Comm. Korean Math. Soc. 12(1997), No. 2, pp. 467-478

A NONLINEAR GALERKIN METHOD
FOR THE BURGERS EQUATION

SUNGKWON KANG* AND YONG HooN KwoON**

ABSTRACT. A nonlinear Galerkin method for the Burgers equation
is considered. Due to the lack of the divergence free condition, the
nonlinear term is treated differently compared to that of the Navier-
Stokes equations. Strong convergence results are proved for the non-
linear Galerkin method.

1. Introduction

Nonlinear Galerkin methods have been developed for nonlinear partial
differential equations such as the Navier-Stokes equations describing the
motion of incompressible viscous fluid flow from the computational point
of view [2,4,5,7]. The methods focus mainly on treatment of the exchange
of energy between the low and high mode components of the flow. It is
computationally inefficient to allocate as much computing resources to
compute the small scale component carrying little energy as we do with
the large scale component of the flow.

The usual Galerkin methods project the governing system to a finite
dimensional one and put the computing efforts equally on the finite di-
mensional system regardless of low or high frequency modes. On the
other hand, the nonlinear Galerkin methods decouple the system into
the low frequency modes and the high frequency ones, and treat them
separately. Nonlinear Galerkin methods compute an approximate so-
lution on the high frequency mode space and plug it in the dynamics
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represented by low frequency modes. By doing so, the two separated
systems (low and high frequency systems) have much less computing di-
mensions than those of Galerkin methods, and, accordingly, save much
computing times for solving the given system of equations. Specifically,
Jauberteau, Rosier and Temam [4] saved 30-40 % computing time for the
two-dimensional Navier-Stokes equations with space periodic boundary
conditions compared with the classical Galerkin approaches.

The Burgers equation is a one-dimensional simple model describing
fluid flows such as traffic flows, supersonic flow about airfoils, acoustic
transmission and turbulence in hydrodynamic flows [1,3]. In this paper,
a nonlinear Galerkin approach for the Burgers equation with Dirichlet
boundary conditions is considered. However, the equation with general
boundary conditions can be treated by similar analyses using superposi-
tions. Recently, Shen and Temam (7] analyzed error bounds for a version
of nonlinear Galerkin methods for the Burgers equation using Chebyshev
and Legendre polynomials. In this paper, we employ sine functions to
analyze strong convergence properties of the nonlinear Galerkin method.
Since the divergence free condition satisfied by the Navier-Stokes equa-
tions does not applied to the Burgers equation, we need to treat the
nonlinear term differently. We obtain stronger convergence results than
those from standard convergence analysis.

Section 2 describes the governing equation and the nonlinear Galerkin
method employed in this paper. The convergence property of the method
is proved in Section 3. Throughout this paper, all notations are standard
(8]

2. A nonlinear Galerkin approach

We consider the following Burgers equation with Dirichlet boundary

conditions.
2

(t,z) + u(t,x)%u(t,z) = t,x), t>0, e,

‘™
u(0,z) = up(x), ze€Q,

u(t,0) =u(t,1) =0, ¢>0,
where € > 0 and 2 = (0,1). To change the system (2.1) into a dynamical
system, let u(t)(-) = wu(t,-), u(0)(:) = w(0,-), H = L?(2), and V =

21 2
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H}(Q). Define an operator A in H by

dQ
2.2 Ap = ——
(2.2) b=-=
where D(A) = H3(Q) NV C V C H. Then it is easy to see that 4 is
a linear unbounded self-adjoint operator in H with domain D(A). It is
also easy to see that A is positive and closed, and that A~! is compact
(see, for example, [6]). By the first Poincaré inequality [9], we take the
norm in V as |- |y = |A? - |y. Since A~! is compact and self-adjoint,
there exists an orthonormal basis {¢;} of H consisting of eigenvectors of
A. Specifically, let

¢, ¢€D(A),

)\j = j27'('2,

(22) ¢;(z) = V2sinjmz, j=1,2,---.

Then {(Aj,¢;)}32, is a set of eigenpairs of A and {¢;} forms an or-
thonormal basis of H.

To treat the nonlinear term in (2.1). define a bilinear operator B3 from
V x V into V* by

(2.4) B(¢,¥)=¢¢', ¥ eV,

where ' = 2145 and V* is the strong dual space of V' with respect to the
H-norm. Then (2.1) becomes the following dynamical system
d
—u(t) — eAu(t B(u(t t)) =
25) Su(t) ~ cAu(t) + Blu(t), u(t)) = 0,
U(O) = Ug.

To write the system (2.5) as a variational formulation, define a bilinear
forma(-,"): V xV — R by

1
(2.6) a($,9) = /0 o dz, 6,4 €V,

and a trilinear form b(-,-,): V xV xV — R by

1
en  Wew =3 [ (@w) +ov) cdm aee
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Then the system (2.5) (equivalently (2.1)) can be written as

<S> bea(u,d) +bluug) =0, peV,
u(0) = up.

(2.8)

We will apply a nonlinear Galerkin method for solving the variational
problem (2.8).

REMARK 2.1. The trilinear form b defined in (2.7) is a different form
from what we can expect in the Navier-Stokes equations. This form
satisfies the zero dissipative property (2.10) and is usually taken for the
Burgers equation (see, for example, [7)).

By the first Poincaré inequality and simple calculations, we have the
following relations.

a(¢’ ¢) = (A¢’ ,l/})’

(2.9) a(y,¥) = [p[}, for all ¢ € D(A), ¢ € V,

(2.10) b(¢,%,€) +b(¢,€,4) =0 forall ¢,9,¢ € V.

Several nonlinear Galerkin methods have been reported in the litera-
ture [2,4,5,7 and references therein]. The choice of method is based on
how to treat the low energy modes. We consider a classical method for
our convergence analysis. But, our analyses can be easily extended to
other methods.

Let {¢;} be the orthonormal eigenvectors of A given by (2.3). For a
finite dimensional approximation of problem (2.8) let H,, be the linear
span of {¢; 1 H,, the linear span of {¢; ?Zmﬂ, and let P, be the
orthogonal projection from H onto H,,. Let

Um (t) = Zajm(t)¢ja ¢; € Hy,
(2.11) =

2m
an(t)= D Bim(t)es, 5 € H.

J=m+1
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Consider the following nonlinear Galerkin approximation problem.
Find a pair {um, 2z, } satisfies
(2.12)

< %um, ¢ > +ea(tum, @) + b(um, Um, P)
+ b(umazmv ¢) + b(zmaumad’) =0, ¢¢ Hma

(2.13) €a(Zm, V) + b(tum, um, ) =0, & IZTm,

In

together with the initial condition
(2.14) Um (0) = Prup.

REMARK 2.2. (i) If z,, = 0, the system (2.12)-(2.14) becomes the
classical Galerkin approximation on H,,. The existence and uniqueness
of a solution to (2.12)-(2.14) defined on a maximal interval [0, T,,) follows
standard theory of ordinary differential equations. Moreover, from the
next section, T, can be taken as +oo.

(ii) The nonlinear Galerkin approximation (2.12)-(2.14) is obtained
by neglecting the terms %zm(t) and z,,z,, in the classical Galerkin ap-
proach on H,,, U H,, from the low energy point of view.

(iii) Since (2.13) is a linear system of z,, it can be solved by an efficient
numerical algorithm.

3. Convergence analysis

In this section we prove convergence properties of the pair {um,, 2, }
obtained from the nonlinear Galerkin method (2.11)-(2.14). We use the
same notations as in Section 2. First, we have the following lemma.

LEMmmMA 3.1.

(1) \b(¢’wa£)l < |¢‘V W[V lffv, ¢')¢a€ eV.

(i) 7lum|a < |um|v < (mm) fum|a.

(111) |b(UTn7Um>£)| < (mﬂ')zlum’z] !f H> £ e V.
) |

(iv b(un‘uumvé)’ < |um|1?1 luml\E/ |§1V7 eV
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PrROOF. (i) Let ¢,v,€ € V. Then

1 1
b0 61 < 5 [ 106w + oyl do
0
1
<3 (1¢[2 19le [l s + 2|| e [¥]12 [€]14)
1 1 X1 1 1 1 1 1
< 3 (Iolv Wl 1ot etk €15 + 2113 1613 iy lel 1e1?)

<lolv I¥lv [€lv, since ||y <|-|v.

(ii) Let u,, be given by (2.11). Then we have
™ umlly =72 Y lagm()? <3 () gmO)F = fuml?
j=1 j=1
< (mm)? Y Jagm (O = (mm)? fumf?.
j=1

(iii) From (ii), it is easy to see that |Aun, |y < (mm)?|um|pr. Therefore,
for any £ € V, we have

|b(trmy iy )| < Jtgm | L3 July |10 |€] 2
1 1 1 1
< Jumlfy [um |3 [umly [Aum % €0
< (m"r)z ’umﬁf |§|H

(iv) Let £ € V. Then we have

'b(umvu'm’g)l < lum|L4 l‘u;n’Lz !€’L4
1 1 1 1
< Numlf luml fumlv €] 7 1€]2

1 2
< Jmlfy fumly €]y
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LEMMA 3.2.
(i) Jum ()5 < Jum(0)] eV, ¢ >0,
(i) Jum|r2(0,00,v) < 712=E |um(0)] 4.

(iv

)
(ill) lzmlIF(O,OO;V) < \/% |um(0)’H‘
) |2m|H < 71'g |um|H'

)

(v) (m+ 1) ’Zm‘H < ;‘17? U | U |v .

PROOF. Let ¢ = u,, in (2.12), ¥ = z,,, in (2.13), and add the corre-
sponding equalities. We then have

< g tms Um > +ea(Um, Um) + €a(zm, 2m) = 0,

since, from (2.10), b(¢, v, &) +b(,¢,¢) = 0 and hence b(¢, 1, ) = 0 for
all ¢,%,& € V. Hence, by (2.9),

1d 5

Note that for any ¢ € V, |¢|yv > 7 |@|yy. Thus, from (3.1), we have
1d
2.dt
1d
2dt

|um|?f +em? (|um[%1 + Izm’%{) <0,
[um % + en® fum |3 < 0.

Therefore, we have

(3.2) fum (Ol < [um (0)[3 72, ¢ >0,

(i) follows (3.2). To prove (ii) and (iii), integrate (3.1) from 0 to T,
T > 0. Then we have, by (i),

T T
1 9
| unf et [z dt = o () — (D))
0 0 €

1
< e ‘um(o)ﬁi
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By letting T' — oo, (ii) and (iii) follow. For (iv), take ¢ = 2,, in (2.13).
Then

€|zm|% = —b(tUm, Uy Zim).
Since z,, € Hyn,
(3.3) e((m+ 1)m)? |zm |3 < €lzm|?.
Hence,
€((m+ 1)) |zmlf < €|zmlt = | = blum, tm, 2m)]

< (m7)? [um|% |zm|H, by Lemma 3.1.(iii).

Thus, (iv) follows the above inequality. On the other hand, from (3.3),
[zmlv > (M + 1) |2, |y and [Aup |y < (mm)? |y, |1, we have

1 1
e((m + 1)”)2 Izm‘?i < 'b(“mvum’zm)l < ’um‘fﬁ] U v |AumIf1 |2m |

< (m7) [um|H [Umv [2m| 5.
Thus, (v) follows immediately the above inequality. O

From Lemma 3.2, we have the following theorem.

THEOREM 3.3. Let {um,2m} be the solution for the system (2.11)-
(2.14). Then both the sequences {u,,} and {z,,} are bounded in L>(0, 00
; H) and in L*(0, 00; V') as m — oo. Moreover, the sequence {(m+1)z,,}
is also bounded in L?(0, 00; H) as m — oo.

For the boundedness of {%um}, we have the following lemma.

LEMMA 3.4. The sequence {fum} is bounded in L2(0,00;V*) as
m — oc.

PROOF. Note that for any € € V, | < Aup,, & > | < |um|v [€]v. By
Lemma 3.1.(i), for any £ € V,

Ib(um,um,.f)’ < umlv [um|v €]V,
16(tms 2m €)| < Jumlv |2mlv €]V,
|6(2m, tm, ) < |zmlv [umlv €]y
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Since {um} and {z,,} are bounded in L?(0,00;V) as m — oo by The-
orem 3.3, < Aup,- >, b(tUm, Um, ), b(Um, Zm, ) and b(zm, Uy, ) are all
bounded in L?(0, co; V*) as m — oo, where V* is the dual space of V
with respect to the H-norm as before. Since the system (2.12)-(2.14) is
equivalent to the following ordinary differential system

(3.4)

d
'd_t‘um + eAuy, + Py (b(umyumv ) + b(zmauma ) + b(uma Zm, )) =0,

Zm = '"(EA)_I(P2m - Pm)(b(umaum’ ))a
Um(O) = PmUOa

in V*, the lemma follows. O

Finally, we have the following strong convergent results for the se-
quence {u,,} obtained from our nonlinear Galerkin approxmation.

THEOREM 3.5. For any given ug € H, the solution u,, of (2.12)-(2.14)
converges to the solution u of problem (2.5) in the following sense:

Up — u in L*(0,00; V) strongly, w.,(t) — u(t) in H strongly for all
t>0asm— oo.

PROOF. By Theorem 3.3, the sequence {(m + 1)z,,} is bounded in
L?(0,00; H) as m — oo. Thus, we have

(3.5) Zm — 0 in L?(0, 00; H) strongly as m — oo.
Hence, again from Theorem 3.3,

Zm — 0 in L%(0,00; V*) weakly,

(3.6) .
and L*°(0, oo; H) weak-star as m — oo.

Also, from Theorem 3.3 and Lemma 3.4,
(3.7)
there exists an element »* and a subsequence {u,, } of {u,,} such
that wu,,, — u* in L%(0, oc; V') weakly, and L™ (0, co; H) weak-star
d
as My — 00 ; —Um, — —u* in L?(0, co; V*) weakly as my, — oc .

dt dt
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Thus, by a standard compactness theorem [8],
(3.8) U, — u* in L*(0, 00; H) strongly as my — oo.
We now let £ € f[m be fixed and take my > m. Then
b(umka Uy s 6) - b(U'*a U*a 6)
:b(umk - U*a umka 5) + b(U*7 umka 5) - b(U*a u"v 5)
= = b(tm, —u", & Um, ) — b, &, —u*) -0 asmy — 0o .
Simiarly, b(zm, ,Um,§) — b(0,u*,€) = 0 and b(um, , 2m,,&) — b(u*,0,

£) = 0 as my — oo. Therefore, by letting my — oc in (2.12) with
m = my, u”* satisfies

(3.9) < St > tea(u',€) +blu",u", ) =0

for all £ € H,,, and by continuity, for all £ € V. Furthermore,
(3.10) Um, (0) — u*(0) weakly in H.

Since Uy, (0) = P, uo, u*(0) = ug. Thus, by (3.9), u* is a solution
of problem (2.8), i.e., u* = u. Therefore, the whole sequence {um}
converges to u in the sense (3.7), i.e.,

U, — u* in L?(0, 00; V) weakly, and L (0, co; H) weak-star
(3.11) d

as m — 00; —um — —u* in L?(0,00; V") weakly as m — ooc.
dt dt

We now prove the strong convergence of u,, — u in L?(0,00; V). From

(3.9) and (3.11), we have

1d

(3.12) a——]u!%{ +elul? = 0.

2 dt
By integrating (3.1) and (3.12) from 0 to T, T > 0,

N =

T
(1 (T =tV )+ [ (ol + fomf}) dt =0,

(3.13) .

(W)~ )ffy) + € [ 1ulfdt o

B —
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Thus, by (3.13),

1 r |
(D) ~uDf + [ (m —uft + 2l at

1 , .
=5 (lum (D = 2 < um(T), w(T) >u +u(T)[})
T
+ e/ (Juml¥ = 2 < wm,u >v +[ul? + lzm|3) dt
0
1 1
=5 um(O)[f = < um(T), u(T) >4 +35 (D)

T
+6/ (July = 2 < U, u >y) dt
0

Therefore, um — u in L?(0,T; V) strongly for all T > 0 and ., (t) —
u(t) in H strongly for all t > 0 as m — oo. On the other hand, by
Lemma 3.2, Theorem 3.3 and (3.11), we can take T' = oo, i.e., u,, — u
in L%(0, o0; V) strongly as m — cc. a
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