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ANALYTIC EXPRESSION OF HYDRAULIC
FALL IN THE FREE SURFACE FLOW OF
A TWO-LAYER FLUID OVER A BUMP

JEONGWHAN CHol, BuM IL HONG AND SUNG NAM Ha

ABSTRACT. We consider long nonlinear waves in the two-layer flow of
an inviscid and incompressible fluid bounded above by a free surface
and below by a rigid boundary. The flow is forced by a bump on
the bottom. The derivation of the forced KdV equation fails when
the density ratio h and the depth ratio p yields a condition 1 + hp =
(2—h)((1—h)?44ph)/2. To overcome this difficulty we derive a forced
modified KdV equation by a refined asymptotic method. Numerical
solutions are given and hydraulic fall solution of a two layer fluid is
expressed analytically in the case that derivation of the forced KdV
(FKdV) equation fails.

1. Introduction

We consider the waves between two immiscible, inviscid, and incom-
pressible fluids of different but constant densities in the presence of small
bump at the rigid bottom when the effect of gravity is considered (Fig.
1). We assume that the upper boundary is a free surface and the two
dimensional bump is moving along the lower rigid boundary at a con-
stant speed. By choosing a coordinate system moving with the object,
the fluid motion becomes steady. Two critical speeds are obtained, near
either one of which an FKdV for steady flow can be derived and has
been studied extensively in [1] and [2]. Forbes [3],[4] studied steady flow
of a two layer fluid over a bump numerically and found a hydraulic fall.
Shen[5] used FKdV theory to find analytic expression of hydraulic fall
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of one layer fluid. An asymptotic approach for the case of a rigid upper
boundary was developed without surface tension by Shen [6] on the basis
of FKdV theory, and with surface tension by Choi, Sun, and Shen [7].
The case of free upper boundary was studied with surface tension by
Choi, Sun, Shen [8] asymptotically on the basis of EKdV theory. In the
case considered here, when the wave speed is near the smaller critical
speed for internal wave, the nonlinear term in the FKdV may vanish
and the derivation of FKdV fails. To overcome this difficulty, a refined
asymptotic method is used to derive the Steady Modified KdV equation
with forcing term (SFMKdV) in the following form:

(A"Ig + B)772a: + Cnila:xm + Dbm = 0,
where A to D are constants depending on several parameters and b(z)
is a function with compact support due to the bump on the rigid lower
boundary. We investigate solutions of the SFMKdV, which represent
possible interfacial wave forms. By using this equation, we find the

analytic expression of Forbes’s hydraulic fall in the case that derivation
of FKdV equation fails.

Z* = H*++n*1(x*) /\/—\/—_

* -

Q" , -00 < x"<oo0 ,p* < p
* * * ) -
z" =1"(x") /\\/\/
Q7 -00 < x*< o0, p*”

* * - * * 4—/¥____
z* =-H"+b*(x™)

Fic. 1. Fluid Domain
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2. Derivation of Steady Modified KdV equation with Forcing

We consider steady internal waves between two fluids. We assume
that the two fluids are inviscid, incompressile and immiscible and have
constant but different dinsities. The fluid domain is bounded above by
a free surface and below by a horizontal rigid boundary with a bump.
The domains of the upper fluid with constant density p** and the lower
fluid with constant density p*~ are denoted by Q*t and Q*~ respectively
(Fig. 1). Assume that the small bump is moving with constant velocity
C. In reference to a coordinate system moving with the bump, the flow
is steady and moving with velocity C far upstream. Then the governing
equations and boundary conditions are given by the Euler equations as
follows:

In Q**,

*t *t
Ugw +w,s =0

*t  oxt *t, okt ot sk
uturs +wttuls = —pil/p

T P S st s wt .
wTwr FwttwlE = —pif /ptt —g;

at the free surface, 2* = H** + n7

U*+77Iy _ ’UJ*+ =0
P =0;

at the interface, 2* = 93
Pt -pT =0

*k, * ®xt A,
U g —w T =0;

at the rigid bottom, z* = —H*~ + b*(z*)
w* —bl.u'T =0,
where (u**, w**) are horizontal and vertical velocities, p** are pres-

sures, p** are densities of upper and lower fluids, and g is the gravi-
tational acceleration constant. We define the following nondimensional
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variables:

e=H/L<<1, m=¢'nf/H gy =e'n;/H" p* =p™* [gH*p*~
(z,2) = (ex™, 2")/H*™ (u,w) = (gH*") "2 (u", e tw*), p=p""/p* <1,
U=C/(gH* )2 h=H"YJH*" b(z) = b*(z)(H*" %)},

where L is the horizontal scale, H is the vertical scale, b(z) = b*(z)(H*~
€3)"1, H** and —H*~ are the equilibrium depth of the upper and lower
fluids at * = —o0 respectively, and z* = —H*~ 4 b*(x) is the equation
for the bump. Then, in terms of them, the above equations become in
0*,

(1) uy +wE =0
2 wEuE bl = /gt
(3) €2in;t + €2w:tu];t = -—p;t/pi - 1;
at z = h + eng,
(4) pt =0
(5) 6ﬁu’“hr]l:v - w+ = 07
at z = enq,
(6) €U My —w =0
(7) eul g, —w™ =0
(8) pt—p =0;
at z = —1,
w” = eub, tag9

where pt = p < p7,p~ = 1 and b(z) has a compact support.

Next, we use a unified asymptotic method to derive the equations of
m(z) and nz(x). We assume that velocity terms u,v and pressure term
p have the following asymptotic expansions:

(10) (u,w,p) = (U07w0,p0) + ﬁ(ula’whpl) + 62('&2, w27p2) + -
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By inserting (10) into nondimensionalized Euler equations and arranging
the resulting equations according to the power of €, one can easily see
that (ug,0,—p*z + ph) are the solutions of the zeroth order system of
equations and solve the first to third order system of differential equa-
tions[8]. It follows that uf,uﬁt, p,ii,z' = 1,2, 3, are all fuctions of n(z)

and 72(x) and the following equations of n; and 7, are obtained.

At z = h,

UMz — wf + G(Ufﬂlx ~mwy), —w])

+ 62(“;7711 + nlnll‘u?_z - w]tznf - Ulwzt, - wg_) - 07
and at z =0,

ueM2z — Wi + €(uy N2r — Newy, — wy )

+ 62(“2—772:5 + n2n2$ui—z - w;::zng - 772w2';: - w3_) =0.

Then we use these equations to find the equations of the free surface

m(z) and the interface ny(x). By substituting uo,uf, wit, uf,w;,wgi

into the above equations of 7; and 72, we can find the two relations
between 71 and 72 and by solving n; for 7, we obtain

(1) (uo — pe1/uo — (1 — p)/uo)n2e + €(Enanay)
+ E(F1manee + Fonoz + FaNogse + Fabz) =0

where, letting A = u3 (—00), 71 (—00) = 0,72(—00) = 0, A = (2uf — (1 —
p))/(p+ud —h), B=uo/(p+ud—h), and C = pA+1-p,

E =-C%ug® - 2Cug' — pB(—2C — C?ug? + 2A% + hA%uy? — 24) /ul
Fy=—p(C?)2 - 3C3ug?/2 — C? + A%/2 4 3hA%u5? /2 — A%)2 — A®
+ A%) fug — 3Bp(ug ' + Cug®)(3(=Ap — (1= p))/2 = C?uy? /2
+ A%/2 + hA%ug? /2 — A+ A%)2) Jup — 3C%ug? /2 — 3C3uy " /2
Fy = (14 Cug®)(A — pBug ') — M\pBug ' (2 — A + Cug? — hAug?)
F3 = — pBug ' (= A(ph® /2 + p/3) — (ugph + (1 — p)/3) + A(ph®/3)/p
+udh?/2)fug — A(ph*/2 4 p/3)ug ' — (udph + (1 — p)/3)ug "
Fy =pB — ug
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From the zeroth order term of the equation (11), the critical speeds
can be derived so that near them one has to develop a nonlinear theory
for the motion of the interface and free surface of the given domain.
uo — pA/up — (1 — p)/up = 0 implies ug — (1 + h)ud + h(1 — p) = 0,
and u§ = 1+ h =+ ((1 — k)% + 4ph)'/2. Next we consider the coefficients
of nmz term in the first order terms of the equation (11). If E is not
zero, the same result as in [1] and [5] can be carried out. In this article,
Since we consider two layer fluid, we have the case that E vanishes if
ug=1+h—((1-h)2+4ph)1/2 and 1 + hp = (2~ h)((1—h)?+4ph)1/2.
With the conditions, we come up with the following time-independent
modified KdV equation with forcing (SFMKdV),

F113122 + Faoz + FaMogag + Fyby = 0.tagl2
where

Fy = 3ug(4p + 3h — ud),

Fy = M2(1 + h)ug — 4h(1 — p))uy?,

F3 = ug ' (A(1+ h)/3 — u3(h® + 1 + 3ph)/3),
Fy=ug(h—ud).

Since the sign of F3F; determines the existence of solutions of (12)

and only bounded solutions appeares without occurence of hydraulic fall
solutions when F3F; > 0 [7], we assume F3F; < 0 in the following.

3. Hydraulic falls

We assume U = ug + Ae? By dividing both sides of (12) by F3, we
have

(13) Mzzs = Am%nzx + Agnog + Asbr.
where

A1 =—-F1/F3>0, Ay = —F,/F3, A3 = —F,/F;.
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If no() is a solution of (13) and tends to 0 at z = — oo with 92, (—00) =0
then, from b(—o00) = 0, 7, satisfies

’

Mxx = A1U§/3 + A2772 + Agb(l‘)

1) a(—00) = 0, npa(—00) = 0

We choose 72 = 0 in (—o0, 27 ) and prove the existence of the solution of
(14) on [z, zt], where [z, 2] is the compact support of b(z). For that
purpose, we define a complete metric space M and a closed ball B, in M
so that M = {nz | n2 € C([z™,2T]), [Im2ll = max,- oo+ I2(z)|} Br =
{n2 € M | ||n2]] <r < oco}. Then, by using contraction mapping theorem,
the following theorem is proved [7].

THEOREM.
Mowe — A2n2 — A1n3/3 = Asb(z), - <z <z", ||r|| <M,
772(11:_) = "721(37_) =0

has a solution in C3(R) if — Ay is sufficiently large.

Next we analyze the solutions of (14) ahead of bump. When b(z) = 0,
we consider an initial value problem for (14) with initial value no(zt) =
a, ez (x1) = B. Then by integrating it from z* to z > zt,

(e (2))? = (A1/6)m2(z)* + Aan(z)? +d

15 ‘
(15) where d = 5% — (4;/6)a* — Aza?.

If o = 3 = 0, then (15) has the trivial solution n(z) = 0. If A2 —
24,d/3 > 0,

(A1/6)m2(x)* + Aama(z)® + d = (A1/6)(n3 — &) (03 — &)
where

o = —3Az/A; + 3(A2 — 24:d/3)"/? /A4,
£ = —3A3/A; — 3(A% — 2A1d/3)1/? /A,
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Hence, the solutions of (15) in this case are the following periodic wave
solutions.

When & > & > 0, ny(z) = ¢/%sin g,

where

¢
(A410/6) % (z — 2*) = / (1 —k?sin6)~1249, ¢y = sin_l(aﬁl_l/2),
and k? = ¢ /6 < 1.

When & > 0 > €1, 15(z) = £1/% cos ¢,
where

¢
Yz —27) = / (1- szin9§_1/2d9,7 = (A1(& — &)/6)'2,
%

0

¢o = cos (at;?), and k= o/ (o —&1) < 1.

If o and 3 are not zeros and A3 —2A,d/3 =0, then (15) has a solution
T]z(l‘) = i(-—3A2/A1)1/2 tanh(—Agx/Z). If Ag [ 2A1d/3, 7]237(23) =
+(d1 + (A1/6)(n2(z) + ¢1)%)/2 for some d; > 0 and the solution is
unbounded.

Having shown the existence of a solution of (14) from z~ to zt
and analyzing the solutions ahead and behind the bump, we now find
the global solution of (14), numerically using Runge-Kutta Method.
The numerical results are given in Fig. 2 to 6. Fig. 2 shows typ-
ical hydraulic fall solution profile of (14) and we give solution curve
of hydraulic falls in Fig. 3. In both numerical results, we assume
¢ = -1zt =1, and b(z) = RVI — 22 for lz|] < 1 and b(z) = 0
elsewhere. As A being increased from ~00, symmetric wave-free so-
lutions are embedded in periodic wave solutions for discrete values of
A for which 7y(z%) = g, (27) = 0. In Fig. 4 and 5, we present
typical symmetric wave-free solution and F ig. 6 gives the solution
profile of symmetric wave solutions with one hump. As A being in-
creased and converging to a value, above which solution diverges, the
period of the periodic solution becomes larger and hydraulic fall solu-
tion appears at the limiting value of \ as A3 — 2A,d/3 becomes zero.
Hence we have found the analytic expression of hydraulic fall solution
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m2(z) = (—3A2/A;)Y/? tanh(—Ay(x — 0)/2), where zg is a phase shift.
We note that in the case of 1+ hp # (2 — h)((1 - h)? + 4ph)'/2 FKdV
theory can be used to find the expression of hydraulic fall and same
result as in [5] can be carried out.

U?(r) 0.2

A
0.5

s N

\ Unbounded Solutions
st
Periodic Wave Solutions \

St ]

-2.5 e 1 L 1. 1
0 0.5 1 1.5 2 2.5 3

R
F1G. 3. Solution curve of hydraulic fall A = -1.13911, f =0.5
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n2(z) , . , . ,
0.02 b -

-0.14 | -1
1 1 1 1 1
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z

F1G. 4. Symmetric wave solution with one hump h = 0.5, R=a, A\ = —2.73397
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F1G. 5. Symmetric wave solution with two humps h = 0.5, R =1, A = —9.06601
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F1G. 6. Solution curve of Symmetric wave solutions with on hump h = 0.5

4. Conclusion

We consider the physical problem of steady state flow past a posi-
tive, symmetric body at the horizontal bottom of a two-layer fluid. The
derivation of Forced K-dV equation fails when 1 + hp = (2 — h)((1 —
h)2 4 4ph)'/2, and the Forced Modified KdV equation is derived by a
unified asymptotic analysis. Two parameters, A and R, appear in the
equation and can affect its solution behavior. X is a deviation of the flow
speed at the flow speed at far upstream from the critical speed ug, and
R is the hight of the bump. We study mathematically different types of
period-free solutions which may appear in different regions of the A and
R. This investigation may help us understand the flow pattern under
parameter change in a two-layer fluid with bump at the rigid boundary.
In particular, we have found the analytic expression of the hydraulic fall
which was found numerically by Forbes [3].
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