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k-NIL RADICAL IN BCI-ALGEBRAS II

Y. B. Jun, S. M. HoNG AND E. H. RoH

ABSTRACT. This paper is a continuation of [3]. We prove that if A
is a quasi-associative (resp. an implicative) ideal of a BCl-algebra X
then the k-nil radical of A is a quasi-associative (resp. an implicative)
ideal of X. We also construct the quotient algebra X/[A; k] of a BCI-
algebra X by the k-nil radical [A; k], and show that if A and B are
closed ideals of BClI-algebras X and Y respectively, then

X/[A;k] xY/[B;k] = X x Y/[A < B;k].

By a BCI-algebra we mean an algebra (X; *, 0) of type (2, 0) satisfying
the axioms:
D) (z*y)*(z*2z))x(z*xy) =0,
(I) (z*(z*y))xy=0,
(IIl) z*xa =0,
(IV) zxy =y *z =0 implies z = y,
for all z,y and 2z in X. We can define a partial ordering < by 2 < y
if and only if z *y = 0. A BCl-algebra X is said to be p-semisimple if
{z € X|0 <z} = {0}.
In any BCl-algebra X, the following hold:
(1) zx0=z.
(2) (@ry)*xz=(z*2)x*y.
(3) 0x(0*x(0xz)) =0x*z.
(4) Ox(zxy) = (0xz)* (0*y).
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In what follows, X would mean a BCI-algebra unless otherwise spec-
ified.

A non-empty subset A of X is called a subalgebra of X if z xy € A
whenever z,y € A.

A non-empty subset A of X is called an ideal of X if 0 € A and if
T *xy,y € A imply that z € A. We note that if z is in an ideal A of X
and y < z, then y € A.

An ideal I of X is said to be closed if 0 * x € I whenever z € I. We
note that every closed ideal of X is a subalgebra of X.

A mapping f : X — Y of BCl-algebras is called a homomorphism if
flz*xy) = f(z)* f(y) for all z,y € X.

For any elements z,y in X, let us write z*y* for (...((z*y) xy) *...)*y
where y occurs k times.

LEMMA 1 (Huang (2, Lemmas 1 and 2|). For any x,y in X and any
positive integer k, we have
(i) 0% (z*y)* = (0xzF) » (0 * y*).
(ii) 0% (0 )k = 0 (0 z*).
DEeFINITION 1 (Hong et al. [3]). Let A be a subset of X. For given

positive integer k, the k-nil radical of A, denote by [A; k], is the set of
all elements of X satisfying 0 * z* € A4, i.e.,

[A;k] = {z € X : 0xzF € A}.

Note that [A; k] may not contain A itself (see [3]).

LEMMA 2 (Hong et al. [3, Proposition 2]). Let A be a subalgebra of
X and k a positive integer. Then
(i) ifz € [A;k], then 0% z € [A; k].
(ii) ifz xy € [A;k], then y x x € [A; k].
LEMMA 3 (Hong et al. [3, Theorem 1]). If A is a subalgebra of X,

then the k-nil radical of A is a subalgebra of X containing A for every
positive integer k.

LEMMA 4 (Hong et al. [3, Theorems 2 and 3]). If A is a (closed) ideal
of X, then the k-nil radical of A is a (closed) ideal of X for every positive
integer k.
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DEFINITION 2 (Yue et al. [8]). A non-empty subset A of X is called
a quasi-associative ideal of X if it satisfies
(i) 0e A,
(ii) zx(yx2z)€e Aand y € A imply z % 2z € A,
for all z,y,z € X.

THEOREM 1. If A is a quasi-associative ideal of X, then so is the
k-nil radical of A for every positive integer k.

PROOF. Clearly 0 € [A;k]. Let 2,3,z € X be such that z » (y x 2) €
[A; k] and y € [A;k]. By using Lemma 1(i), we obtain
0% (zx(y*2)" = (0%2%) * (0% (y* 2)*)
= (02"« ((0xy*)x(0x2*) e 4

and 0 y* € A. Since A is a quasi-associative ideal, it follows from
Lemma 1(i) that

Ox (zx2)F = (0xxk) (0% 25) € Aora*ze[4k]
Hence [A4; k] is a quasi-associative ideal of X. 0
DEFINITION 3 (Hoo [1]). An ideal A of X is said to be implicative if

whenever (zxy)xz€ Aand y*2 € Athenzxz € A.

THEOREM 2. If A is an implicative ideal of X, then the k-nil radical
of A is also an implicative ideal of X for every positive integer k.

PROOF. We note from Lemma 4 that [A;k] is an ideal of X. Let
z,Yy,2z € X be such that (z *y) xz € [A;k] and y = 2 € [A;k]. Then
0% ((zxy) *2)* = (0% (z % y)*) * (0% 2%)
= ((0+2") x (05y") x (0x2*) € 4
and 0 (y x z)* = (0*y*) * (0% 2*) € A Since A is an implicative

ideal, it follows that 0 * (z * 2)* = (0 * z*) * (0 * 2*) € A or equivalently
x * z € [A; k]. Hence [A; k] is an implicative ideal of X. O
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THEOREM 3. Let f : X — Y be a homomorphism of BCl-algebras
and let A be a subset of X. Then f([A;k]) C [f(A); k] for every positive
integer k.

PROOF. Let y € f([A;k]). Then there exists z € [4;k] such that
f(z) = y. It follows that

0xy* = £(0) * (f(z))* = f(0x2*) € f(A)
so that y € [f(A); k], ending the proof. a

THEOREM 4. Let f : X — Y be a homomorphism of BCI-algebras
and let A be a subalgebra of Y. Then f~1([A;k]) is a subalgebra of X
containing [f~1(A); k] for every positive integer k.

PROOF. Let 2,y € f7!([A;k]). Then f(z), f(y) € [A;k]. It follows
from Lemma 3 that f(x+y) = f(z)* f(y) € [4;k] or equivalently zxy €
f71([A; k]), which shows f~1([A; k]) is a subalgebra of X. To prove that
[F71(A); k] C f7([A;k]), let ¢ € [f1(A);k]. Then 0 * z* € f-1(A)
which implies that 0 (f(z))* = f(0) * f(z*) = f(0* 2*) € A. Thus
f(z) € [A; k] or equivalently z € f~!([4;k]). This completes the proof.
O

Note that the inverse image of an ideal under 2 BCI-homomorphism
is an ideal. Hence we have the following theorem

THEOREM 5. Let f : X — Y be a homomorphism of BCI-algebras. If
A is an ideal of Y, then f~1([A; k]) is an ideal of X containing [f~1(A); k]
for every positive integer k.

Let X and Y be BCl-algebras. We define x on X x Y by
(z,y) * (u,v) = (x * u,y x v) for every (z, y), (u,v) € X xY.

Then clearly (X x Y;*,(0,0)) is a BCl-algebra.

Next we shall define the quotient algebra X/[A; k] of X by [A;k]. Let
A be a closed ideal of X and let k be a positive integer. We define a
relation ~ on X by z ~ y if and only if z xy € [A; k| for every z,y € X.
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Then ~ is an equivalence relation on X. In fact, by using Lemma 1(i),
we have

Ox(z+x)f =(0%2F)* (0x2*) =0¢€ A for every z € X,

which implies that = * z € [A; k] or equivalently z ~ z.

If £ ~ y, then zxy € [A; k] and hence, from Lemma 2(ii), yxz € [A; k].
Hence y ~ z.

Assume that £ ~y and y ~ z. Then z xy € [A;k] and y * z € [4; k]
Hence (z * z) * (z * y) < y* z implies = x z € [A; k], since [A;k] is an
ideal. Therefore x ~ z. Consequently ~ is an equivalence relation on X.
Denote by C, the equivalence class containing z, and by X/[A;k] the
set of all equivalence classes. We claim that Cy = [A; k]. Let = € [A4;k].
Then

0% (z%x0)F = (0%zF)x (0%x0%) = (0*xzF)x0=0x2" € 4,

which implies that = * 0 € [4; k], i.e., z ~ 0. Hence z € Cy. Conversely,
let £ € Co. Thenz ~ 0 or 20 € [A;k]. It follows that 0 x 2% =
0 (z * 0)F € A so that z € [4;k]. Hence Cp = [4; k).

Now we shall define a binary operation * on X/[A; k]. For any C,,Cy €
X/[A; k], Cy x Cy is defined as the class containing z * y. We can easily
check that (X/[A; k]; %, Co) is a BCI-algebra which is called the quotient
algebra of X by [A;k].

LEMMA 5 (Jun et al. [4, Proposition 5]). Let X and Y be BCI-
algebras. For any (z,y) € X x Y, we have
(0,0) * (z,)" = (0% z*,0 % y")

for every positive integer k.

THEOREM 6. Let A and B be subsets of BCI-algebras X and Y,
respectively and k a positive integer. Then
(i) [Ask] x [B;k] = [A x B;k].
(i1) if A and B are closed ideals of X and Y respectively, then

X/[A:k] x Y/[B; k] = X x Y/[A x B; k).
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PROOF. (i) We have that

[A x B; k] = {(z,y) € X x Y|(0,0) * (z,y)* € A x B}
={(z,9) € X xY[|(0%2*,0+y*) € A x B}
={(z,y) e X xY|0*x2* € 4,0xy* € B}
={z € X|0xz* c A} x {y e V|0 xy* € B}
= [A; k] x [B; k],

proving (i).

(ii) We note that [A; k] x [B; k| is an ideal of X x Y whenever A and
B are ideals of X and Y, respectively. Consider the natural homomor-
phisms

wx : X — X/[A4;k], z~ C,,
my 1Y = Y/[Bjk], y~— C,.

Define a mapping f : X xY — X/[A; k] xY/[B; k] by f(z,y) = (Cs, Cy)
for every (z,y) € X x Y. Then clearly f is well-defined onto homomor-
phism. Moreover

Kerf = {(z,y) € X x Y|f(z,y) = ([4; k], [B; k])}
= {(z,y) € X xY|(Cz, Cy) = ([4; k], [B; k))}
={(z,y) € X xY|C; = [4;k],C, = [B; k]}
={(z,y) e X xY|0*2* € 4,0 % y* € B}
={z € X|0x2* € A} x {y e Y0 xy* € B}
= [A; k] x [B;k].

By the first isomorphism theorem, we have
X xY/[Ax B; k] = X/[A; k] x Y/[B;k].

This completes the proof. d
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