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A NOTE ON THE EIGENFUNCTIONS
OF THE LAPLACIAN FOR A
TWISTED HOLOMORPHIC PRODUCT

PETER B. GILKEYTAND JEONG HYEONG PARK}

ABSTRACT. Let Z = X x Y where X and Y are complex manifolds.
We suppose that projection m on the second factor is a Riemannian
submersion, that T X is perpendicular to TY, and that the metrics
on Z and on Y are Hermetian; we do not assume Z is a Riemannian
product. We study when the pull-back of an eigenfunction of the
complex Laplacian on Y is an eigenfunction of the complex Laplacian
on Z.

1. Introduction

Let X and Y be smooth manifolds; we assume Y is compact and
impose no further restrictions on X. Let Z := X x Y and decompose
the tangent bundle

(1) TZ=TX&TY.

We assume the Riemannian metric on Z is a twisted product; this
means that(1l) is an orthogonal decomposition and that the projection
7 on the second factor Y is a Riemannian submersion. Equivalently, let
z = (z*) and y = (y*) be local real coordinates on X and Y respectively.
We adopt the Einstein convention and sum over repeated indices. The
metric is a twisted product if

(2) ds% = gi;(z,y)dz’ o dz? + hep(y)dy® o dy®.
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Let dvoly and dvolz be the Riemannian volume forms on Y and on Z.
Let

EM\Ay):={¢ € C®(Y): Ay¢ = A}

E(p,Az) = {® € C®(2): Az® = ud)
be the eigenspaces of the Laplace Beltrami operators A := éd on Y
and on Z respectively. Define pull-back 7* : C°(Y) — C>*(Z) by
7" ¢ := ¢om. In earlier work [5], we determined necessary and sufficient

conditions for 7* to intertwine Ay and Agz; see also [2, 4] for related
work.

THEOREM 1.1. Let Z = X x Y where X and Y are real manifolds
with Y closed. We suppose that projection 7 on the second factor is a
Riemannian submersion and that TX is perpendicular to TY or equiv-
alently that the metric on Z has the form given by equation (2). Then
the following assertions are equivalent

(a) For all X € R, we have m*E(\, Ay) C E(\, Ag).
(b) Forall A € R, there exists u(A) € Rson*E(\, Ay) C E(u(A),Az).
(c) There exists a volume form dvyx on X so that

dvoly = dvx A dvoly .

In this brief note, we study the complex or Dolbeault Laplacian and
establish the corresponding result for that operator. In §2, we review
the material from complex geometry that we shall need. In §3, we state
and prove the main result of this paper.

2. Review of complex geometry

Let w = (w*) for w® = u? 4+ v/—1v* be local coordinates on a complex
manifold M. We define:
J(O/ou') = 0/0v*, J(8)O?) := —-H/0u’,
0} := (8/0u’ — V/=108/0v") /2, BF := (8/0u’ + V=18/0v") /2,
dw' = du’ + V=1dv', dw’ := du’ — V/=1dv*,
ALO (M) ;= spanc{dw'}, AOD(M) := spanc{dw'},
Of =8 (f)dw*, 8f := P (f)dw".
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We note that the almost complex structure J on the tangent bundle
T(M), that the vector bundles A9 (M) and A%V (M), and that the
operators

8:C®(M) — C®(ALD(M)) and § : C®(M) — C®(ACV (A1)

are all invariantly defined and are independent of the particular coordi-
nate system chosen. Let gas(-,-) be a Riemannian metric on M. We say
gm is Hermitian if gp(X,Y) = gy (J X, JY) for all real tangent vectors
or equivalently if we can represent the metric in the form

3 ds3; = gizdw’ o dw’ where g;; = 1.
M = 9ij T

We assume gps is Hermitian henceforth. We extend g, to the complex-
ified tangent bundle to be complex linear in the first factor and conju-
gate linear in the second factor; we extend gps dually to the complexified
cotangent bundle similarly. Then

gm(87,07) = 9i3/2, gm(0°,67) =0, gm(07,87) = gi3/2,
am (dwia dwj) = 2gij7 gM(dwi’ d’lD7) =0, gM(d"Dia d’LD]) = 2§i‘77
dvolpy = gdu' Adv! A ... Adu™ A dv™ for g = det(g;5).

Let ¢’ and 6” be the adjoints of the operators 8 and @ and let AS, be
the complex or Dolbeault Laplacian;

8 C2(AO(B)) — C=(M),

§" - C®(ACD(M)) - C®(M).
ASy =670 C®(M) — C=(M).

LEMMA 2.1.
(a) Ifw = wdd’ € C®(AOD(M)), then 6"w = —29718% (9¢7wy).
(b) If f € C®(M), then AS,(f) = —2g~18% (94787 f).
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PROOF. Let w = (w*) be complex coordinates on an open set W of
M. Let f € C§°(W) be a smooth function with compact support in W.
We integrate by parts in the following computation; the boundary terms
vanish as f has compact support:

(0"w, flrz =fgm(w,8f) = [gn(w, 07 fdw?)gdu' ... = 2fggﬁwz-6§‘_7dul...
:2fggﬂw;8;"fdu1... = —Zfa;”(ggﬁw;)fdul...
=~ 2[g7187 (99" ws) fdvolpr = (—29 2% (997 wr), f) 12
This identity for all f € C§°(M) establishes the first asssertion; the

second assertion now follows. O

We shall need the following technical fact. Let Z = X x Y where X
and Y are complex manifolds. Let m be projection on the second factor;
™0y = Ozm*. Let z = (z') and y = (y*) be local holomorphic coor-
dinates on X and Y. We suppose that = is a Riemannian submersion,
that TX is perpendicular to TY, and that the metrics on Z and on Y
are Hermitian; this is equivalent to supposing that

(4) dsy = giz(z,y)da’ o dz? + h,p(y)dy® o di®.

LEMMA 2.2. Expand dvoly = e?@¥) diydvoly where dix is any vol-
ume form on X. If $ € C°(Y), then

Azm™¢ =n"Ay ¢ — gz(dn"¢,db)
5706 = m A6 — g2(On° 9, 06).

PROOF. We refer to [5] for the proof of the first identity. We use
equation (4) and Lemma 2.1 to prove the second identity. Let g :=
det(g;;) and h := det(h,;). Expand z; = s; + v/ —1t; and y, = u, +
v/—1v,. Choose 1)(z) so dix = e?*@ds; Adt; A .... Then

dvolz =ghds; Adt; A ... Aduy Adoy A ... = e"@V iy A dvoly
={! @@ ds) ndty ALY A {A(y)duy Adog A L)
Consequently g = e?@¥+¥(=) Let & := 1*¢; 97® = 0 so by Lemma 2.1
52— 1" AGS = — 297 hH(9) 9)(8) @) = - 2h°*(0Y 0)(8) @)
- - gz(a@, 69)(3:’ y)
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3. The main results of the paper

We first generalize Theorem 1.1 to the complex setting where the base
Y is closed. Then we consider the case in which the base is compact with
smooth boundary and impose Dirichlet boundary conditions. We begin
with

THEOREM 3.1. Let Z = X xY where X and Y are complex manifolds
with Y closed. We suppose that projection m on the second factor is a
Riemannian submersion, that T X is perpendicular to TY , and that the
metrics on Z and on Y are Hermitian. This is equivalent to assuming
that the metric on Z has the form given by equation (4). Then the
following assertions are equivalent

(a) For all A € R, we have n*E(A\, Ay) C E(A\,Ag).
(b) Forall A € R, there exists u(A) € Rson*E{\ Ay) C E(u(A),Az).

(c) There exists a volume form dvx on X so that
dvolyz = dvx A dvoly .

(d) For all A € R, we have m*E(X, Ay ) C E(A, A%).
(e) Forall A € R, thereexists u(A) € Rsom*E(A, AY) C E(u(A), AY).

PrROOF. The equivalence of (a), (b), and (c¢) was previously estab-
lished in [5] in the real category. We must now establish the equivalence
of (c), (d), and (e). If (c) holds, we may take § = 1 and use Lemma 2.2
to see Ayn* = 7*A§ which implies (d). It is immediate that (d) implies
(e). Finally, suppose that (e) holds. Let ¢ € E(\ AS) for A # 0. Let
¢ :=7n*¢p € E(u,A%). Since Y is compact and A £ 0, ¢ is orthogonal to
the constant functions in L?(Y). We fix z € X and use Lemma 2.2 to
compute

0= (A= p)fyo@)dvoly = [, gy (dy¢(y),dyb(z,y))dvoly
= fy(5§'/5y¢(y))0(:c,y)dvoly = A[, o(y)0(z, y)dvoly.

This implies that as a function of y with z fixed, 6(z,y) is perpendicu-
lar to ¢ in L?(Y) to every non-constant eigenfunction of A§. Since Y
is compact and since AY, is a self-adjoint, elliptic second order partial
differential operator, we may take a spectral resolution of Aj to con-
struct an orthogonal direct sum decomposition L2(Y) = ®rE(}, AS).
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Consequently if we fix z, 8(z,y) € E(0,A{). This implies 8(z,y) is
holomorphic in y and hence constant in y. Therefore 6(z,y) = 8(z). We

now set dvx = €®@dix to construct a measure on X so that (c) holds.
g

REMARK 3.2. If M is Kaehler, then Ay, = 2A4, and consequently
the equivalence of (c) with (d) and (e) is a trivial consequence of Theorem
1.1. However, the metrics in (4) need not be Kaehler and thus Theorem
3.1 is not a direct consequence of Theorem 1.1.

In [4] we considered warped product metrics. We proved

THEOREM 3.3. If Z = X x Y with ds?, = e**@¥)ds% + ds? is a
warped product, if Azm* = 7* Ay, and if Y is compact, then h = h(z)
so Z is a Riemannian product.

REMARK 3.4. If ASn* = 7n*A§,, then Theorem 3.1 implies Az7* =
n*Ay and we may conclude again Z is a Riemannian product. Thus
Theorem 3.3 generalizes to the complex category. However, Theorem
3.3 is false if we replace the metric ds% = e?"(*=¥)ds% 4 ds? by a more
general metric as given in equation (4). Let T be the complex torus
Sl x St Let X =TxTandY =T soZ=TxT xT with the complex
parameters (z1,g,y) for (x1,22) € X and y € Y. Let

ds% = e*"Wdzl o dz' + e "W dz? o dz? + dy o dF;

this is not a Riemannian product. However, since condition (c) of The-
orem 3.1 holds for this metric, 7* intertwines both the real and complex
Laplacians. This metric is an example of a Riemannian submersion with
minimal and not totally geodesic fibers and is is closely related to 3,
Example 4.1].

We have assumed previously that Y was closed. We now relax this
condition.

LEMMA 3.5. Let Z = X x Y where X and Y are real manifolds. We
suppose that projection = on the second factor is a Riemannian submer-
sion and that T X is perpendicular to TY or equivalently that the metric
on Z has the form given by equation (2). Assume Y is compact with
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smoooth boundary and impose Dirichlet boundary conditions to define
the eigenspaces E(X\, Ay ). If ¢ € E(A\,Ay) and if 7*¢ € E(u,Az), then
A=pu.

PROOF. Suppose the contrary and choose A so u(A) # Aand E(\, Ay)
# 0. Then (A — p)p(y) = gy (dyb(z,y),dy¢(y)). Since Ay is a real
operator, we may assume without loss of generality that ¢ is real and
non-trivial. Choose y so ¢(y) is minimal or maximal. Since ¢ sat-
isfies Dirichlet boundary conditions, y is in the interior of M. Then
dy ¢(y) = 0 and thus ¢(y) = 0. This shows ¢ = 0 which contradicts our
basic assumption. O

REMARK 3.6. We note that the argument given to prove Lemma 3.5
fails for A§, because this operator is not real; we do not know whether
Lemma 3.5 holds for the complex Laplacian; i.e. we do not know if the
pull back of an eigenfunction of the complex Laplacian on the base can
be an eigenfunction of the complex Laplacian on the total space with a
different eigenvalue.

THEOREM 3.7. Let Z = X x Y where X and Y are complex mani-
folds. We suppose that projection m on the second factor is a Riemannian
submersion, that T X is perpendicular to TY , and that the metrics on Z
and onY are Hermitian. This is equivalent to assuming that the metric
on Z has the form given by equation (4). Assume Y is compact with
smoooth boundary and impose Dirichlet boundary conditions to define
the eigenspaces E(X, Ay) and E(A,AS ). Then the following assertions
are equivalent

(a) For all A € R, we have n*E(\, Ay) C E(A. Az).
(b) Forall A € R, there exists u(A) € Rsom*E()\, Ay) C E(u()\), Az).

(c) There exists a volume form dvx on X so that
dvolz = dvx A dvoly .

(d) For all A € R, we have n*E(\, A ) C E(A. A%).

PrOOF. If (c) holds, we can use Lemma 2.2 to see that (a) and (d)
hold. Conversely suppose (a) holds. Fix z € X Then gy(dy8(z,y),
dy¢(y)) = 0 for all y € Y. Since span{¢ : ¢ € £(\,Ay)} is dense in
C§°(Y'), we conclude dy8(z,y) = 0 for y in the interior of ¥ and hence
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6(z,y) is independent of y. Thus (a) implies (c); similarly (d) implies
(c). It is immediate that (a) implies (b). By Lemma 3.5, (b) implies
(a). O
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