}.$$

Then by 2.4 of [5] we can see

The set

$$E = \{(\lambda, \mu) \in \Omega_2 \times \Omega_2 | G(\lambda)G(\mu) = 1\}$$

is the set of all joint eigenvalues of Δ_1 and Δ_2 .

Since

$$G(\Delta_1)G(\Delta_2) = I$$
 on M_2

by the holomorphic functional calculus (3.11 of [2]),

$$1 = \sigma \big(\ G(\Delta_1) G(\Delta_2) \big) = \{ \ G(\lambda) G(\mu) \mid (\lambda, \mu) \in \sigma(\Delta_1, \Delta_2) \ \}.$$

Hence, the joint spectrum of Δ_1 and Δ_2 is

$$\sigma(\Delta_1, \Delta_2) = \{ (\lambda, \mu) \in \bar{\Omega}_2 \times \bar{\Omega}_2 \mid G(\lambda)G(\mu) = 1 \}.$$

But since the operators Δ_1, Δ_2 are not normal (they have uncountably many eigenvalues), no type of spectral decomposition of M_2 with respect to Δ_1 and Δ_2 is available.

Another way to state the conjecture 3.1 is that

If $f \in M$ is orthogonal to all the joint eigenfunctions in M, then $f \equiv 0$.

If the conjecture is right, then any $g \in M_2$ can be written as

$$g = \int_E g_v \ d au(v)$$

for some finite measure τ on E and g_v the corresponding joint eigenfunction.

The author hope to return to this problem in the future work.

3.7

Herewe will show that if $f \in L^1(D^2, m \times m)$ is of the form f(z, w) = u(z)v(w), then f can be written as a finite sum of joint eigenfunctions. Now let f(z, w) = u(z)v(w) for some $u, v \in L^1(D, m)$. Then

$$(Bf)(z,w) = \int \int_{D^2} u(\varphi_z(x)) \ v(\varphi_w(y)) \ dm(x) \ dm(y)$$

$$= \int_D u(\varphi_z(x)) \ dm(x) \ \int_D v(\varphi_w(y)) \ dm(y)$$

$$= f(z,w) = u(z) \ v(w)$$

Hence there exists $\alpha \in \mathbb{C}$, such that

$$\int_{D} u(\varphi_{z}(x)) \ dm(x) = \alpha \ u(z)$$

and

$$\int_{D} v(\varphi_w(y)) \ dm(y) = \frac{1}{\alpha} \ v(w).$$

Now let's define the space M_{α} ($\subset L^{1}(D, dm)$) by

$$M_{\alpha} = \{u \in L^1(D, dm) \mid Tu = \alpha u.\}$$

and denote Δ as the operator $\tilde{\Delta}$ restricted to M_{α} .

Define

$$(T_k u)(z) = \int_D \ (k+1)(1-|x|^2)^k u(arphi_z(x)) \ dm(x)$$

then for k > 0, T_k is bounded on $L^1(D, dm)$.

Hence for $u \in M_{\alpha}$, by the same way as 3.5, $\Delta u = \frac{1}{\alpha} 8 (\alpha u - T_1 u)$ and T_1 is bounded on $L^1(D, dm)$.

Thus we get, just as 3.6

- (i) Δ is a bounded operator on M_{α} .
- (ii) $\alpha G(\Delta)$ is the identity operator on M_{α} .
- (iii) The set $E_{\alpha} = \{\lambda \in \Omega_1 | G(\lambda) = \frac{1}{\alpha} \}$ is the set of all eigenvalues of Δ on M_{α} .

(iv) If $E_{\alpha} = \{\lambda_1, \dots, \lambda_N\}$ and

$$Q(z) = \prod_{i=1}^{N} (z - \lambda_i)$$

then $Q(\Delta) = 0$ on M_{α} . Hence by lemma 4.1 of [1] we can write

$$u = u_{\lambda_1} + \cdots + u_{\lambda_N}$$

for $u_{\lambda_i} \in L^1(D,dm)$, where $\Delta u_{\lambda_i} = \lambda_i u$. By the same way we can write

$$v = v_{\mu_1} + \cdots + v_{\mu_m}, \ \Delta v_{\mu_j} = \mu_j v, \ 1 \le j \le m$$

where

$$\{ \mu_1, \dots, \mu_m \} = \{ \mu \in \Omega_1 \mid G(\mu) = \alpha \}.$$

Hence we can write f as

$$f(z,w) = (u_{\lambda_1}(z) + \cdots + u_{\lambda_N}(z)) (v_{\mu_1}(w) + \cdots + v_{\mu_m}(w))$$

which is a finite sum of joint eigenfunctions.

References

- [1] P. Ahern, M. Flores and W. Rudin, An invariant volume mean value property, J. Funct. Anal 111 (1993), 380-397.
- [2] J. P Ferrier, Spectral Theory and Complex Analysis, North-Holland, 1973.
- [3] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana U. Math. Journal 24 (1974), 593-602.
- [4] Y. Katznelson and L. Tzafriri, On Power bounded operators, J. Funct. Anal. 68 (1986), 313-328.
- [5] J. Lee, An invariant mean value property in the polydisc, To appear.
- [6] W. Rudin, Function Theory in the unit Ball of Cⁿ (1980), Springer-Verlag.

Topology and Geometry Research Center Kyungpook National University Taegu 702-701, Korea