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COSYMPLECTIC CONFORMAL CURVATURE
TENSOR AND SPECTRUM OF THE
LAPLACIAN IN COSYMPLECTIC MANIFOLDS*

Jung-HwaN KwoN, KwaN-HO CHO AND WON-HO SOHN

ABSTRACT. The purpose of this paper is to study the spectrum of
the Laplacian and the cosymplectic conformal curvature tensor of
cosymplectic manifold.

1. Introduction

Let (M, g) be an m-dimensional compact orientable Riemannian man-
ifold (connected and C'*°) with metric tensor g. We denote by A the
Laplacian acting on p-forms on M, 0 < p < m. Then we have the
spectrum for each p :

Spec? (M, g) :={0 < Xop < Ap < Agp < Tox},

where each eigenvalue )\, , is repeated as many times as its multiplicity
indicates. In order to study the relation between SpecP(M,g) and the
geometry of (M, g) we use the Minakshisundaram-Pleijel-Gaffney’s for-
mula. J. S. Pak, J.-H. Kwon and K.-H. Cho ([7]) studied the spectrum
of the Laplacian and the curvature of cosymplectic manifolds. On the
other hand, J.-H. Kwon, J. D. Lee, K.-H. Cho and W.-H. Sohn ([5])
found a relation between the cosymplectic conformal curvature tensor
of a cosymplectic manifold and the conformal curvature tensor of the
transversal Kaehlerian hypersurface.
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The purpose of the present paper is to study the spectrum of the
Laplacian and the cosymplectic conformal curvature tensor of cosym-
plectic manifold.

We shall be in C'-category. The indices h,1,j,k,s,¢,... Tun over
the range {1,2,...,2n + 1}. The Einstein summation convention with
respect to those system of indices will be used.

2. Preliminaries

By R = (Ry;i™), Ry = (Rji) and r we denote the Riemannian curva-
ture tnesor, the Ricci curvature tensor and the scalar curvature, respec-
tively. For a tensor field T on M, we denote by |7'| the norm of T with
respect to g. Then the Minakshisundaram-Pleijel-Gaffney’s formula for
SpecP(M, g) is given by

oG o0
Z exp(—Aa pt) ~ (4mt) "% Z Ao pt® as t— 07,
a=0 a=0

where the constants a, ;, are spectral invariants. In the present paper
we are interested in the case of p = 0,1 or 2. For p = 0 we have (cf. [1))

(2.1) ap,o ——-/ dM = Vol(M,g),
M
1
(2.2) aio = —/ ’f‘dM,
6 Jm
(2.3) az,0 2|R|* - 2|Ry|? + 5r%)dM,

360 Jyy

where dM denotes the natural volume element of (M, g). For p = 1, we
have (cf. [11])

(2.4) ag,1 = m = Vol(M,g),
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(2.5) a11 = M/ rdM,
3 6 M

1
(26) @z = / [2(m — 15)|R[® — 2(m — 90) | Ry|* + 5(m — 12)r2)dM,
M

For p = 2, we have (cf. [8], [10], [11})

1
(2.7) ag2 = —2—m(m - 1)Vol(M,q).
1, 2
(28) a) o = —(m —13m + 24) T‘dM,
27 12 u
ag = L [2(m? — 31m + 240)|R|?
(2.9) 720 Jm

— 2(m? — 181m + 1080)| Ry |* + 5(m? — 25m + 120)r2]dM.

3. Cosymplectic manifolds

Let M be (2n + 1)-dimensional differentiable manifold of class C*®
covered by a system of coordinate neighborhoods {U;z"} in which there
are given a tensor field ¢ of type (1,1), a vecter field £* and a 1-form 7,
satisfying

(3.1) @it ==&+t mert =0, @let=0, pet=1.

Such a set of a tensor field of (1,1), a vecter field and a 1-form is
called almost contact structure and a manifold with an almost contact
structure an almost contact manifold.

If, in an almost contact manifold, there is given a Riemannian metric
g4: such that

(3-2) gts%‘t%'s = G5i 5T, M = guft,
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then the manifold is an almost contact metric manifold.

If we define ¢;; = @;’gy, we see from (3.1) and (3.2) that ;i 1s
skew-symmetric.

The almost contact structure is said to be normal if [p, @] + dy ® € =
0, where [, ¢] denotes the Nijenhuis tensor formed with ¢ and d the
operator of the exterior derivative.

A normal almost contact metric structure is said to be cosymplectic
(cf. [2], (3], [4], 6], [7]) if the 2-form ¢;; and the 1-form 7; are both closed.
A manifold with a cosymplectic structure is called a cosymplectic man-

ifold. It is known in [2] that the cosymplectic structure is characterized
by

(3.3) Vip;* =0 and Vin' =0,

where V, denotes the operator of covariant differentiation with respect
to Gji-

If we denote the curvature tensor, Ricci tensor and scalar curvature
of a cosymplectic manifold M by Rkjih, R;; and r respectively, then we
have

Rijif' =0, Rijespi'on® = Rijin,
(3.4) Rijisp®™ = —Rjpi', Rjpi' = —Ripjt,
Rijisp"® = 2Rpp;', Rj€' =0, Rispites® = Ryi,

where ©7* = ,'g?%, and Ryjin = Riji‘gun.
In a cosymplectic manifold M, we call a sectional curvature

_9(R(pX, X)eX, X)
9(X, X)g(pX, pX)

determined by two orthogonal vectors X and ¢ X the @-holomorphic sec-
tional curvature with respect to the vector X orthogonal to £ of M. If
the ¢-holomorphic sectional curvature is always constant with respect
to any vector at every point of the manifold M, then we call the man-
ifold M a manifold of constant p-holomorphic sectional curvature. If a
cosymplectic manifold has a constant p-holomorphic sectional curvature
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k at every point, then the components of the curvature tensor of the
manifold are of the form (cf. 3], [6])

Ryjin :Z(gkhgji ~ Grigih + PrhPji — PriPih = 2Pk Pih

— GkrMMi + Gk — MeNhGsi + TkTiGih)s
where k = n—(—nim

A tensor field H = (Hj:n) on M is defined by

(35) kjih =Likjih 4n(n+1) GkhGji — GkiGjh T Peh¥Pji — PriPih

— 20k Pih — GkRN M + GRiNjMh — MkTRGjs + MENiGsn)-
By using (3.4) and (3.5), we can easily verify that

2
(3.6) |H|? = |R|* — mr?

A cosymplectic manifold is of constant ¢-holomorphic sectional cur-
vature if and only if H = 0, provided n > 2.
A tensor field Q = (Qj;) on M is defined by

r r
Qji = Rji — 593t oM

By a direct calculation, in which we use (3.4), it follows

(3.7) QF = |Raf? — 51

A cosymplectic manifold is said to be n-Finstein if @ = 0. For any
n-Einstein cosymplectic manifold, r is constant, porvied n > 2.
We also consider the so-called cosymplectic conformal curvature tensor
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EO = (Eo,kj’ih) defiend on M by (Cf [5])

— 1
Bo,kjih =Rukjin + %(Qthji — 9inBri + Rengji — Ringii
= YkhSji + ©inSki — Skrji + Sjari + 2¢0k; Sin
+ 25k 0in — MennRji + ninRei — Rennini + Rinnem:)
(3.8) (n +2)r
2 (n 1)(90kh% PihPri — 20k Pin)

(3n + 2)r
- m(gkhgji = GihGki — kRN + GinMkM

~ G5iMkNh + GriTMh ),

where Sji - cpthti and Sji = --Sij.
The tensor field By satisfies, among others, the following identities :

Bo,kjin = Bo,inkjs  Bokjih = —Bojkin, Boxjin = ~Bo kjhi,
Bo,kjin + Bojikh + Bo,ikjn = 0,

s 2(n— 2)R (n—2)r (n--2)r

By jisg"® = ji — 95i t
L7 J n2 Jt “2

Bokjin€" =0, Bokjing™ =0, Boaing™ = 0.

N3,

A cosymplectic manifold with By = 0 is said to be cosymplectic con-
formal flat. If the cosymplectic conformal curvature tensor of M van-
ishes, that is, Bg = 0, then from (3.1), (3.4) and (3.8) we have

_(n=2)r (n—2)r
(n - 2)R_’]’L — TQ]Z - m YR

Therefore we see that M is 7-Einstein, provided n # 2. Using these
identities, (3.1), (3.4) and (3.8), we can easily check that

(n®—2n-2) ,
T ?
n3(n+ 1)

(39) Bof* = 1R ~ S |R - 2

= 8
2 _ 2 2
(310) [Bol? = |H - —|QP.
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_ On the other hand, the cosymplectic Bochner curvature tensor B =
(Buijin) defiend on M by (cf. [4])

— 1
Bijin =Rgjin — m(ﬂthﬁ — gjnRiki + Repngji — Rjngri

+ ©knSji — PipSki + Skrji — SjrPki — 20k Sin — 28k in
— mennRji + e Rii — n10: Rin + eniRsn)

r
+ mrD(n+2) (9khGjs — GjnGki — GkrNNi + GiRTMEN:
= GjiMkNh + GriTjTh + PkhPji — QihPki — 2@k Pih)-

We also verified in the previous paper ([7]) that
(3.1) B = |HP - —
n+2

From (3.10) and (3.11), we have

8(n—2)(n+1
n?(n + 2)

(3.12) Bol? = B + |02,

From (3.12), we have the following

THEOREM 3.1. Let M be a cosymplectic manifold of dimension # 5.
Then M is cosymplectic conformal flat if and only if M is n-Einstein and
cosymplectic Bochner flat.

REMARK. If M be a 5-dimensional cosymplectic manifold, then M
is cosymplectic conformal flat if and only if M is cosymplectic Bochner
flat.

From (3.10) and Theorem 3.1, we have the following

THEOREM 3.2. Let M be a cosymplectic manifold of dimension > 5.
Then M is of constant p-holomorphic sectional curvature if and only if
M is cosymplectic conformal flat.

REMARK. If M be a 5-dimensional cosymplectic manifold, then M
is of constant p-holomorphic sectional curvature if and only if M is n-
Einstein and cosymplectic conformal flat.
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4. Spec®M and the geometry of M

Assume that M is a compact cosymplectic manifold of dimension
2n + 1 and consider Spec®M. With the help of (3.7) and (3.9), the
coefficient ap ¢ given by (2.3) may be written as follows :

1 - 8 — n? Co(n)
4.1 = — [ [|Bol* + ——|Q|*|dM ——/ *dM
41)  azo= g5 [ 1B+ Si0Pan + ) [ ey
where Cp(n) is constant depending only on n and Co(n) > 0.
We shall often use the following Lemma 4.1.

LEMMA 4.1 ([9]). Let (M,g) and (M',¢’) be compact orientable
Riemannian manifolds with Vol(M,g) = Vol(M',g') and f,, rdM =
Jap 'dM’. If ' = constant, then Sy r2dM > S r"?dM’ with equality
if and only if r = constant = r’.

THEOREM 4.2. Let M and M’ be compact cosymplectic manifolds.
Assume that Spec® M = Spec® M’. Then dim M = dim M’ — 2n+l=m
and

(a) for m = 3, M is cosymplectic conformal flat with constant scalar
curvature r if and only if M' is cosymplectic conformal flat with constant
scalar curvature ', moreover r’ = r,

(b) when M and M’ are n-Einstein and n'-Einstein, respectively and
m 2> 5, M is cosymplectic conformal flat if and only if M’ is cosymplectic
conformal flat, moreover r' = constant= r.

PROOF. Because of (2.1) and (2.2), a9 = ag,0 and a1 0 = af ¢ imply
Vol(M) = Vol(M') and [, rdM = Jag T'dM’. Moreover, by virtue of
(4.1), az2,0 = aj ¢ yields

M2
S Bl + S 1QPIan + Cotm) [ s2an
(4.2) M o M
= | 11Bo'? + == 1Q'PlaM’ + Co(n) [ +2a".
’ n M

1

() If n=1and B,' =0, then @’ = 0 and it follows from (4.2) that

/ [[Bol? + 7|Q|*}dM + 00(1)(/ r2dM — | r2dM’) = 0,
M M M
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which, by 7’ = constant and Lemma 4.1, gives our assertion.
(b) Let @ = 0 and Q" = 0. Then r and r’ are constant for n > 2.
Thus by Lemma 4.1, we obtain r = r’ and it follows from (4.2) that

/|‘B‘0|2dM= 1By [2dM’.
M M’

If M’ is cosymplectic confog_nal flat, that is, —B—ol = 0, then from the
above equation, we obtain By = 0. This completes the proof of our
Theorem 4.2. O

COROLLARY 4.3. Under the same assumptions as in Theorem 4.2, M
is cosymplectic Bochner flat if and only if M’ is cosymplectic Bochner
flat.

5. Spec! M and the geometry of M

Assume that M is a compact cosymplectic manifold of dimension
2n + 1 and consider Spec'M. With the help of (3.7) and (3.9), the
coeflicient ag 1 given by (2.6) reduces to

1

az) = —1—8—6 M[Q(n — 7)|~B—0‘2 — Ay (THlle]dM

4 Gln) / r2dM,
180 Ju

(5.1)

where Ay (n) = L8 210n2112) 514 €y (n) = mAEro1En)

THEOREM 5.1. Let M and M’ be compact cosymplectic manifolds.
Assume that Spec! M = Spec* M'. Thendim M = dimM' =2n+1=m
and

(a) for 17 < m < 89, M is cosymplectic conformal flat if and only if
M’ is cosymplectic conformal flat, moreover ' = constant = r,

(b) when M and M’ are n-Einstein and n'-Einstein, respectively and
m > 5 and m # 15, M is cosymplectic conformal flat if and only if M’
is cosymplectic conformal flat, moreover r' = constant = r.
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PROOF. Because of (2.4) and (2.5), ap1 = ag; and a1; = ay; imply

Vol(M) = Vol(M') and f,,rdM = f,,, r'dM’. Moreover, by virtue of
(5.1), az1 = aj, yields

/ 2(n — T)[Bol? — Ay (n)|QIZ]AM + C1(n) / r2dM
M

(5.2) M
_ / 2(n = )[Bo' |2 — A (n)|Q[2)dM + Ca(n) | +2apr.
M’ M
Using (5.2) and Lemma 4.1, we easily obtain our assertions. dJ

THEOREM 5.2. Let M and M’ be compact cosymplectic manifolds.
Assume that Spec®M = Spec®M’ and Spec'M = Spec*M’'. Then
dimM =dimM’' = 2n +1 =m and

(a) for m > 5, M is n-Einstein if and only if M’ is 1/-Einstein, more-
over ' = constant = r,

(b) for m > 7, M is cosymplectic conformal flat if and only if M’ is
cosymplectic conformal flat, moreover ' = constant = r.

PROOF. Because of (2.1) and (2.2), ag,0 = ag and ay,0 = af ;, imply
Vol(M) = Vol(M') and [, rdM = [, , r'dM’. Moreover, by virtue of
(2.3) and (2.6), az0 = a} o and ag 1 = ah ; yield

(5.3) / [51R* + 13r2]dM = / [5|R|? + 13r"*dM’,
M M’

(5.4) / [10|R1* + r?)dM = [ [10|Ry/|* + '*]d M.
M M’

(a) By (3.7), the equation (5.4) may be written as

5
[ era = [ jqpan s 2ES([ vranr - [ anry o
M M’ n M M’

If Q" = 0, then 7’ is constant for n > 2. Thus, by Lemma 4.1, the last
equality leads to @ = 0 and r = constant = /.
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(b) Using (3.9), we rewrite (5.3) in the form
—= 40
/ [5/Bol* + = |R1|? + Ca(n)r?ldM
M n
= 2, 40 12 ‘2 '
= [5|Bo |“ + §|R1 | + Co(n)r |dM’,

where Ca(n) = Wﬂ)(an4 + 13n3 + 10n? — 20n — 20). This equality
together with (5.4) gives

/ |Bo|?dM — / Bo'[2dM’
M M’

13n% + 13n3 + 6n% — 24n — 20
5n3(n + 1)

(/ r?dM — [ r*dM’) = 0.
M M’

Assume that EOI = 0. Then 7’ is constant for n > 3. In view of Lemma
4.1, the last equation yields now Bg = 0 and r = constant = r’. Hence
we complete the proof. 0

6. Spec’M and the geometry of M

Assume that M is a compact cosymplectic manifold of dimension
2n + 1 and consider Spec?M. With the help of (3.7) and (3.9), the
coefficient a3 » given by (2.9) may be written as follows :

1 _
= — —7)(2n — 15)|By|?
a2,2 180 M[(n )(2n )| Bo
2nt — 179n3 + 434n2 + 232n — 840
(6.) - o QM
+ 10n* — 107n3 + 310n% — 147n — 30 / 240
360n(n + 1) M

THEOREM 6.1. Let M and M’ be compact cosymplectic manifolds.
Assume that Spec?M = Spec?M’. Thendim M = dim M’ = 2n+1=m
and
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(a) form=7,9,13 or 17 <m < 173, M is coymplectic conformal flat
if and only if M’ is cosymplectic conformal flat, moreover v’ = constant
= T"

(b) for m = 15, M is n-Einstein if and only if M’ is n-FEinstein,
moreover v’ = constant = r,

(c) when M and M’ are n-Einstein and n' -Einstein, respectively and
m 2> 5 and m # 15, M is cosymplectic conformal flat if and only if M’
is cosymplectic conformal flat, moreover v’ = constant = r.

PROOF. The proof is based on the equalities Go2 = ayq, A1 2 = a’1,2
and ag» = aj 5, where the coefficients are given by (2.7), (2.8) and (6.1).
The idea of the proof is similar to that of Theorem 4.2. Therefore, we
shall omit the details. OJ

THEOREM 6.2. Let M and M’ be compact cosymplectic manifolds.
Assume that Spec®M = Spec®M’ and Spec*M = Spec*M’'. Then
dimM =dim M’ =2n+1=m and

(a) for m = 5 or m > 15, M is n-Einstein if and only if M’ is n-
Einstein, moreover ' = constant = T,

(b) when for m > 7, M is cosymplectic conformal flat if and only if
M' is cosymplectic conformal flat, moreover ' = constant — r.

PROOF. Because of (2.1) and (2.2), ag o = ag,o and aj o = af ¢ imply
Vol(M) = Vol(M’) and f,, rdM = Jay T'dM’. Moreover, by virtue of
(2.3) and (2.9), az0 = ab and ag 5 = ay 5 yield

/ [(10n — 23)|R|? + (26n — 67)r%]dM

(6.2) M

= / [(10n — 23)[R/|? + (26n — 67)r'*|dM’,
Iy

/M [2(10n — 23)|Ry[? + (21 — 19)r2]dM
(6.3)
- / [2(10n — 23)|Ry’2 + (2n — 19)r')dM’.
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(a) By (3.7), the equation (6.3) may be written as

/ (10n — 23)|Q|*dM — / (10n — 23)|Q’|?dM’
M M’

2n? — 9n — 23 ,
A (/ r2dM — [ r?dM’) = o.
2n M M’
Let Q" = 0, then 7’ is constant for n > 2. Thus, by Lemma 4.1, our
last equality leads to Q = 0 and r = constant =" forn =2orn > 7.
(b) Using (3.9), we rewrite (6.2) in the form

— 8(10n — 23
/M[(IOn —23)|Bo)® + (—52———)|R1|2 + Cx(n)r?)dM

— 8(10n — 23 .
- / [(10n — 23)[Bo |* + ﬁ%z—)lRl’F + C3(n)r’*|dM’,

where C3(n) = 2(10"_33()5121;2”_2). This equality together with (6.3)
gives

/ (10n — 23)[Bo|2dM — / (10n — 23)|By’|2dM’
M M’

3 __ 2
2(6n 9n + 64n -+ 46) ( T‘2d]\/_{ _ 7',2dM/) = ().
n3(n + 1) M JM

If By’ = 0, then 7’ is constant for n > 3. Thus, by Lemma 4.1, the
last equation yields By = 0 and r = constant = r’. hence we complete
the proof. Ol
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