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NORMS FOR SCHUR PRODUCTS
DONG-YUN SHIN

ABSTRACT. We first show that if ¢ : M, (B(H)) — M,(B(H)) is a
Dy ® F(H)-bimodule map, then there is a matrix A € M, such that
% = Sa. Secondly, we show that for an operator space £, A € M,,,
the Schur product map S : M, (€) - M, (€) and ¢4 : Mp(€) = &,
defined by ¢4([x;;]) = 21 j=1@ijTij, we have [|Sall = ||Sallcy =
lAlls, llpall = ll¢alles = llAll1 and obtain some characterizations of
A for which S, is contractive.

1. Introduction

Schur products on M,, have been studied in several areas. In particu-
lar, Paulsen, Power and Smith (4] proves that for A € M,,, a Hilbert space
H and the Schur product map Sy : My, — M,(B(H)), |Sall = 1Sallcs
and obtains a characterization of A for which S, is contractive.

In this paper, we first show that if ¢ : M,(B(H)) — M,(B(H)) is
a D, ® F(H)-bimodule map, then there is a matrix A € M, such that
¥ = Sa. Secondly, we show that for an operator space £, A € M, the
Schur product map Sy : M,(€) — M,(E) and ¢4 : M,(&) — &, we
have [|Sall = [|Salles = [|Alls, l6all = ll¢alles = I|All1, where ||A|; is
the trace of |A| = (A*A)%, and obtain some characterizations of A for
which §4 is contractive.

2. Main Results

An operator space is a subspace of B(H) for some Hilbert space and
an operator system is a self-adjoint subspace of B(H) containing the
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identity.

For an operator space £ C B(H) we identify M,, ® £ with M, (&)
which is a subspace of B(H™) where H™ is the n-fold direct sum of
copies of H.

If A = la;;], B = [by] are elements of M, or M, (B(H)), then we
denote the Schur product by Ao B = [a;;b;;]. For 4 = lai;] € M, and an
operator space &, let $§ : M, (£) — M,(€) be the Schur product map
defined by S§(z) = Aoz, let ¢ : M, (€) — & be the map defined by
5 ([z5]) = > i j=1%ijTij, and let || A||s denote the norm of the operators
on M, corresponding to Schur multiplication by A. When there is no
danger of confusion we let ¢4 and S4 denote ¢ and S4 respectively.

If £, F are operator spaces and ¢ : £ — F is a linear map, then we
can define the linear maps

¥t Mu(€) = Mn(F) via pn([zy5]) = [o(z5)].
The map ¢ is called contractive if ||| < 1, completely bounded if llellew
= sup{|l¢nl| : n € N} is finite and completely contractive if lelles < 1.

In the case that £, F are operator systems, the map y is called positive
if p(z) is positive for every positive z in £, and completely positive if ¢,
is positive for every n.

Let {e;;}7',—; be the canonical matrix units for M,,, let D(zy, - ,z,)
be the diagonal operator matrix in M,(B(H)), and let A = la;;],B =
[bi5],C in M, (B(H)) be operator matrices with muturally comutting
entries. Then by elementary calculations, we get the following Lemma.

LEMMA 1. (AB)oC = } /' ) D(ak, -+ ,ank)CD(byy, - -- , bkn).

It is a well-known theorem that the Schur product of two positive
matrices is positive. Using Lemma 1, we give a new elementary proof of
a generalization of the above well-known theorem.

PROPOSITION 2. Let £ be an operator system. If A € M,, B ¢
M., (£) are positive, then Ao B is positive.

PROOF. Let A% = [ai;], Dk = D(ayk, -+ ,ank). By Lemma 1, Ao B=
(ATAZ)o B = > k.1 Dk BD}. Hence Ao B is positive. O

Let A € M, be a positive matrix and £ = C. Then S4 and ¢a are
completely positive. The following shows that it holds for any operator
system £.
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PROPOSITION 3. Let £ be an operator system and let A = la;j] € M,
be a matrix. For ¢4 : Mn(E) — €, Sy : M,(E) — M, (), the following
are equivalent :

(1) A is positive,

(2) ¢4 is positive,

(3) ¢4 is completely positive,

(4) Z:’}:l aijd'iaj g 0 for any o, ,0n € 05
(5) Sa is positive,

(6) Sa is completely positive.

Proor. (1) = (6) Let Ak = [A{j] € Mk(Mn) with Aij = A. Then
(Sa)k = S(a,)- Since A is positive, Ay, is positive. Hence by Proposition
2 (S4)k is positive and S, is completely positive.

(6) = (3) Since (¢4)k(x) = V(S4)r(z)V* for some V My kn, ¢4 is
completely positive.

(2) = (4) Let z = (a1, - ,a,]) € M; ,(€) with a; € C. Then
pa(z*z) = (37,2 dijai;) is positive. Hence > ti—1 @ijaia; = 0 for
any ai,---,ay, € C.

(3) = (2),(4) = (1), (6) = (5) = (1) Clear. O

Let £ be an operator space. For 4,B,C ¢ M,,x € M,(E), let At
be the transpose of A, L4(z) = Az, Ra(z) = zA. Then by elementary
calculations, we get the following Lemma.

LEMMA 4. ¢pac = ¢aLlp:Rce. In particular, if UV € M,, are uni-
taries, then |[(¢vav)ill = ||(¢a)x|| for each k € N.

For an operator space £ and a positive matrix A € M,, S4 is com-
pletely bounded and ||Sa||c = max{a;; }I_;. When A is not positive, it
is more difficult to calaulate ||S4|. But, using Lemma 4, we can easily
calculate ||¢allcs. Let ||A]l; denote the trace norm of the matrix A, i e,
|A]ly is the trace of |A| = (A*A)3}.

'THEOREM 5. Let £ be an operator space and let A ¢ M, be a matrix.
Then we have ||pall = ||galles = | All1.

PROOF. Note that there is a unitary matrix U M, such that A =
U|A|. Then by Lemma 4, ||(¢4)s] = [[(#141)kll for each k € N. Clearly
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(@14l 2 |Allx. Let € C B(H). Since qﬁﬁl(lH) is completely positive,

Al

Il

oo

Let A be a subalgebra of B(H). A linear map ¢ : B(H) — B(H)
is called a A-bimodule map if ¥(azb) = ay(z)b for all a,b € A and
x € B(H). Let F(H) be the set of all finite rank operators on H, let
Dy, be the set of all n x n diagonal matrices, and let {e;;}?;_; be the
canonical matrix units for M,,.

THEOREM 6. If o : M,(B(H)) — M.(B(H)) is a D, ® F(H)-
bimodule map, then there is a matrix A € M, such that ¢ = S4.

PROOF. For any projection p € F(H) and fixed i, j

Y(ei; ®p) = P((ei ® p)(es; @ p)(ej; ® p))
= (€ ® p)Y(ei; ® p)(ej; O p)

Hence ¢(e;; ®I) = e;;®x;; for some z,;; € B(H). Since (€:i®y)(e:; @)=
(ei; ® I)(ej; ®y) for y € F(H) and ¢ is a D,, ® F(H)-bimodule map

€ij @ YTi; = (s @ y)(esj @ xi;)
= (e @ y)(ei; 1))
=Y((ei; ® I)(ej; ®y))
= (&i; ® zij)(ej; ®Y)
= €5 ® T;;Y

for any y € F(H). Hence z;; € F(H) = CI and we can put z;; = a;;1
for some a;; € C. Put A = [a;;] € M,,. Then clearly 1 = S4. O

REMARK 7. Let B(H) = M,,C = M,,®I C M, (M3)orC = D,®I C
M (Ms) and let ¢ : My, (M) — M, (M;) be defined by ¢([z;]) = [zf].
Then 9 is a C-bimodule map but there is no A € M,, such that ¢ = S4.

COROLLARY 8. Ifv): M,(B(H)) — M,(B(H)) is a D,,®@ F(H)—bim-
odule map, then v is also a D,, ® B(H)-bimodule map.
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PROOF. By Theorem 6, 1) = S4 for some A € M,. It is trivial that
SE(H) is a D, ® B(H)—bimodule map. O

Let £ C B(H) be an operator space and let

P S ,
V= {[T Q] :P,QeDn®B(H),b,T€Mn(5)}a

W= {[]{D g} . P,QeD,®ISTec Mn(é')}
I A
A* T

PROPOSITION 9. Let £ be an operator space and let A = la;;] € M,
be a matrix. For Sa : M,(E) — M,(E), the following are equivalent :

(1) Sa: M,(E) — M,(£) is contractive,

(2) Sa: M, — M, is contractive,

(3) There exist vectors vy, -+ , vy, wi,--- ,wy, in C™ of the norm less

than or equal to 1 with a;; = (w; v;),

(4) Sa: My(E) — M,(€) is completely contractive,

(6) Sa: M, — M, is completely contractive,
(6) Sp, : V — V is positive,
(7
(
(

and let Py = [ ] € My, for Ae M,.

8) S p;‘ : W — W is completely positive,
9) Sp, : W — W is positive.

PROOF. (1) = (2),(4) = (5) By [5, Proposition 2.2, |B ® z| =
| Bl|l|z|| for B € M,,,z € £. Hence they are trivial.

(2) = (3) [4, Theorem 3.2].

(3) = (4) Let P, = [(v; v), P> = [(w; wi)] € M,. Then a =
[iﬁ 1/31 € Mos, is positive and by Proposition 3, the map S, :

2

M35 (€) — M2n(€) is completely positive. Hence [|Sa | = [|Sa(])]] < 1
and ||Salles < [|Sallco-

(2) = (6), (5) = (7,) (9) = (1) Similar to the proof of [4, Lemma
3.1].

(6) = (9), (7) = (8) = (9) Trivial. O
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REMARK 10. If A = [a;;] € M,, witha;; = 1, then S : M,(B(H)) —
Myp(B(H)) is contractive, so Sp, : V — V is positive, but Sp,
My(Mn(B(H))) — Ma(M,(B(H))) is not positive since P, is not posi-
tive.

From Proposition 9, we get the following theorem.

THEOREM 11. If£(C B(H)) is an operator space and A € M,,, then
we have || S)|= (1S4 le= I A]s.

PROOF. Clearly ||Alls < ||S5]| and [|S§ e < 1S5t By Propo-
sition 9, 1S = 185" et = | Alls. Hence [|S5]| = [[S& e = 1 A]ls.

Let {eij}?’jzl be the canonical matrix units for M, let cij =1—e;—
ej;t+eij+eji, di(A) = I4+(A—1)e; for |A| = 1, let G be the multiplicative
group generated by {c;;,d:(A) : 1< 4,5 <n, |\ =1} and let

R={BeM,:|Als=|AB|s for all A€ M,)

L={BeM,:|A|s=|BA|s for all A e M,}
LR={B € M,:||A|s = |B*AB|s for all A € M,}

By elementary calculations we get [(Ac;;) o (zci;)]ei; = ci5](cijA) o (cijz)]
= [Adi(A)oz]di(A) = d;(N)[(di(M\)A) oz] = Aoz for Ae M,z € M, (&)
where £ is an operator space and |[A| = 1. Hence ||c;;Alls = |Aci;lls =
| Alls and || Adi(A)]|s = ||d:(A)Alls = ||A]ls for A € M,,|A| = 1. Clearly
L-L=LR-R=R,(LR) (LR) = LR. So G C LN RN LR.

For B = [bi;] € R, |lexklls = llexxBlls = max{|bgil, -, |brn|} by
Lemma 1. That is, for 1 <k < n

1) max{[bg1,- - lbrn|} = 1

Choose )\ij with |)\”f =1, )\z'jbij = |bij, and put Ay == Z:-L:l Aki€ks. Then
|AxBl|s = ||Ak|ls = 1 and the (k, k) entry of AxB is 3, |bi|. Hence
for1<k<n

(2) Y bl <1
t=1
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By (1),(2), each column and each row of B have exactly one entry whose
absolute value is 1 and the others are 0. Therefore B € G and R = G.
Similarly L = G.

For B = [b;;] € LR, ||B*exxBl|s = max{|b?,,--- ,|b?,|} by Lemma
1. Hence max{[b3,],---,|b7,|} = 1, that is, max{|bg1],--- , |ben|} = 1.

Since || B*B||s = 1 and the (k, k) entry of B*Bis Y7 | [63], S0, |2,
< 1. Hence each column and each row of B have exactly one entry whose
absolute value is 1 and the others are 0. Therefore B € G and LR = G.

By the above, we get the following Proposition.

PROPOSITION 12. L=R=LR=G.
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