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WAVELETS ON THE UNIT INTERVAL
WITH BOUNDARY TREATMENT

Da1-GYouNnGg Kim

ABSTRACT. This paper concerns constructing wavelet bases on the
unit interval, where a new boundary treatment is provided to over-
come certain drawbacks of earlier constructions. Wavelet expansions
on the unit interval usually suffer from artificial boundary effects and
poor convergence at the boundaries. Many researchers have suggested
a solution to the drawbacks. From a practical point of view, their so-
lutions also have a common disadvantage. This paper provides a new
solution using biorthogonality near the boundaries, that avoids the
disadvantage while preserving their advantages.

1. Introduction

The standard wavelet theory has been developed and analyzed on
R?. However, for many applications, it is natural to study wavelets
on a domain such as an interval. For instance, a (wavelet) basis for
certain function spaces on an interval is naturally required for the study
of numerical methods for differential equations with boundary conditions
(cf.[5]), and image compression (where the domain is a rectangle) {cf.[1],
[8]). To be specific, this paper focuses on studying wavelets on the unit
interval [0,1].

The first and simplest wavelet on [0,1] is the Haar function H{(z) :=
X[0,1/2)(%) = X{1/2,1)(x). Since every dyadic dilation and translation
Hy j(z) = 2¥2H(2%z — j), k € N, j € Z, of the Haar function is
supported either in [0,1] or in R\ [0,1], the family {xjo,1)} U {Hx,; |
k €N, 0 <j <2k} forms an orthonormal basis for Ly([0,1]). The Haar

Received August 31, 1996. Revised February 17, 1997.

1991 Mathematics Subject Classification: 65D15, 65T20, 68U10.

Key words and phrases: Wavelets, wavelet decompositions.

The author is supported by Korean Ministry of Educaticn through Research Fund
BSRI-96-2448 and by Hanyang University Research Fund.



428 Dai-Gyoung Kim

wavelet is sometimes satisfactory in image compression applications. For
instance, DeVore, Jawerth, and Lucier [8] have made a success of the
compression of any image with spatial discontinuities in intensity. How-
ever, working on such applications as image compression (e.g., for motion
picture) requiring high compression ratio, and as numerical solution to
differential equations, we need to use smoother wavelet bases.

The expansion with smooth wavelets to a function on the interval usu-
ally suffers from artificial boundary effects (such as Gibbs’ phenomenon),
poor convergence at the boundaries, and redundant wavelet tails. Many
researchers ([4], [15], [2]) have suggested a construction of (orthonormal)
wavelet bases on [0,1] to avoide the drawbacks. From a practical point
of view, their constructions also have still a common disadvantage (that
needs a precondition processor to reduce Gibbs’ phenomenon). This pa-
per particularly considers the constructions of [4] and [15] and discusses
their advantages and disadvantages. In order to overcome the disadvan-
tages while keeping the advantages, this paper suggests a new construc-
tion based on the discrete type of Whitney extension and biorthogonality
near the boundaries.

This paper is organized as follows. In §2, wavelets and multiresolution
analysis of La(R) are summurized. Also, to gear up our construction,
we briefly review from [3] biorthogonal wavelets. 1n §3, several examples
of orthonomal wavelet bases on [0,1] are described. In certain sense,
[4] and [15] have handled the canonical case, so that we consider their
constructions and point out their disadvantages. Futhermore, a new
construction of wavelet bases on the interval is suggested to overcome
their disadvantages. Finally, in the appendix, proofs of our propositions
are collected.

2. Wavelets and Multiresolution Analysis on R

Wavelets are usually constructed within the framework of multires-
olution analysis, which was first introduced by Mallat [14] and Meyer.
For wavelets constructed by other methods than multiresolution analy-
sis, we refer to [10]. In this section, we review wavelet decompositions
for Lo(R) in the framework of multiresolution analysis. In addition, we
briefly review from [3] biorthogonal wavelets for Ls(R).



Wavelets on the unit interval 429

2.1. Multiresolution Analysis

Starting with a single function ¢ € Ly(R), we form the shift invariant
space

(2.1) V= Vo = span{¢(- —j) | j € Z},

where the closure is in Ly(R). By dyadic dilation, we also form a scale
of the space

(2.2) Vi ={f(2*)|feV}, keZ

A multiresolution analysis of Ly(R) is defined as a sequence (Vi )xez of
the closed subspaces of Ly(R) with the following conditions:

(2.3) (i) Vi C Vi,
(i) U Vi = La(R),
(i) () Vi = {0},
kez

(iv) {¢(- —7)} ez forms an Lp-stable basis for Vj.

Here, the (iv) means that there exist positive constants C; and C, such
that each S € V has a unique representation

1) S=> ciol-— i),
JEZ

(i) CrlSlr,m < (Z!ijz) < CollS

i€z

L2(R)-

The conditions (2.3)(ii), (iii) allow us to approximate a given function
fin Ly(R) by a function in each Vj. Let Py be the orthogonal projector
from Ly(R) onto V. By dilation, let us define the orthogonal projector
Py from Lo(R) onto Vj. It follows from (2.3)(ii), (iii) that each f € Lo(R)
can be represented by the series

/= Z(Pk+1f —Pif) = ZQkf, Qi =Py — Py

keZ keZ
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because the partial sums, P, f —P_,, f, of this series tend to f as n — .

The generator ¢ of V is called the scaling function of the multireso-
lution analysis. It follows from (2.3)(i), (iv) that ¢ satisfies a two scale
difference equation called the refinement equation:

(2.4) Z a; o2z — j)

JjEZ

for a certain sequence (a;)jez € l2(Z). This equation plays a crucial
role in wavelet theory and applications. Several scaling functions can
be constructed and characterized through the equation (2.4) with cer-
tain conditions on the coefficients (see [7] for example). For a sufficient
condition on ¢ for multiresolution anaysis, we refer to Jia and Micchelli
[11]. The main result of [6] is the existence of a scaling function with
a compact support and arbitrary regularity, where their integer shifts
form an orthonormal basis for V.

2.2. Wavelets

Let Wy be the orthogonal complement of V, in V;, that is, V; =
Vo © Wo, where @ denotes the orthogonal direct sum. Also, let Wy be
the dyadic sacle of Wy. Then, it follows from (2.3) that

(2.5) =P we.

keZ

A generator function ¢ of Wy is called the orthogonal wavelet if the
integer shifts ¢(- — j) form an orthonormal basis for Wy. In this case,
the normalized and scaled functions ¥y ; = 28/2¢(2% . —3) form an
orthonormal system for Ly(R) by (2.5).

Notice that, in general, the integer shifts of a generator of W0 are not
orthogonal. For instance, if the shifts of ¢ form an Ly-stable basis for
Vo, then the o4 ; form an Lo-stable basis for Ly(R). Instead of global
orthogonality, they always possess orthogonality between dyadic levels

cf. [11]),

/ Y jr jrdr = 0, k#£4.
R

Such a generator function 1 is called the prewavelet.



Wavelets on the unit interval 431

Prewavelets can be obtained by the formula (cf. [11], [14]):

Yo=Y (1Y E5 (2 —j), with pji= /¢ ¢(2y — j) dy.

JEZ

By setting ¥ = 1/ > Beanz V(- + B) (- + ﬁ) one sees that every f in
Lo(R) admits a wavelet decomposition

= (fms) Yy

k,jEZ

Also, there are different generalizations of orthogonal wavelets (e.g.,
biorthogonal wavelets).

A simple example of wavelets is the Haar function derived from the
characteristic function of [0, 1], = x[0,1)- This is a special case of com-
pactly supported orthogonal wavelets. Compactly supported orthogonal
wavelets with arbitrary regularity have been constructed by Daubechies
[6]. The generator ¢ = n¢ associated with given integer N in [6], satisfies
the refinement equation

AY
(2.6) $lz)=v2 > hjé(2z - i)
j=-N+1

with 2N nonzero coefficients (hj)ﬁ-v:_N 41 satisfying certain conditions.
Also, the wavelet ¥ = nip associated N is defined as

]\T
(2.7) P)=v2 Y g2z - )
j==—N+1
with g; = (—l)jhl_j.

An important property of Daubechies’ wavelets is the vanishing mo-
ment condition:

(2.8)
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where mg(§) = % Zg:* n+1 hne™ 1" s the trigonometric polynomial
associated with (hj)év:qvﬂ- Since the functions ¢(- — 7), j € Z, are
linearly independent, (2.8) is equivalent to the fact that any polynomial
of degree less than NV can be written locally as a linear combination of
the ¢(- —3) (cf. [9]). Thus, the spaces Vj locally contain the polynomials
of degree less than N. Further, since 1 is orthogonal to all the o —J)

¥ has the vanishing moments up to order N — 1; that is,

)

(2.9) /rlw(x)dxzo, [=0,---,N - 1.

Equivalently, the coefficients k; satisfy the sum rule:

(2.10) > (~1ithy=0, 1=0,--- N -1
j=—N+1

We shall implicitly use the sum rule for our construction in §3.3. Notice
that supp ¢ = suppy = [-N+1, N ]. This is the minimal support under
the constraint that mg has a zero of order N at £ = m. The regularity
of the ¢ and % increases linearly with N; indeed, Daubechies has shown
that for large N, ¢, ¢ € C*N with = 0.2 (cf. [6], [7]).

2.3. Biorthogonal Wavelets

Biorthogonal wavelets initially start from a subband filtering scheme
with exact reconstruction using synthesis filters different from analysis
filters (cf. [3], [7]). Such a subband scheme with two filter coefficient

sequences (h,,), (h,) under certain conditions gives two scaling functions
¢, @, respectively that satisfy the biorthogonality condition

(2.11) (@(- = 5),0(- —n)) =6,

and the refinement equations

(2.12) $(@) =D had(2z—n), d(z) =Y had(2z - n),
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where d; , is the Kronecker delta. These two filters (hy,), (k) give two
wavelets 1, ¥ through the equations

V(@)= 9622 —n), (@)= Gud(2z — n),

where g, = (=1)"h1_p, Gn = (—1)"hi_n. Then, by (2.11) the functions
Yk, 5, Vi 5 satisfy the biorthogonality condition

<wk,j7 ,(Z;k’,j/> = 5k,k’6j,j’ .

The conditions (2.11), (2.12) (cf. [3]) allow us to have two sequences

of nested subspaces (Vi)icz, (Vi)kez of L2(R) such that

O0—---CcViycWVocViC--- - La(R),
0—*"-C‘7_1C‘70C1~/1C---—>L2(R),

with Vo = span{¢q ; | 7 € Z}, 170 = span{d?o,j | 7 € Z}. In this case, Wy,
is a complement of Vi in Vi y1; that is, Vi1 = Vi@ Wy, where & denotes
the (not necessarily orthogonal) direct sum of vector spaces. Moreover,
Wi is generated by the dyadic dilation of /. The same is for I’/lvfk. Instead
of the orthogonal complement, we obtain V, 1 Wk, Vk 1 Wy.

As a consequence, we have two nonorthogonal decompositions of Lo (R)

Ly(R) = P Wi = --- W _16WodWi© -,
keZ

Ly(R) = @Wk = BW_1BWedWid -
keZ

In addition, we can write f € Ly(R) as

F=d e hg =3 (ki) g

k,j k.3
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or for any integer kp,

f= Z o Bro i) Bhos + D > F v )k,

k >ICO j

Z f ¢ko,_7 (pko,j + Z Z f Wk,5 wk]
J

k>ko 39

Moreover, the families {¢i ;}« ; and {i’k,j}k,j are dual Ly-stable bases
for Ly(R) (see [3] and [7], for detail). In this case, the functions v, ¥
are called biorthogonal wavelets. For various examples of biorthogonal
wavelets, we refer to [7].

The biorthogonal wavelet decompositions have an advantage because
there are flexibilities to choose the synthesis wavelet 9 and the analysis
wavelet 1. For instance, we can choose the wavelets 1, ¥ to have differ-
ent regularity properties and vanishing moments (cf. [7]). We shall use
this advantage for our construction. Both the regularity of the synthesis
wavelets and the vanishing moments of the analysis wavelets are impor-
tant in applications (see Antonini et al. [1], for come experiments and
discussions).

3. Wavelets on the Unit Interval

There are naive approaches to constructing wavelet decompositions
on [0,1] (cf. [4], [7]). For instance, given f defined on [0,1], one can
set f(x) = 0 outside [0,1], and just apply the standard wavelet de-
compositions on R. This approach has two major problems. The first
problem comes from the artificial discontinuities in f at 0 and 1. Since
a discontinuity is usually reflected by large wavelet coefficients at fine
scales, the artificial discontinuities introduce extra wavelet coefficients
near the edges even if f itself is very smooth on [0,1]. Therefore, the
regularity of f can not be characterized by the wavelet coefficients un-
less f is compactly supported in [0,1]. The other problem is that this
approach uses too many wavelets. At a fine scale, say k, the supports
of 28+ L —1 wavelets ¢ ,; intersect [0, 1], where L is the support width
of a given wavelet 1. This fact is somewhat unsatisfactory in practical
applications such as image processing, where images typically consist of
2" % 2™ pixels (7 < m < 11).
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To resolve these drawbacks, many authors [4], [15], and [2] have de-
veloped wavelets on [0,1] that generate an analogous multiresolution
analysis on [0,1]. In this section, we briefly describe the orthogonal
wavelet bases developed by [15] and [4] for later reference.

Since Ly([0, 1]) is not invariant under translations and dilations, there
would be some changes in the definition of multiresolution analysis for
L5([0,1]). The conditions (2.1), (2.2), and (2.3)(iii), (iv) of multireso-
lution analysis are evidently relaxed. One starts from an initial closed
subspace VI of Ly([0,1]) for a certain level kg > 0 and investigates

closed subspaces VkQ only for k£ > ky such that

Vi v, and | Vi = Ly([0,1]),
k>kg

where the closure is in L3([0,1]). To obtain an analogous condition to
(2.3)(iv), one develops an La-stable basis for the spaces V! consisting of
a finite set of suitable dyadic translations ¢y ; of original scaling functions
¢ on R and a finite set of some special functions adapted to (and localized
at) the edges. Once such subspaces V| and their bases are found, the
orthogonal decomposition of Lo ([0, 1]) is obtained; that is,

Ly([0,1]) = Vil © (GB W,?), Vi =Veewd, k> k.
k> ko

Here Wl is also generated by suitable dyadic translations Vi, of original
wavelets ¢/ on R and some special functions adapted to the edges.

3.1. Meyer’s Construction

The approach above was first used by Meyer [15] with Daubechies’
scaling function ¢ = ¢ and the wavelet ¢ = pip. By restricting the Vj
to [0, 1], one obtained the closed spaces

V& ={g€La([0,1])) | g = flioa), [ € Vil}, k>0

that form a multiresolution analysis of L ([0, 1]) (cf. [15], [7]), where f|q
is the restriction of f on a set 2. With this setting, one [15] proved that
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the restriction of the functions ¢ ; to [0,1] gives a basis for V, and
then orthonormalized those by the Gram-Schmidt process (cf. [7]). The
main advantage of Meyer’s construction is that the resulting wavelets are
unconditional bases for the Zygmund space C7([0,1]) for v < s, where s
is the regularity index of the standard wavelet.

However, Meyer’s construction has a couple of disadvantages in a
practical point of view. Among the restrictions of the ¢ ; to [0,1],
there are some that have small tails. Hence, the collection of the re-
strictions ¢k’j|[071}, although a basis, is almost linearly dependent. As

a result, the matrix associated with a change of basis from ¢kvj‘[o.1} to
the corresponding orthonormal basis, is ill conditioned for N > 3 (the
condition number is indeed very large when N is large) (cf. [4]). This
fact results in some difficulties in the computation of the adapted fil-
ter coefficients near the edges. Further, since supp n¢ = [-N + 1, N],
we have dim(V$) = 2¥ + 2N — 2 and dim(W?) = 2*. This imbalance
between VkQ and W,? is inconvenient in applications.

3.2. Cohen et al.’s Construction

Cohen et al. [4] have developed a different construction that over-
comes the problems above. Their main idea is to adapt the ¢ ; near the
edges so that polynomials of certain degree in [0, 1] can be reproduced.
For a brief description of their construction, we consider a dyadic level
fine enough so that

supp ¢k, Nv—1 = [0,27 % (2N — 1)] c [0,1/2].

Let ko be the smallest such k (or 2% > 2N ). Then, the functions ¢y ;,
k > ko that are nonzero around 0 and 1, do not interact with each other,
so that special functions at the edges can be defined independently.

First note that Daubechies’ wavelets 1 = x4t satisfy the vanishing
moment condition (2.9) up to the order N — 1. This is due to the fact
that the scaling function ¢ satisfies the Strang-Fix condition [9]

(3.1) (i) #0)=1, ¢(2rj)=0, jezZ\{0}

(ii) D"¢(27j) =0, jeZ\{0}, ir|]<N.
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Then the spaces V), contain the space Py of polynomials of total degree
less than N. In particular, each monomial z¥, 0 < v < N — 1 admits
the representation

To modify the property above on the interval [0, 00), one employs the
following N edge functions defined on the interval: for 0 < v < N —1,

2N -2

HOESY <Z>¢(w+n—N+ 1).

n=yv

These edge functions ¢ have supp ol =1[0,2N —1— v] and satisfy the
following properties (cf. [4]):

(i) ¢l are linearly independent,
(ii) ¢ are orthogonal to the ¢0,,3 >N,

(i) {eLNtu {#0,5}52 5 reproduces the space ’PN|[0 co)?
3.2 ,
(3:2) (iv) there exist constants @y, by such that

3N-2-2v

pu(@) = el + > buo(2a—1).
=0 I=N

Then, since | J, ¢z span{¢y ; | 5 > N} = Ly([0,0)), by the equation (3.2)
(iv), the spaces

Vi =span[{pL(2*-) |0 <v < N —1}U{¢p; [ j > N}]

form nested subspaces in Ly([0, o)) such that VX' — Ly ([0, 00)) as k —
<.
Applying the Gram-Schmidt process to the o2 0 < v < N -1
(starting from N — 1 and working down to 0 to keep their minimal sup-
ports), one obtains orthonormal functions ¢JL, Jj=20,--- N —1, with

supp quL =[0,N+j]. If d)ﬁ,j(:v) = 2"’/2(;5]1-’(2’“3:) are defined, then the
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family {éx; | 7 > N} U{¢f; | 0 < j < N — 1} forms an orthonormal
basis for the VkL. In addition, the functions qS,I;’ j satisfy the properties
(3.2)(iii), (iv) (that are preserved through the Gram-Schmidt process).

For the case of the interval (—oc,0], the construction on [0,00) can
be analogously repeated with the reflected coefficients h¥ = h_, ..
This gives the functions qbﬁj(x) = 2’“/2¢f(2k$), j=-1,---,—N with
supquf' = [j — N + 1,0], where d)f(x) = (q’>#)fjl_j(-a:), with h¥ =
hent1

Now, on the interval [0,1], for £ > ko one chooses adapted scaling
functions qbg,m(ac) = (bﬁ,m(w), m = 0,---,N — 1, at the edge 0 and
¢;1c,z(33) = QSﬁl_Qk(:c ~1),l =2 —-N,-.. 28 — 1, at the edge 1. Then,
together with the ¢, 7 = N,--- ,2F — N 4+ 1, the adapted scaling
functions constitute an orthonormal basis for the 2%-dimensional space
VkQ that contains the space PN)[O,U'

By the same way as the construction of the scaling functions on the
interval, one chooses adapted wavelets ¥2, (z) = w,ﬁm, m=20,---,N—1,
at the edge 0 and ¥} (z) = @D,fl~2k(w ~1),l=2F—- N, ... 2% _1 at the
edge 1. Furthermore, together with the ¢y ;, j = .V, --- , 28 — N +1, the
adapted wavelets at the edges constitute an orthonormal basis for the
space W,? Then, the family

{Pro,jtien, U ( U {%,j}jeA;)

k> ko
is an orthonormal basis for Ly([0, 1]), where

go,j fOI‘j = 0’... ,N__ 1’
@kg,j = ¢k0,j f()r] i ]\[7 ,2160 ___N_ 1’
¢1 j forj::2k0—Na.”’2k'—1a

1/}2,] fij:()’...’N_l,
Wk’]: ’lr/}k,] fOI‘j:N’...’Qk___N_l’
Tb;’j for j =2 - N... 2k _1,
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and Ay = {0,---,2F — 1}. In other words, any f € Ly([0,1]) admits a
wavelet decomposition of the form

F= ) (£ i) Bros+ O, > (F W) Uy

J€AK, k>ko j€EAx

Also, this wavelet basis is an unconditional basis for the space ([0, 1])
for v < s, where s is the regularity index of the standard wavelet on R;
that is,

fec(0,1])) if and only if |(f, ¥ ;)| < C27kO+1/2)
QJ

where C' is independent of k > ko and j € Ax (cf. [4]).

3.3. Wavelets on the unit interval with boundary treatment

As reported in [4], there have not been yet found a construction of
orthonormal wavelets on [0, 1] whose fast algorithm leads simple polyno-
mial sequences with a certain degree (such as {1,...,1}or {1,2,3,4,...})
both to zeros by its high pass filter (associated with wavelet) and to
themselves by its low pass filter (associated with scaling functicn). In
applications, such a fast algorithm is required. For instance, in view
of image and surface compression applications, the fast algorithm cor-
responding to a wavelet on R is itself a lossless compression algorithm.
This enables us to design a lossy compression algorithm with higher com-
pression ratio. Then, working on [0, 1], we wish to construct a lossless
compression algorithm preserving the same compression ratio at least for
the polynomial sequence data as that of the standard algorithms on R.
In this sense, Cohen et al. s construction is unsatisfactory, because their
algorithm does not assign the constant sequence {1,...,1} to zeros (near
the edges) by its high filter (cf. [4]). The same problem arises for higher
order polynomial sequences near the edges. In practice, this drawback
develops a kind of Gibbs’ phenomenon near the edges (cf. [13]). To over-
come this disadvantage, one [4] adds preconditioning transforms to the
analysis and synthesis steps near the edges. However, these introduce
extra steps.

The objective of this section is to provide a construction of wavelet
bases on [0, 1] that generate a good fast algorithm avoiding the disad-
vantage above and characterize smoothness spaces such as the Zygmund
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space C7([0,1]), v > 0 or the Besov space B (Ly[0,1]). To develop our
construction, we employ Daubechies’ scaling function ¢ = n¢. Here, we
relax the orthogonality near the edges and require only the biorthogo-
nality condition near the edges to obtain such a fast algorithm instead.
Of course, our construction can be applied equally well to the standard
biorthogonal wavelets on R. The basic idea behind our construction is to
design the filter coefficients near the edges (associated with the scaling
function and wavelet) to keep the sum rule (2.10). This idea is different
from that of Cohen et al. [4].

Let ¢ = No, ¥ = N9 and set kg to be the positive smallest integer
such that 250 > 2N . Recall that the ¢ satisfies the Strang-Fix condition
(3.1) of order N. For our construction, we then choose the polynomial
Pr(x) of degree r such that for each k € Z,

(3.3) P.(z) = Z n"(25z — n), r=0,---,N -1,
nez

where Py = 1.
To modify the property (3.3) on [0, 1], we consider the restriction of
(3.3) to [0,1]; that is, for k > kg

Pr(x)]{oyl]z <Z + Z + Z )nr¢(2km—n)|[07”,

n€AF  neAl  neAf
where

Ay ={neZ|-N+1<n<N-1},
Ab={neZ|N<n<2*-N+1},
Af={neZ|2*-N<n<2*+N-2}

Since 2k > 2N, the supports of the (2% - -n), n € AL, AkR, do not
intersect each other. Also, the supports of the ¢(2% - —n), n € Al are
all contained in [0, 1]. We then keep the ¢(2¥ - —n), n ¢ Al for interior
functions; and adapt the ¢(2% - —n), n e AL, Af* for left edge functions
oL and right edge functions ¢%, v =0,--- N — 1.
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Let us focus only on the construction of N left edge functions near 0,
so that we can work on the half interval [0,00). N right edge functions
near 1 can be analogously considered on the half interval (—oc,0]. We
then define the NV edge functions compactly s >ported on [0, 00) by

¢y (z) = Z §v19(z | ¢(m—u)|[0,m), 0<v<N-1
-N+1
Here for each I = —N +1,..., -1, xi; := (£,,) 7! is the solution of the
system
Ax = 1bl,

where A is a N x N Vandermonde matrix with entries a; ; = (i — 1)7~1,
1<4,j7<N,and b; = (b;;); with b;; = I*'"1, 1 <i < N. Then, by a
simple computation, we obtain

N-1
(3.4) Pr(@)] g oy= D_n"h(@) + D n¢z—n), r=0,---,N-1,
n=0 n>N

for the polynomial P, in (3.3). Moreover, the N edge functions ¢~ satisfy
the following properties: '

PROPOSITION 3.1. The edge functions qb v=20,--,N—1, are
linearly independent. The family {¢L}N=1 U {(j) - ])} ° N generates
the space Py |[0 . Further, there exist constant< Hfl, hy’j such that

N+21
(3.5) \/_ZHl¢l 22) +\/_Zh]¢2:c—])
J=N
PRroor. For a proof, see §A.1 of Appendix. O

In [13], we present the filter coefficients H lf I h,]j’ , for the case N = 2, 3.
By dilation, let us define ¢f () := 25/2¢L(2%z), v = 0,--- | N — 1
and the space V" by

Vil = span[{qbﬁ:u |0< v <N-1}U{gw;|j>N}|.
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Then by Proposition 3.1, the {¢x ;};>n U {¢k Lo forms a basis for

the V;F'. Moreover, since | J, span{¢s ; | 7 > N} = Lo([0, ), the spaces
ViE, k € Z form a nested sequence in L2([0,00)) such that

0— - CcVh cV¥cvlc - = Ly0,00)).

We next develop the dual functions corresponding to the ¢f 5 0 <
v < N -1, and ¢ ;, 7 > N. First note that the interior functions
¢(- —3j), j = N —1 form orthogonal functions with support inside [0, o0)
and are orthogonal to the ¢(- — m[o,oo)’ !l < N —1. Then we may choose

their dual functions as éj =¢(- = j), for j > N. Also, since
dh_1(z Z En— ll¢$“l)’ ytole =N +1),
l=—N+1

we may choose qgfv 1= qb( - —N+1). It remains to develop dual functions
to the ¢Z, for v =0,--- , N — 2. We define functions (;35 by

3N—4
> mwd(2z 1),
I=N-1
where foreach v =0,--- N —2, 7, := (m,,,)f:N];f] is the solution of the
following system:
Bx =c¢,.

Here, ¢, = (c;, )32 with ¢;, = 6,11 and B is a (2N — 2) x (2N — 2)
block matrix generated by the following N x 2 matrix:

hnv-1  hn
V2 | hv—3  hn-2
L=Y2{" .
2 . .
honir h_nyo2
so that for 1 < 4,5 < 2N -2,
o[ /2SS [3/2] + (N + 1),
B otherwise.
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where [z] is the smallest integer greater than or equal to z. For instance,

when N =2
B = Q hi o he,
2 \hoy1 ho )’
when N =3
ho hs O 0
B_Y2|ho hi hy ks
2 \hog hoy he My ’
0 0 h_o h_,
and so on.

We need to show that the B is non-singular. It is sufficient to show
that the column vectors Ly, Ly of L are linearly independent. We recall
that the trigonometric function mg(£) = \/—15— Zf::_ N1 hne € has a
zero of order N at £ = 7 (see (2.8)); equivalently, the coefficients h,,
satisfy the sum rule (2.10):

N
Z (=1)"nh, =0, s=0,1,- - ,N—1.
n=—N+41

This implies that for N > 2 (N=1 gives the Haar wavelet case),
(3.6)

Z

N-1
(i) hn_2iy1 = Z h -2, for s=0,
i—0

=0

1

(i) [(—1)1"‘1(1\1 —2i — Dhn_giy1 + (=1)Y (N = 20)hy_2:i| =0,

i

=z

Il
<]

for s=1.

Now, assume that L; = AL, for some scalar A\. Then Ay _g;21 = Ay _2
for i =0,--- ,N — 1. So, we have A = 1 from (3.6)(i), and then

N-1 N-1
Z hn_2iy1 = L hn_2:=10
220 i::O
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from (3.6)(ii). On the other hand, since mg(0) = 1, we obtain

\/_— Z hn—ZhN 21+1+ZhN 2%-

—N+1

This is a contradiction.
Thus, the ¢%, v = 0,--- N — 2 are well defined. Moreover, the
following proposition shows that the ¢~ are dual functions to the oL

PRrROPOSITION 3.2. The functions gbu, v=0,---,N —1, are linearly
independent. Also, the qu satisfy the following biorthogonality:

(i) (/. ¢L) =08, for 1=0,---,N—1,

3.7 . -
&0 i) (e(- =0),¢,) =0=((- —1),6;) for I>N.

ProOF. For a proof, see §A.2 of Appendix. O

By dilations, we define qgﬁ’u(x) = 2k/2d~>,lj(2kx), v=0,---,N—1, and
the space 1~/kL by

Vi :=span[{¢f, |0<v < N -1} U{dw; | j > N}].

Then, by Proposition 3.2, together with the ¢ ;, 7 > N, the qﬁ,I;L form

a basis for the V;L'. Moreover, since Uk span{¢x ; | 7 > N} = L(]0, 00))

and qﬁk,,j € Vk+1, the V;X', k € Z form a nested sequence in Lo([0, 00))
such that

0—---cVh cVE eVl c - = Ly([0,00)).

So far, we have obtained two families {¢Z}Y ' U{¢; } s>~ and {@L} N1y
{¢;};>n~ that generate two nested sequences of 2*-dimensional spaces

Vil Vi, (k > ko) converging to Ly([0, 00)), respectively.
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We shell next consider the complement space Wl of Vit in Vi ‘1

(same for the Wy); and find biorthogonal wavelets. Let us first define
2N functions as follows: for each v = 0,--- | N — 1,

N-1
9 (z) = V2 ¢} (2z) Z V201(2-), 1) ¢f (),
=0

V267(22) - 57 (V2L (2 ), oF) 8 (2)
g (x) = forV—O,---,N—Q,
@('—N—l) forv =N - 1.

Then, from the relations (2.6), (2.7), and (3.7) it follows that for v =
0,---,N—landj>N,

(i) (g, ¥(- —4)) = 0= (G, v(- —j)).
Moreover, these 2N functions g,, ¢, satisfy the following properties:

ProproSITION 3.3.

(1) <qV’¢ >_0_<quaq5#/7 OSV,USN"I,
(39) (11) <qv,qu> = 61/,/u 0<ry,p <N -2,

(i) {gnv-1,Gv-1) = (-1)" "Ry

PROOF. For a proof, see §A.3 of Appendix. L

Using the q,, ¢,, we may obtain biorthogonal wavelets on [0, oc) by
setting

1;5:61/7
q. for0<v <N -2,

1 N-2 ~
w}e — m(q]v_l — Zl:O <qN~ 1 QZ>ql)
forv=N-1.
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By simple manipulations, the 1z, zﬁf; satisfy (3.8), (3.9)(i), and
<w57’&£>:6u,u, OSV,HSN“].

So, the v’ are linearly independent in W{ (same for the ©%) by (3.9)(ii).
Thus, together with the {t0,;};>~, the 9] constitute a basis for the Wy

(same for the ¢E, W{). Furthermore, by the refinement equation (3.5),
the ¥. can be ertten as linear combmatlons of gbf and ¢g ;; that is,

there exist constants GV 9L ; such that

N+2v

IZG 160 (22) + V2 Y gl 0(2z - j)

j=N

(the same is true for the % with GV 1» 9L;). In [13], we present the filter
coeflicients Gyl, g” for the case NV = 2, 3.

By dilation, we define ,W(:C) = 2K/24L(2%z) (same for the 1/;%”)
Then the family {4, | 0 <v < N —1}U{t¢k,; | j > N} constitutes a
basis for the Wl (same for the WkL) By (3.8), (3.9), and dilation, we
then have the relations among the spaces V;F', W/, VkL, W,f as follows:

v LwWE, VELWE

The constructions of right edge functions near the 1 can be done on
(—00,0] by translation. Also, the same constructions on [0,00) can be
analogously repeated with the reflected coefficients h# = h; ,,. This
gives us right edge functions

$R(x) = (")) _.(-2), p=-1,---,~N

where ¢ is the reflected function of ¢ with respect to % The same is
true for the ff, qgff, 1&5 (note that most properties about ¢ are invariant
under reflection).

Let us now return to the work on the interval [0, 1]. For fixed k > ko,
we choose adapted functions ¢,27 : gﬁk v =0,---,N—1at the edge 0,
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and ¢llc,u = ¢]§‘1_2k( c=1),p= 2’“—N, .. ,28_1 at the edge 1 (same for

the d)gyu, wlﬁ,u)‘ Then, together with the ¢y ;, j = N,--- , 28 —~ N 41, the

adapted functions at the edges constitute a basis for the 2*-dimensional
Q

space V;° defined by

Viti= = span({¢} , }0 5 U {br,5}3 2 N U e u}ik )

(same for the W,?) By the same way, we obtain qbk’u, ¢k:# and the
2*-dimensional space I~fkﬂ (same for the 1;2 v zﬁi o Wk ).
As a consequence, two sequences of 2’c dimensional spaces Vk and

Wk are obtained so that

Vko C Vko-H Coe LQ([O’ 1])’

Ve =VEOWE, and W 1L V2
for k > kg (same for the Vkﬂ, W,?) Therefore, any f € L2([0, 1]) admits
wavelet decompositions of the form

(3.10) F= Y (FiProg) Pros+ 3, O (F2 %) i
€8k k>ko JEA

where

{%,g for j =0, ,N -1,
= ko; forj=N,... 2k N -1
(¢, ; forj=2Fk — N ... 2k_1
(¢2,j for j =0,--- ,N -1,
Yij = Yk, forj=N,... 28 - N -1,
[ ¥, forj=2k—N... 28—,

and Ay = {0,---,2% — 1} (same for the 5k0,j7 @k,_,»).

The (3.10) provides the characterization of the space C?([0,1]), v > 0
with the family {dsko,j}j@\k U (Ukao{qlk,j}jEAk)v that is,
(3.11)  f<C¥([0,1]) ifand only if |(f,W ;3] < C2 KO*1/2)

where C is independent of k > ky and j € Ay (cf. [12]). To show the
above, we need the following proposition:
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PROPOSITION 3.4. If ¢ € C°, then the ¥y ;, k > ko, j € Ay satisfy
the following:

(3.12) Pk slwr oy < C257252 0 <r < |s]

with a constant C independent of k and j. Also, the @k,j satisfy the
following:

0 N%jllr. < C2/2,
(ii) /]va @k,j dz = 0, l’)’l <N

with a constant C' independent of k and j.

(3.13)

PRroor. For a proof, see §A.4 of Appendix. 0

The proposition above gives a sufficient condition for the characteri-
zation (3.11). More generally, for a suitable range of o, the Besov space
BZ(Lp[0,1]) can be characterized through the wavelet bases pair satis-
fying (3.12) and (3.13) (cf. [12]).

Appendix

A.1. Proof of Proposition 3.1

Since supp ¢~ = [0, N 4-v], it is clear that the ¢l are linearly indepen-
dent. Also, since the equation (3.4) holds for the polynomial P, of (3.3),
together with the ¢(- —j), 7 > N, the ¢L, v =0,..., N — 1 generate all
polynomials up to degree N — 1.

To complete the proposition, we shall derive the equation (3.5) for
functions ¢,, v =0,--- , N — 1, defined by

N-1
pu(z) = Z n"é(z — n)‘[O,oo)'
n=—N+1

Once such an equation is established for the ¢,, the equation (3.5) for
the ¢L can be obtained through the non-singular matrix A, because
%0 o5
$1 ¢f

(A.1.1) =A

$PN-1 9%—1
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Let us now show that there exist constants H,;, h,; such that for
v=20-,N~-1,

3N-2

(A.12) fzﬂum (22) + V2 Z hy, ;622 — ).

For fixed v, by using the refinement equation (2.6), we can rewrite the
¢, as follows:

N

N-1
=v2 Y n" ) hmé(2z—2n-m)

n=—N-+1 m=—N+1

3N -2
——\/_ Z (]52(1:—[) Z nhl 2,
—N+1 n=—N+1
— N-1
=2 Z ¢z —1) Y n"hion
[=—N-+1 n=—N+1
3IN-2 N—-1
+v2 Y eRe—j5) Y n'hjom
i=N n=-—N+1
=:1; + 12’

where for the second equality, we have used the facts that ¢(2z —1{) ] 01~

Ofor! < Nand h, =0forn < —N+1orn> N. Note that the term I,
is the second term of (A.1.2) with h, ; = Ef__lhﬂ nhj_on. We then
need to express I; in terms of the ¢;(2z), [ =0,--- ,N — 1.

From the sum rule (2.10), we obtain the followftng: for any integer [

0=>ﬂ;(—1)mm”hm—z~( 1)’ Z( D*n+10)"h
1) Z:(—l)"hn (2:% (Z)z"*snf*)
15 (e

tmn

/
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Dividing the sum by even and odd terms, we have

Coi:= Z(2n)"h2n_g

™

m"hmwl

()5,

Using this fact, we derive the following:

Il
bo | =
:SM

1
2 s=0

' —(-2rc,
_ (—22),, Z:; (z)(_l)szn:ny_shn_

Therefore, by substituting the above into I;, we can rewrite I; as

I, = \/EZ H, sp1(2x)
s=0

with H, ; = (—1)"**"2_"“1(”) Zg:_NH n’"sh,.

S

It remains to show the relation (A.1.1). Notice that

L ®0,—-N+1
OL .
¢1 , . 1
: = [Xi_ny1,c,Xiog, e, yeN | $0,0 )
PN -1
$o,N-1

where e; := (d;;); denote the unit coordinate vectors in RV. Since
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xi; = A~ b, we then have

G0,—~N+1 )
L ,
4 :
1
A : = [b_Nt1,7- , b1, Ay, - , An] ®0,0
N1 :
doN-1 )
%o
_ ©1
YPN-—-1

where the A, are the column vectors of the A.
Hence, we obtain the equation (3.5) for ¢ as follows:

[ #To )
¢§ :
o1 _ A O oL
(S )|
b _1 :
\‘Pl,BN—Q)

where H = (H,,,l)fxl;lo (Hyy=0forl>v);h= (hl,,j)fy:‘ol,;iNN"z; and I
is the 2N — 1 x 2N — 1 identity matrix. This completes the proof. [J

A.2. Proof of Proposition 3.2

Let us first show the (3.7)(ii). Since ¢%_, = ¢(- — N +1), the (3.7)(ii)
clearly follows when v = N — 1. We then fix 0 < v < N — 2. For each
[ > N, by the refinement equation (2.6), we have

N
p@—1)=v2 >  hnd(2z—2—n)
n=—N+1
N+21
=v2 Y hiae(2r—j).

j=—N+1-+21
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Thus, for given v, the left hand side of (3.7)(ii) can be calculated as
follows:

i N-+21
W03 =VE( S hyasz )

(A.2.1) j=—N+1+21
- 3N—4

> Tmad( - —m)>
m=N—1

\/;; min(3N —4,N+21)

= 2‘1 Z hm—2 N, v

m=max(—N+1+2,N—1)

\/§ 3N—-4
& = 7 E I —" Nm,v
m=—~N+1+2!
,) 3N—4-2]
E hnnn+2l v
-N+1

Here for the third equality, we have reduced the range { > N to N <[ <
2N —3 because if | > 2N —2, then 2l+n > 3N —3for —-N+1<n < N.
In fact, (¢(- — 21 —n),¢(2 - —m)) = 0, for m < 3N — 4. This implies
(¢p(x —1),4L) = 0 for I > 2N — 2. Notice that the last sum in (A.2.1) is
nothing but the (I + 1)-th component of the B, ; so that

{6z = 1), 0L) = (Bny )i

= (Co)i41 = Cl1,p = S141,04+1-

Thus, the left hand side of (3.7)(ii) is zero for { > N. The relation
0= (6(- — 1), ) is clear from the definition of ¢~.

Let us next show the (3. 7)( ) Notice from the refinement equation
(2.6) that (¢(- l[Ooo)’d) m))=0forj< -land N—-1<m<
3N — 4. Then, the (3.7)(i) can be reduced to the following relation:

(A.2.2) (6@ = D] jgooy @) =010y 1=0,-- N -1
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Since gglLv_l =¢(- —N+1) and suppp(- — N +1) C [0, 00), the (A.2.2)
istrueforv =N —1. Wethenfix 0<v<N-2 Forl=0,---,N—1,
the left hand side of (A.2.2) can be rewritten as

N+21

<¢(w—l)|[o,oo)’¢~’5>:‘/§< 2 had (@ =)l
j=—N-+1+21
3N-4
> nb(2 - -m)
m=N-1

/3 min(3N —4,N+21)

(A23) = 7 Z hm—2! m,v
m=max{—N+142[,N-1)

min(3N—4,N+21:
V2
- 7 Z hm—2l N ,v

m=N-1
\/5 min(3N—-4-2,N"

= 7 Z A, Tn+20,0-

n=N-—-1-21

For [ = N—1, the last sum of (A.2.3) is equal to % Zfz;?u P nt2N -2,
that is just the N-th component of the Br,. So, we have for 0 < v <
N -2,

(¢(z = N +1),9}) = (Bn)n

= (cu)]\’ =CN,p = 6N,l/+1 =0.
For 0 <1 < N — 2, the last sum of (A.2.3) is equal to
\/i N
"é‘ Z hn nn—+—2N—2,u’
n=N—-1-21

that is again nothing but the (I + 1)-th component of the Br,. So, we
have for 0 < v < N -2,

(p(x — D), éf) = 5l+1,u+1-
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This completes the proof. a

A.3. Proof of Proposition 3.3
The relation (3.9)(i) is immediate from the (3.7)(i).
To show the relation (3.9)(ii), (iii), we notice that for 0 < s < N —2

3

<x/§¢5(2->,¢3£>=<¢5 §_: Ead(2 - —1) + V262 - —v),
l=— N1
3N—-4

> mad2 - —U>

{0 for 0<v<N-2,
- 3gm\r_l,s for v=N-1.

Also, we notice that for s = N — 1,
(V2¢(2-),8(- —v)) = (V26(2 - =N +1),6(- — N + 1)}

{0 for 0<v<N-2
h_Niy1 for v=N —1.

From the observation, we can rewrite the g, as

V2 oL (2z), 0<v<N-2

a(@) = § V28K 1(22) = R X w1505 (2) — hon 16k 1,
v=N-1.

Thus, we have for 0 < v,u < N — 2,
(g, Gu) = (V205 (2-),V28L(2-))
Y (Va6 Ve 2-), 8
=0

= (V201 (2-), V265 (2
= 61/,;u
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that proves the (3.9)(ii).
Finally, when v = N — 1, we have

(av-1,d@v-1) = (@n-1,%(- — N + 1))

\/_2‘ . \/’2‘ N-—-2 B .
= ox-1(2) - 9 Z MIN-1,s05 () — hoNt108_1,

=0
B -N+D)
= (VEgk_1(2), 8 ~ N +1)

— (___1)—N+1hN

where the (3.9)(i) is employed for the third equality. Thus, we obtain
(3.9)(iii). This completes the proof. O

A.4. Proof of Proposition 3.4

It is sufficient to prove this proposition for the edge functions. From
the definitions of ¢~ and ¥, and the refinment equation (3.5), we notice
that each ¢I(c),j is a finite linear combination of ¢k+1,j|[0 1 j=—-N+

1,-+-,3N — 2 with coefficients independent of k, j (the coefficients may
depend on the matrix A and the coefficients of the refinement equations
(3.5)). So, we obtain for 0 < r < |s],

3N -2

[k slwr (o) < C Z |brr1,5lwr

j=—N-+1
< Cz(k+1)/22(k+l)rH¢(r)”L
S CQk’/ZQk’V"

where the constant C is independent of k, j (the same is true for the
Vi j)-

By the same way, the inequality (3.13)(i) can be proved. Also, the
(3.13)(ii) follows clearly from that Py |,y ;,C Vi, k > ko, and V& 1 W,
O

(0,1
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