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ON THE BERWALD CONNECTION OF A
FINSLER SPACE WITH A SPECIAL (¢, 3)-METRIC

HoNG-SUH PARK, HA-YONG PARK AND BYUNG-Doo Kim

ABSTRACT. In a Finsler space, we introduce a special (a, 3)-metric
L satisfying L?(a, 8) = c1e? 4 2coa8 + c302, where ¢; are constants.
We investigate the Berwald connection in a Finsler space with this
special (a, 8)-metric.

1. Introduction

The (o, §)-metric is a Finsler metric which is constructed from a Rie-
mannian metric a and a differential 1-form 3 in an n-dimensional mani-
fold. The concept of the (a, 8)-metric was introduced by M. Matsumoto
[4] and the Finsler space with the (a, 3)-metric have been studied by
many authors. The well-known examples of the (a, 3)-metric are the
Randers metric, the Kropina metric and the slope metric (or Matsumoto
metric).

The purpose of the present paper is to introduce a special (a,3)-
metric generalizing a Randers metric and investigate the Berwald con-
nection of a Finsler space with this special («, 3)-metric. The concrete
form of the Berwald connection in the Finsler space with a special («, §)-
metric is founded in the last section.

Throughout the present paper the terminologyv and notation are re-
ferred to Matsumoto’s monograph [5].

2. A special («, 3)-metric

Let F* = (M",L(,3)) be an n-dimensional Finsler space with
(a, B)-metric L(a, 8). The fundamental function L(«, 3) is a (1)p-homo-
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geneous of degree one in a and 3, where a = \/CT (z)yty’ is a Riemann-
ian metric and 3 = b;(z)y" is a differential 1-form in the underlying man-
ifold M™. The normalized supporting element I; and the angular metric
h;; are given by I; = AL, hi; = L&, 8 L respectively, where §; = 3/6y
If we put F = L2/2, then the fundamental metric tensor gi; = (916 Fig
written as g;; = hy; + [;l; from b, 8 F = La 6 L+ (8 L)B L. From the
homogeneity of L we have yi = Li; and Yyt = Lll

Now we shall deal with a general (o, 3)-metric L{a, 3). From 3 =

bi(z)y' we have §;,8 = b, 88B = (. Putting da = ag, 8(9a =
Qi 88 Opar = a;jk, we get a; = Yi/a, «i; = K;;/a, where Y; =
ai;y’, Kw = a;; — Y;Y; /a The tensor K, is the angular metric tensor
of the Riemannian metric a;;. From 8sz] = —(KuY; + KjLY;) Ja?,
have

Qi = ‘—(Kz‘jyk + KjkYi + K}czY})/OzB

We consider the normalized supporting element I; = L, o, + LgfB;, which
implies l; = (Lo /a)Y;+Lgb;, where the subscripts «, 3 denote the partial
differentiations by a and (3 respectively.

Next we shall find the fundamental metric tensor 9ij:

(2.1) 9i; = Foouj + Faooiaj + Foplos 85 + o 3;) + Fy38:8;,
therefore we get

(2.2) gij = (Fa/a)Kij+(Faa/o®)Y;Y;+ (Fag/c)(Yib; +Y;b;) + Fagbsb;.
The angular metric tensor h;; is easily obtained as follows :

(2.3) hij = (Fa/@)Kij + (Faa/o® — L2, /0?)Y;Y;

+ (Fap/a — LaLp/a)(Yib; + Y;bi) + (Fap — L3)bib;.

Since we have
Fy :LLav Fﬁ:LLﬁy Foa :LL(za+Lia

(2.4) 9
Fop=LLog+ LoLs, Fgg=LLys+ Lg,

the equation (2.3) is rewritten as follows:
(2.5)
hij = (Fo/@)Kij + (LLaa /0®)Y;Y; + (LLag /@) (Yib; + Y;b; )+ LLgsb;b;.
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From the homogeneity of the fundamental function L, we get
(2.6) Lo+ Lﬁﬁ = L, Looo + Lagﬁ =0, Lgaa + ngﬂ = (.

Substituting (2.6) in (2.5), we have
(2.7)
hij = (Fa/®)Kij + LLgp{bib; — (8/a”)(Yib; + Y;bi) + (8% /a*)YiY;}.

Then, If we put P; = b; — (8/a?)Y;, we get

PiP; = bib; — (8/a®)(Yib; + Y;bi) + (8% /) YsY;.
Therefore, we have
(28) hij = (Fa/@)Ki; + (Fpp — F§/2F) P.P;.

This form of h;; shows immediately hijyj = 0 from Kij_uj = 0 and
Next we shall find the C-tensor C;jx = 0xg;;/2. From (2.1) we have

2C5k = (Faaak + Fopli)oi; + Faaijx
+ (Faaa@k + Faupbi)aio + Faalako) + ajras)
+ (Fapatk + FagaBr)(aif + o;0.)
+ Fopl0inB; + o fi) + (Fgaok + Fgabr)B:58;
= Foaji + Fooloijor + ajra; + agiay)
+ Fop(ii By + o fi + ouifB;)
+ Foaa®iojog + Foop(aso; 8k + oo B + arasSy)
+ Fopp(0if;Br + a;BrBi + axB:B,) + FapsBiB; Bk

The homogeneity of F' implies
(2.10)
Foa+Fogf = Fo, Fpaa+ Fgaf=Fpg, Foaat+ FaapB =0,

Faﬁaa + Faggﬂ =0, Fggaa + Fg@gﬁ = (.
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Then, from (2.9) and (2.10) we have
(2.11)
2Cijk = — (Fo/o®)(KijYs + KjnY; + KiiY5)
+{(Fa = FapB) /@’ HEyYe + KpYi + KiiY;)
+ (Fop/a)(Kijbe + Kjib; + Kibj)
+ Fopa{bibibr — (8/a®)(Yibsbx, + Y;bieb; 4+ Yibib;)
+(82/ad)(ViY;be + VYibi + YiYiby) — (8%/a)ViY;Y,).
If we construct P;P; Py, then we immediately have the conclusion:
(2.12)  2Cin = (Fap/a)(Kij Py + Kk P + Ky Pj) + Fppp P P; Py

In the following we pay attension to (2.12). The C-tensor Cijk is written
in the term of the angular metric tensor K;; of the Riemannian metric
a as follows

(2.13) Cijk = KijBk + KjkBi + KkiBj

for some tensor field B;, if and only if Fss3 = 0. From the assump-
tion Fggg = 0 and (2.10) we have known that F should be a quadratic
function of «, 3, that is, L? is written in the form

(2.14) L? =c¢1a? + 2¢co03 + 352,
where ¢, ¢z and c3 are constants. Consequently we have

THEOREM 2.1. The C-tensor is of the form (2.13), if and only if the
metric function L(a, 3) satisfies (2.14).

In the case of ¢c; = co =c3=11in (2.14), the metric L is a a Randers
metric and if ¢1c3 — ¢2 = 0, the metric is a Randers metric also. Thus we
may be cosidered that the metric L satisfying (2.14) is a generalization
of the Randers metric.

REMARK. If the C-tensor is written in the form
(2.15) Cijk = hijAk -+ hjkAi -+ hkiA,'

for some tensor field A;, then the space is called C-reducible [4]. It is
known that a C-reducible Finsler space with (, 5)-metric is a Randers
space or Kropina spce [4], that is, L(c, 3) = a + 3 or L(a,8) = a?/8.
It is interesting to compare the form (2.13) with the form (2.15).
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3. The condition to be the Berwald space

Let F™* = (M",L(a,3)) be an n-dimensional Finsler space with an
(c, B)-metric given by (2.14). In this section, the Matsumoto’s method
of [6] will now be applied to find the condition that F™ be a Berwald
space. The Riemannian space R™ = (M™,«a) is called the associated
Riemannian space with " and the Christoffel symbols of R* = (M", a)
are indicated by 7;°x. Then the Riemannian connection ('yji k) gives rise
to the linear Finsler connection FI' = ('yji ks V0" 5, 0), where the subscript
0 means a contraction by .

The Berwald connection BT = (G,%, Go';,0) is uniquely determined

as the Finsler connection satisfying the following axiomatic system by
Okada [7]:

(B1) L-metrical: L =0,
(B2) (h)h-torsion tensor ‘Tj"k = Gj'ik — G’_kij =0,
B3) deflection tensor D*; = 4*G*; — G*; =0

= 3 g =
(B4) (v)hv-torsion tensor P'j, = 0xG*; — G¢*; =0,
(B5) (h)hv-torsion tensor C; =0,

where the symbol (1) in (B1) denotes the h-covariant differentiation with
respect to the Finsler connection.
Now, we shall find the Berwald connection BI" in F™. Putting
(3.1) 2G" = ’}’oio -+ 2Bi,
we have from (B2), (B3) and (B4)

G; = 8]G1 = ’)’oij + Bija

(3.2) e i z.
G}k:('?ij:’Yj £+ Bk,

where we put Bi; = BjBi and Bj% = 3kBi]-.
The axiom (B1): Lj; = 6;L — G";0,L = 0 is written as
(33) LaBjkiyjyk -+ aLg(BjT'ibT — Vibj)’j/j =0,

where yi = ary’ and V; is the differentiation with respect to 'yjik.
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Since the metric function L is given by (2.14), we get
(3.4) LL, = cia+c8, LLg= cya -+ c3fi.
Substituting (3.4) in (3.3), we have

af{c1B;* iy + c3B(B;" by — Vib;)y'}

(3.5) . 5 . .
+ e2{BB;" 1y’ yr + o*(B;*:by, — Vib; )y} = 0.

Now, we assume that the Finsler space F™ with (e, B)-metric given
by (2.14) is a Berwald space, that is, G 'k is a function of the position
alone. Then we have B;*; = B,*;(z), so that the terms in the braces
of left-hand side of (3.5) are rational polynomials in (v*) and « is an
irrational polynomial in (y?). Thus we have
1) e1B* 7y + eaB(B;* b — Vibj)yd = 0,

3.6 ) .
( ) 2) BBjk,-y”yk + ()JZ(Bjkibk — Vibj)y” = Q.

From the above two equations, we have

67) D (ei0® ~ Byl =0,
| 2) (c10® ~ c3B8%) (B bk — Viby)y! = 0.

(I) We suppose that c;a? — ¢332 = 0. This assumption implies ¢; = (
and c3 = 0. In this case, (2.14) becomes to L2 = 2coa3, that is, the
fundamental metric L{a, 3) is a generalized Kropina metric. The left-
hand side of (3.6)2) is a polynomial of three order in (v*) and shows the
existence of function \;(z) satisfying

Bjkiyjyk = = \i(z)a?, (Bjkibk - Vibj)yj = X (x)B.
The former is written as
Bj¥ian + BrFiar; = —2Xi(z)a;n,
which implies

(38) Bikj = )\kaij - /\15;6 - /\jé‘f,
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where A\¥ = a*?)\;. Therefore, the latter gives
(39) Vz'bj - )\kbkaij - 2)\ibj - )\jbi‘

Conversely, if there exists the vector A;(z) sat istying (3.9), we have
L); = 0 with respect to G;*x = 7;"x + B;"k, where B;%; is given by (3. 8).
Hence, by the well- known Hashiguchi-Ichijyo’s theorem [2], the Finsler
space is a Berwald space.

(IT) We suppose that c;a® — ¢332 # 0, that is ¢; # 0,¢5 # 0. Then
from (3.7) we have

(3.10) 1) BiYufyr =0,  2) (Bj*ibx - Vib))y =0,
which implies
(311) 1) Bjkiakh -+ Bhkiakj — O, 2) B"kibk - vzb_] =10.

The former yields Bjki = 0 and from which V;b; = 0 immediately.

On the other hand, Hashiguchi and Ichijyo have shown in [2] that if
Vib; = 0, then the Finsler space F™ with an (a, 3)-metric is a Berwald
space. Thus we have

THEOREM 3.1. Let F™ be the Finsler space with an (a, 3)-metric
given by (2.14) and the Berwald connection BT = (G,;%,G";,0) given
by (3.2).

(i) If ¢y = c3 = 0, then F™ is a Berwald space if and only if there
exists the covariant vector A;(z) satisfying (3.9), and the Berwald
connection is written as (’)/jik + Bjik,')’[)ij + B()ij, 0), where sz'k
are given by (3.8).

(ii) If e # 0,c3 # 0, then F™ is a Berwald space if and only if
Vib; = 0 and the Berwald connection is (~/;"k,v§;,0).

4. Concrete form of the Berwald connection

In this section we will find the concrete form of the Berwald connection
in the Finsler space with an («, #)-metric given by (2.14). The Berwald
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connection is determined by B;% in the equation (3.3) uniquely. We will
solve B;*; concretely. From (3.3) and (3.4) we get

(41) (a1 +c2B)Bi* iy yk + a(caa + c38)(BjF by, — Vib;)yd = 0.
By the homogeneity, (4.1) is rewritten as
(4.2)  (coa+c3B)(Vib;)y’ = {(c1a + c28)ex + (coax + c3B)bp Y BX
where e, = yi/a. We put

rij = (Vb +Vib;)/2, sij = (Vb — V;b;)/2.
Transvecting (4.2) by y* and using the homogeneity, we have
(4.3) (c2a + e3B)roo = 2{(c1 + cof)ex + (coax + c30)by } B

Conversely differentiating (4.3) by 3%, we obtain

(czei + c3bi)To0 + 2(caa + c38)ro;

(4.4)  =2{(c1e: + cabi)er + (c1x + c28)(ar: — exes)/ax

+ (c2ei + e3bi)be } B* + 2{(c1a + cof)ex + (coar + csB8)bi } B,
by virtue of d;a = e;, Oier = (ak; — exe;)/a. From (4.2),(4.3) and
(4.4) we have

2ari{(cra+caf)/a}B* = 2(coa + c3B)sio + (caei + c3b;)ro0
(4.5) ~ 2(c1€; + cabi)er BF + 2{(c1cx + c28) /) e;ey, B

— 2(6281‘ -+ C3bi)kak,

where s'g = a¥sjp. The equation (4.5) is written as the following form
(4.6) B* = Pie' + Pys'y + Psb’,
where putting F = e, B* and D = b, B*, we have

Py = E + a{cargo — 2(c1 E + c2D)}/2(¢c1a + ¢23),
(4.7) Py = a(cza + e3B)/(c1a + c28),
P3 = afcsrop — 2(c2E + c3D}/2(c1a + c28).
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To find E and D, we put b;b* =b?, s = sob;. From (4.3) we get
(4.8) (c2a + c3B)roo = 2(cra + c2B8)E + 2(cax + ¢38) D.
Transvecting (4.6) by b; , we have

(cra + 228 + czab®)D
= 02(52 - a2b2)E + az(CQa + ¢30)s0 + argo{ce 3 + 03ab2)/2

(4.9)

by virtue of b;e! = 3/a. Therefore (4.8) and (4.9) give E and D.
Thus we have

THEOREM 4.1. The vector field B*(z,y) in (3.1) is given by (4.6) and
(4.7), where quantities E and D are determined by (4.8) and (4.9).

EXAMPLE. In an (a, 3)-metric given by (2.14). if ¢; = ¢ = ¢35 = 1,
the metric L(a, 3) is a Randers metric. For the Randers space, from
(4.8) and (4.9) the quantities E and D are determined by the following
two equations

(4.10) roo = 2(E + D),

(4.11) a(a+28+ab®)D = (82 —a?b?)E+a®(a+8)so+roo(aB+a’b?) /2,
from which we get
(4.12.) E = a(roo—2aso)/2(a+8), D =2a°sq—reo(a—B)/2(a+0)
From (4.7), (4.8) and (4.12) we get
Py =FE =a(rop — 2as0)/2(a+ 8), Pr=a, P;=0.
Thus, in a Randers space, the vector field B*(z,y) in (3.1) is given as

follows: _ ‘ }
B" = a(roo — 2asp)e’ /2(a + B) + ausfy.
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