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A FORMULA RELATED TO FRACTIONAL CALCULUS
JUNESANG CHOI

ABSTRACT. We give a formula related to fractional calculus which
may be useful in solving some fractional linear differential equations.
We also give a brief survey of the history of the fractional calculus.

1. Introduction and Preliminaries

The concept of the differentiation operator D = d/dz is familiar to
all who have studied the elementary calculus. And for suitable functions
f, the nth derivative of f, namely D™ f(z) = d" f(z)/dz"™ is well-defined
provided that n is a positive integer. In 1695, L’Hopital inquired of Leib-
niz what meaning could be ascribed to D™ f if n were a fraction. Since
that time the fractional calculus has drawn the attention of many fa-
mous mathematicians, such as Euler, Laplace, Fourier, Abel, Liouville,
Riemann, and Laurent. But it was not until 1884 that the theory of
generalized operators achieved a level in its development suitable as a
point of departure for the modern mathematician. By then the theory
had been extended to include operators D¥, where v could be rational
or irrational, positive or negative, real or complex. Thus the name frac-
tional calculus became somewhat of a misnomer. A better description
might be differentiation and integration to an arbitrary order. However,
by tradition this theory is referred to as the fractional calculus. For more
and detailed historical survey, see [1], [4], [6].

As noted in [4], in the period 1975 to the present, about 400 papers
have been published relating to the fractional calculus. The fractional
calculus have been used in many fields of science and engineering. We
give some references used in mathematics 2], [3], [5].
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More than one version of the fractional integral exists. We introduce
only one version here.

Let Re(r) > 0 and let f be piecewise continuous on (0,00) and inte-
grable on any finite subinterval of [0, c0). Then for ¢ > 0 we call

(1.1) oDV f(t) = F(l—) / (t— €)1 f(6)de

the Riemann-Liouville fractional integral of f of order v and T is the well-
known Gamma function. We also denote oD;" as D™Y. In particular
setting f(¢) = e* (a constant) in (1.1) yields

1 t
(1.2) D7edt = F_(T/_)/o (t— &) le®de, v > 0.

If we make the change of variable z = t — ¢, (1.2) becomes

eat

(1.3) D7¥edt = X0

t
/ ¥ leT%%dz, v >0,
0

which is not an elementary function. For Re(r) > 0 the incoraplete
gamma function v*(v,t) may be defined as

t
(1.4) Y (vt) = F(V;)tl"/o g e e

Thus we may write (1.2) as
(1.5) D™Ve = t¥ey* (v, at).
Since the right-hand side of (1.5) is the fractional integral of an exponen-
tial, it is not surprising that this function frequently arises in the study

of the fractional calculus. We shall call it E,(v, a),

(1.6) Ei(v,a) = tVe*v*(v, at).
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Now the concept of the fractional derivative is introduced. Let f
satisfy conditions of the fractional integral (1.1) and let u > 0. Let m
be the smallest integer that exceeds p. Then the fractional derivative of
f of order u is defined as

(1.7) Drf(t)=D™ D Vf(t)], u>0, t>0
(if it exists) where v =m — p > 0.
Suppose that f(t) = e**. Then the fractional derivative of e* of order
s
(1.8) D#e* = D™D ¥e*,
where 4, ¥ and m have the same meaning as above.
With the help of (1.6), we readily obtain

(1.9) D™E(v,a) = Ey(v — m,a) = Ey(~pu,a)
since 4 = m — v. Thus we conclude that
(1.10) D#e™ = Ey(~p,a), t> 0.
Now we introduce the concept of fractional differential equations. Asa
first attempt define a fractional differential equation, let 7, 71, -+ , 70

be a strictly deceasing sequence of nonnegative numbers. Then if by, by,
---, b, are constants,

(1.11) (D™ 4+ by D"t -+ b, DT y(t) = 0
is a candidate. But even this equation is a little too complex. We shall
impose the additional requirement that the r; be rational numbers. Thus

if g is the least common multiple of the denominators of the nonzero r;,
we may write (1.11) as

(1.12) D™ 4+ DVY 4y anDO] y(t) =0, t>0,
where

1
(1.13) p=1

q

If g=1, then v = 1, and (1.12) is simply an ordinary differential
equation. We shall call (1.12) a fractional linear differential equation
with constant coefficients of order (n,q), or more briefly, a fractional
differential equation of order (n, q).

In this note we are aiming at getting a formula which can be occurred
in solving the differential equation (1.12).
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2. Explicit representation of the solution of (1.12)
Let

(2.1) Piz)=z"+a1z" '+ +a,
be the corresponding indicial polynomial to (1.12). Let
(2.2) yi(t) = L7 {P7 ()},

where £7! denotes the inverse Laplace transform.
Then if N is the smallest integer with the property that N > ny,

yi(t), y2(t), .., yn(t),

where _
yir1(t) =Dy (t), j3=0,1,... N-1

are N linearly independent solutions of (1.12) which is well-known.
We introduce the Laplace transform method to solve the equation

(1.12). Let oy, ... ,a, with a; # a; for ¢ # j be the zeros of P(z) and
let
(2.3) A7l = DP(ay,), m=12,...,n.
But
A A A,
(2.4) Pls)=———+ "2 4.4 _ ,
§Y — (1 S§¥ — (g s —

and we can readily obtain

(2.5) £t { ! } = ia,j—lEt(ju —1,a%).

s¥ —a
Jj=1

If we make the change of dummy index of summation k& = g — j in the
sum of (2.5),

s —a

(2.6) £”1{ ! }:gaq—’“‘lm(—ku,w).
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Using (2.6) we see the inverse Laplace transform of (2.4) yields

n q—1
(2.7) yi(t) =Y Am > ol * T Ey(—kv,al)
m=1 k=0
is a solution of (1.12). Hence y2, y3 ..., yv of the solutions of (1.12)

may be constructed from (2.7).
We begin our method of solving (1.12) by recalling that

(2.8) DPEy(—kv,a) = E;(—(k + p)v, )

provided that kv < 1, which it is for k =0,1,... ,¢ — 1.
If we define e(t) as

(2.9) e(t) = qiaq_k_lEt(—ku, ad)
k=0

(where for the moment « is an arbitrary constant), then (2.8) implies
that

(2.10) D%e(t) = we(t).
For p a positive integer greater than 1,

p—1 —
_\aplktlkll

— (—ku)

(2.11) DPe(t) = aPe(t) +

Formula (2.11) is also valid for p == 0 or 1, since in these cases the
sum in (2.11) is vacuous. Thus if we write

(2.12) P(D")e(t) = (i an-pr”) e(t), ap =1,
p=0

(2.11) implies that

aplktlku

(2.13) P(D")e(t) = P(a) +\ an PZ I(—kv)
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Now if ay, ... ,a, are the distinct zeros of P(z), and if
q—1
(2.14) ej(t) =Y al 1By (—kv, al),
k=0

=1 =1
(2.15) " . o
Z Z ag)n—l—kt—l—ku
-+ Cm An_p
m=1 p=2 k=1 P( _kl/)
for any arbitrary constants ¢, C2, ... ,Cy. But since ay, ..., a, are the

roots of P(z) = 0, the first term on the right-hand side of (2.15) vanishes
and
(2.16)

n Pl ik [
P(D") [Z cmem(tJ Zan Pz t [Z cmafn_l_k] .
m=1 m=1

Thus if we can choose the ¢,, such that the right-hand side of (2.16)
vanishes, then

(2.17) yi(t) = cmeml(t)
m=1

will be a solution of (1.12).

Ignoring the trivial solution ¢; = Co = = ¢n, =0, we see that if we
let ¢, = Ay, where the A,, are given by (2 3), then we know that the
sum in brackets in (2.16) is zero. Thus

(2.18) yi(t) = > Amen(t)

is a solution of (1.12). But this is precisely (2.7). Note that in the latter
method, the role of (2.11) is important.
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If the indicial polynomial P(z) in (2.1) has a double zero at ¢, then
e(t) * e(t) is used to solve (1.12), where e(t) * e(t) is the convolution of
e(t) with itself. We also have an explicit representation of e(t) x e(t) in
terms of the E; functions, namely,

(2.19) =3 "N PR 2LE (G + kv, a)

Finally we observe that an explicit representation of DP¥e(t) * e(t) is
as important as that of DPe(t) in (2.11) in solving (1.12) if the corre-
sponding indicial polynomial P(z) has a double zero at a. Fortunately
we can give an explicit representation of DP”e(t) * e(t): For p a positive
integer, we have

DF¥e(t) x e(t) =aPe(t) * e(t) + paP™ le(t)

p—1j-1 —ky—
(2.20) Al pkat kv—1
s (k)

3. Proof of (2.20)

First we give some elementary identities needed to our purpose with-
out proof :

(31) DﬂEt ()\, a) = Et()\ — M, a).
(3.2)  D*tE(w,c) =tE(w — p,¢) + pEi(w —p+1,¢), w> 2.

(3.3) E(—1,a) = aE(0,a).

v

(34) Et(l/, a) = aEt(l/ +1, a) + F(l/ +—15




464 Junesang Choi

For convenience, let
F(pv) = DP”e(t) * e(t).

With the aid of (3.1) and (3.2) we obtain

N
P
<
!
—

F(py) = IR DPUY R (— (G + k), )

j:

]

kK)DP*E, (1 - (j + k)v.a%)}

=~
aQ .
+

-1
= QIR 2R (—(j + k + p)v, o)
k=
+prE(1—(j +k + p)v,a?)

+ (G +k)VE(1 - (j+k+p)v.a®)}.

Q

(=]
O

o,

Setting 7/ = j + p in the resulting equation and dropping the prime
on j’, we get

g+p—-14g-1

Z Zf(p,q Jk

i=p
—1g-1 q+p—1g-—1

(3.5) Z}jnp, ¢.5,k) + > > I(p,q,5.k)

where

I(p,q,5,k) =®7 I kP2 LB (— (G + k), a9)
+(J +EVE( — (§+ kv, a?)}.

Setting j' = j — ¢ in the second sum of (3.5) and dropping the prime
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on j' yields

F(pv) =aPe(t) x e(t)
—1g—1

(3.6) +ZZaq IRP=2 B (- (G + k) — 1,09)

0 k=0
+ E(j + k) +1)E(=(F + kv, o) — a“tE(~(j + k)v, o)
— G+ kWE(1 - (j + kv, a")}.
Using (3.4) we find that
i~k
L(—~(j +Fw)’
(3.7) (G+KWE(-(+kv,a?) = (j+ k)va?E(1 - (j + k)v, af)

tE(~(+ kv —1,09) = %E(—(j + k)v,a?) +

t—+k)v
CT(=( k)
Putting (3.7) into (3.6) leads to
~1p-1
(3.8) F(pv)=ale(t) xe(t) + Z Zaq I=kP=2 B (—(§ + k)v, ).
k=0 j=0

Setting j + k = k' in the summation part of (3.8) and dropping the
prime on k’, we obtain

(3.9)

p—lg-1 _ p—1lg+j—1

DN ot IR (i R,ad) =D Y @t TR E, (<, o).
7=0 k=0 J=0 k=j

Now we also separate the inner sum in the right side of (3.9) into
three parts:

q+y-1 g—1
Z QR P2E (kv %) =) o?FP2 R (—ky, 09)
' k=0
(3.10) q+j-1 j=1
+ Z 4 PTIE (—ky,a9) = Y 08P (—ky, a9).

k=q k=0
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Setting k — ¢ = k' in the second sum of the right side of (3.10) and
dropping the prime on k' with the aid of (3.4) and (2.9) yields

qt7—1 =1 t—kU—l

(3.11) Z aq—k+p_2Et(—-kV, QQ) — ap—le(t) + Z a~k+p—2ﬁ:_ky).

Finally putting (3.11) into (3.9) and considering (3.8) leads to the
desired result (2.20).

We conclude this note by giving some special cases of (2.20). Setting
p=1, 2,3 in (2.20) with 1/T'(0) = 0, we obtain

D¥e(t) * e(t) = ae(t) * e(t) + e(t),

(3.12) D¥e(t) x e(t) = o®e(t) * e(t) + 2aelt),

—pr—1

D¥e(t)  e(t) = a’e(t) * e(t) + 3oPc(t) + It*<

—I/).
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