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AN L, ANALYTIC FOURIER-FEYNMAN
TRANSFORM ON ABSTRACT WIENER SPACE

KuN Soo CHANG, YouNG Sik KM AND IL YOO

ABSTRACT. In this paper, we establish an L, analytic Fourier-Feyn-
man transform theory for a class of cylinder functions on an abstract
Wiener space. Also we define a convolution product for functions
on an abstract Wiener space and then prove that the L, analytic
Fourier-Feynman transform of the convolution product is a product
of Lp analytic Fourier-Feynman transforms.

1. Introductory Preliminaries

"The concept of an L; analytic Fourier-Feynman transform was intro-
duced in 1972 by Brue [2], and it was based on the analytic Wiener
and Feynman integral defined on the classical Wiener space [3]. In
[5], Cameron and Storvick established an L, analytic Fourier-Feynman
transform theory. Also Johnson and Skoug [11] developed an L, analytic
Fourier-Feynman transform theory for 1 < p < 2 which extended the re-
sults in [2,5], and they gave various relationships between the L, and
the Ly theories. Recently, Huffman, Park and Skoug [9] introduced an
L, analytic Fourier-Feynman transform theory for a class of functionals
on the classical Wiener space not considered in [2, 5, 11]. In this pa-
per, we establish an L, analytic Fourier-Feynman transform theory for a
class of cylinder functions on an abstract Wiener space. Also we define a
convolution product for functions on an abstract Wiener space and then
prove that the L, analytic Fourier-Feynman transform of the convolution
product is a product of L, analytic Fourier-Feynman transforms.
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Let H be a real separable infinite dimensional Hilbert space with inner
product (-,-) and norm | -|. Let || - ||, be a measurable norm on H with
respect to the Gauss measure pu. Let B denote the completion of H with
respect to || - ||o. Let ¢ denote the natural injection from H into B. The
adjoint operator ¢* of ¢ is one-to-one and maps the dual B* continuously
onto a dense subset of H* . By identifying H with H* and B* with
©*B”, we have a triple B* C H* = H C B and (h,z) = (h, ) for all h
in H and z in B*, where (-, ) denotes the natural dual pairing between
B and B*. By a well known result of Gross [8], £ -i~! has an unique
countably additive extension m to the Borel o-algebra B(B) of B. The
triple (H, B, m) is called an abstract Wiener space and the Hilbert space
H is called the generator of (H, B,m). For more details, see [8, 12, 13,
14, 15].

A subset E of B is said to be scale-invariant measurable provided pFE
is Wiener measurable for each p > 0, and a scale-invariant measurable
set N is said to be scale-invariant null provided m(pN) = 0 for each
p > 0. A property that holds except on a scale— invariant null set is said
to hold scale-invariant almost everywhere (s-a.e.). If two functionals F
and G are equal s-a.e., we write F ~ ;. For a complete discussion of
scale-invariant measurability, see [6].

Throuhgout this paper, let R® denote the n-dimensional Euclidean
space and let C and C. denote the set of complex numbers and complex
numbers with positive real part, respectively.

DEFINTION 1.1. Let F' be a complex-valued scale-invariant measur-
able function on B such that the integral

(1.1) J(F; ) = /B F(A\"%z)dm(z)

exists for all real A > 0. If there exists an analytic function J* (F; z)
on €, such that J*(F;\) = J(F; ) for all real A > 0, then we define
J*(F; z) to be the analytic Wiener integral of F over B with parameter
z, and for each z € C,, we write

(1.2) I°(F;2) = J*(F; z).

Let g be a non-zero real number and let F be a function on B whose
analytic Wiener integral exists for each z in C,. If the following limit
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exists, then we call it the analytic Feynman integral of F over B with
parameter ¢, and we write

(1.3) I (F;q) = lim I"(F;z),
zZ——1q

where 2 approaches —iq through Cy.

Let {€,}52, denote a complete orthonormal (C.O.N.) set in H such
that the e,’s in B*. For each h € H and z € B . we define a stochastic
inner product (-,-)~ between H and B as follows:

(14) (h o)~ — { nan;o > i_1{he5)(e;,x), if the limit exists,
0, otherwise.
It is well known [12] that for every h € H, (h,z)™ exists for m-a.e.
x € B and it is a Borel measurable function on B having a Gaussian
distribution with mean zero and variance |h2. If {hi,---,hy} is an
orthonormal set of elements in H, then (h1,2)~, -, (hpn,2)™ are inde-

pendent Gaussian functionals with mean zero and variance one. Note
that if both h and z are in H, then (h,z)~ = (h,z).

DEFINITION 1.2. Let (H, B,m) be an abstract Wiener space. A func-
tion F is called a cylinder function on B if there exists a linearly inde-
pendent subset {hy,---,h,} of H such that

(1.5) F(z) = f((h1,2)™, -, (hn,2)"),
where f is a complex-valued Borel measurable function on R™.

DEFINITION 1.3. Let (H,B,m) be an abstract Wiener space. Let
n be a positive integer, and let {h1,-++ ,h,} be an orthonormal set of
elements in H. For 1 < p < oo, let F (n;p) denote the class of cylinder
functions F on B of the form

(1'6) F(CL‘) = f((hlvx)wv T (hnax)w)a

where f : R* — Cis in L,(R"), the space of functions whose p-th powers
are Lebesgue integrable on R™. Let F(n; oc) denote the class of cylinder
functions F of the form (1.6) where f : R* — C is in Co(R™), the space
of continuous functions on R™ which vanish at infinity.

We finish this section by defining an L, analytic Fourier-Feynman
transform on an abstract Wiener space.
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DEFINITION 1.4. For a given number p with 1 < p < 2, let {F,,} and
F be scale-invariant measurable functionals such that for each p > 0,

1.7 Jm [ 1Fu(ow) = (el dm(y) = 0.

Then we write

(1.8) lim (w? )(F,) ~ F

n—00

and we call F' the scale-invariant limit in the mean of order p’, where
1/p+1/p’ = 1. A similar definition is understood when n is replaced by
the continuously varying parameter .

DEFINITION 1.5. Let g # 0 be a real number. For 1 < p < 2 and for
A € C,, the L, analytic Fourier-Feynman transform Tq(p )(F ) of Fis
defined by

(1.9) (TY(F)(y) = lim_ (w? ) (Tr(F)) ()

A= —iq
whenever the limit exists. And the L, analytic Fourier-Feynman trans-
form (Tq(l)(F )) of F is defined by

(1.10) (Tq(l)(F))(y) = /\li}leiq(T,\(F))(y) for s —a.e.ye B

where T (F)(y) = I**(F(- +y) : A).

Note that for 1 < p < 2, Tép )(F ) is defined only s--a.e.. Also if Tq(p) (F1)
exists and Fy ~ F», then T,fp) (F») exists and Tép)(Fl) ~ Tép)(Fz).

2. An L, Analytic Fourier-Feynman Transform

In this section, we establish the existence of an L, analytic Fourier-
Feynman transform for certain classes of cylinder functions on an ab-
stract Wiener space. We begin this section by showing the existence of
analytic Wiener integral T (F)(y) = I**(F(- +y) : A) for F € F(n;p)
where 1 <p<ocand Ae C, .
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THEOREM 2.1. Let (H,B,m) be an abstract Wiener space and let
F € F(n: p) be given by (1.6) for 1 < p < oo . Then for A € C4, the
analytic Wiener integral (T»(F))(y) exists and has the form

(2.1) (AEN @) = (Caf)((h,9)™, -, (hn, y)™),

where

(Gaf)wr, -+ ,wn)

Aln . P S
e2 =Gt [ f@en(-5 > (s - wi)}ai
PROOF. Since (hy,z)™,- -+, (hn,2)™ are independent Gaussian func-

tionals with mean zero and variance one, we have that for \ > 0,

(TA(F))(y) = /B F(\ "%z + y) dm(a)

= /B f(/\~§(h1’x)~ + (h1,y)~, - ,/\_%(hn,x)“’ + (hn,y)~) dm(z)

Al ~ - A 2y -
:(%)2Anf(vl+(hlay) ,"';vn+(hn,y) )exp{_—ijglvj}dv

=) [ r@) exp{—-g-j;(uj ~ (hs9)")?} di
= (Gz\f)((hla y)N7 T (hn7 y)N)'

Let A be any rectifiable simple closed curve lying in C, and let
a =sup{|A| : A € A} and 3 = inf{ReX : A € A}, If F belongs to
F(m;1), then |2 [F1£(3) exp{ B2 S0 (u;(h;, 9))?} < ||} | (@)
and |52 |f(@)| is integrable. If F belongs to Frnip)(1 < p < 0),
then the function | |2 |f ()| exp{—£ > i=1(u; — (hj,9)™)?} dominates
|%]% |f(ﬁ)lexp{~R§A Z?Zl(uj ~ (hj,¥)~)?} and it is integrable on
R™ by Holder’s inequality. If F belongs to F (n;00), then the func-
tion | 2212 1£(@)] exp {—& S0, (uy — (hy,y)™)?} dominates | X |2 | (@)




584 Kun Soo Chang, Young Sik Kim and Il Yoo

exp{—£g2 > i1 (uj — (hj,9)™)?} and it is integrable on R™ as |f(4))|
is bounded. Using the dominated convergence theorem, we know that
(G f)(w) is continuous in C;. Moreover, by the Fubini theorem and
the Cauchy theorem , we obtain that for A € C,

/A (oD (hrsy)™s- -, (s 9)™) dA

:/n(/a(.%)% e:,,p[_..z (hy,y)™)?]dN)di = 0.

Therefore (G f)((h1,¥)~, -, (hn,y)™) is an analytic function of \ €
C+ by the Morera’s theorem ,and hence (75 (F))(y) exists and equals to
(G/\f)((hlay)w, T (hnay)N) for all A € C-f—' O

COROLLARY 2.2. Let (H, B,m) be an abstract Wiener space. If F €
F(n;1), then (TA(F))(y) € F(n; oo) and if F € F(n : p)(1 < p < 2),
then (Ta(F))(y) € F(n;p') where % il L =1land \eC,.

Moreover, for p =1,

(23) 163 flloo < 1Z-121£11,

and, for 1 <p <2,

(2.4) G flly < I*I”('“)llfllp

where (Tx(F))(y) = (GAf)((h1,¥)™, -+, (hn,y)™) is given by (2.2).

PROOF. If p = 1, then |(G,f)(W)| < |2):r|2 [|f(@)|l1 . By the dom-
inated convergence theorem, (G f) (d?) belongs to C,(R™) for all A €
C; as a function of w € R™ . Hence (2.3) holds and (T)(F))(y) €
F(n;o0). Now let 1 < p < 2. Then by [10, Lemma 1.1, p.98], G, is
in L(Lp(R™), Ly (R™)), the space of continuous linear operators from

Lp(R™) to L,y (R™) and [|G,|| < |5+ A ln( 2~%). From the definition of the
operator norm, it follows that (2. 4) holds and (TA(F)(y) € F(n;p'). O

Next we show that the L, analytic Fourier-Feynman transform exists
for functions F(n;p) (1 < p < 2) on an abstract Wiener space.
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THEOREM 2.3. Let (H,B,m) be an abstract Wiener space and let
F € F(n;1) be given by (1.6). Then for non-zero real q, the Ly analytic

Fourier-Feynman transform Tq(l)(F ) of F exists as an element of F(n;oc0)
and it is given by

(2.5) (TPEN®) = (GoigH((h,w)™, -+, (b))

where (G _;f)(-) Is given by (2.2).

PROOF. Since F € F(n;1) and |f(@) exp{—2 i (uy —wy)?} <
|f(@)] € L1(R™), (GAf) (@) converges pointwise to (G_igf) (W) as A —
—iqin C,4, by the dominated convergence theorem . Now let n € M(R™),
the dual of C,(R™). Since |(G, f)(w)| < |£-121|£l1, we have

im, [ (G 9)@)dutw) = [ (G0 auo)

A —iqg

by the dominated convergence theorem. Therefore (G f)(W) converges
weakly to (G_i,f)(@) as elements of C, (R™) as A — —iq in C4, and

hence Tq(l)(F) exists and it is given by (2.5). O

THEOREM 2.4. Let (H, B,m) be an abstract Wiener space and let
F € F(n : p) be given by (1.6) for (1 < p < 2). Then for non-zero real

g, the L, analytic Fourier-Feynman transform T(}p ) (F') of F exists as an
element of F(n;p’) and it is given by

(2.6) (TP FN©) ~ (Gigf)((h1,9)™, -, (b y)™),
where (G_,,f)(") is given by (2.2) and % + z% = 1.
PROOF. Using [10, Lemma 1.2, p-100}, we obtain that for f € L,(R™),
HGAF) () = (G=ig £l — 0,

whenever A — —ig through C; and (G, f)(-) € L, (R™). Since (hy,y)™,
- (hn,y)™ are independent Gaussian functionals with mean zero and
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variance one, we have that for each p > 0,

/B (CAP) ok, u)™ - ey )

(G-iaF)(p(h1, )™, , (b, ) ™)IP dm(y)

n

=@n) 307 [ 1GA) = G expl- 55 Y u}da

<@m) " |(GAF)() = (G-igHC)IE — 0,

whenever A — —iq through C,. Thus Tq(p )(F) exists for 1 < p <2, it
belongs to F(n;p’) and it is given by (2.6). O

We end this section by obtaining an inverse transform theorem for
F € F(n : p). Using the technique as in the proof of Theorem 1.2 in
[11], we have the following property.

THEOREM 2.5. Let 1 < p < 2 and let F € F(n;p) be given by (1.6)
and let q be a non-zero real number. Then

(i) for each p > 0,

shm, ; I(TXTA(F))(py) — F(py)|Pdm(y) = 0,

ii) T5Th — F s-a.e, as A\ — —ig through C, ,where ) is the complex
A +
conjugate of X .

Note that in the case of p = 2, p’ = 2, and so for F € F(n;2),
T(§2)(F ) € F(n;2) by Theorem 2.4. And hence we have the following.

COROLLARY 2.6. Let F' € F(n;2) be given by (1.6). Then for non-
zero real q,

T(TO(F) =~ F .
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3. Convolutions and Transforms of convolutions

In this section, we define a convolution product for functionals on
abstract Wiener space and show that the L, analytic Fourier-Feynman
transform of the convolution product is a product of L, analytic Fourier
-Feynman transforms.

Let ¥y and F; be functionals defined on B. The convolution product
of Iy and F5 is defined by

Iaw(Fl(%)Fz(% ;A , AeCy

)
F « E =
(Fix Fa)av) { I (R F(s)e) , A=—ig,q € R~ {0}

if it exists.

THEOREM 3.1. Let (H, B, m) be an abstract Wiener space and let
Fiy € F(n;1) and F» € F(n;p) for 1 < p < oo. Then for A € C,, the
convolution product (Fy * F3)y belongs to F(n;p) and is given by

(3.1) (F1 * F2)a(y) = Ha((h1, %)™, -+, (hn,y)™),
where
(32) H/\(wh y W )

w+u 2
=(:5) /fl(fm — exp{-—Zu}du-

Moreover, for p =1,

Az
(33) AT PN

and, for 1 < p < oo,

(34) 1l < 121 Al 1ol
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PROOF. Since (hy,z)™,- -, (hn,z)™ are independent Gaussian func-
tionals with mean zero and variance one, we have that for \ > 0,

y+A"ig

\/5 )2(

@
[
S|
Nj=
8

(Fy + Fp)a(y) = /Fl(

= *)2/ fl( hlay)w+ul)a"'v%((hnvy)’v‘f‘un))
o5 () - >...,%«hmyr—un»exp[—%;u?]da

- H)\((hlv y)Nv T (hnvy)N)a
where H) is given by (3.2). Now by analytic continuation in ), we see
that (3.1) holds for all A € C.
Let p = 1. Using the following transformation
(3.5) T (@ + 1) =7, HW—a) =T,
we have

[ @) ds
S ) (") dads
=51 [ 1a@1as [ 1= E A - I

Therefore the convolution product (Fy * F2), belongs to F(n; 1).
Now suppose that 1 < p < co. If p’ is the conjugate exponent to p, (i.e,
—|— 1 = 1), then, by using the Hélder inequality and the transformation
(3 5)

/ |H\ ()P did
Rn —

S{I-%Iz}”//lfl(wfu lfz(E%)|dﬁ]Pdw

A n p w+ U L/ wWH+U, 1 w— ’lf p
=i ¥ [ AC 1S - D e a
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<Aty [ {[/ AE N - A

|f2(

~)|p du] P dw

\/_
5P (VIR F / AL@)] - | folP)P didr
RZH

= (VI PEAIE A

Taking the p-th root in the both sides of the above inequality , we have

3 A n A,,D.
I Hxlly < (V2) Pl IF Al 2 < =21 ]
Therefore the convolution product (F * F3), belongs to F(n;p). O

CoOROLLARY 3.2. Let (H,B,m) be an abstract” Wiener space and let
Fy € F(n;1)and F; € F(n;1) () F(n;p) for 1 < p < oo. Then the con-
volution product (Fy * F3)y belongs to F(n;1) (\ F(n;p) for all A € C,.

THEOREM 3.3. Let (H,B,m) be an abstract Wiener space and let
Fi. € Uicpcoo F(n i p)fork = 1,2 be given by (1.6).Then for all A €
Cs,

z

(36 (DB R))E) = OENSEE) ().
PROOF. Since (hy,z)™, -+, (hn,z)™ are independent Gaussian func-

tionals with mean zero and variance one, we have that for A > 0,
(T,\(Fl * FQ),\)(Z)
- / (Fr * F)a(A "2z + 2)dm()
B

=/ Hy((h1,A 2z + 2)™s s (hny A7 3T + 2)")dm(zx)
B

=(

n P
%)5 - Hy(vi + (h1,2)™,coccyon + (hn,z)w)e:vp[—E ;’U?]dt—f
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An 1 -~ 1 -
_(% f1(7_-(v1 +uy + (hy, 2) ),...,—\7_—2—(vn+un+(hn,z) )

—=(Un — Un + (hy, z)™))

t\ﬂl”'

(\/—(Ul-ul+(h1,z) ), - 2y

A n
e:z:p[—§ Z(uj2 + v?)]dids.
=1

Using the transformation (3.5), we obtain that for A > 0,

(Ta(F1 * F2)x)(2)

=) / filws + (hl, )yt + —\%(hn, ) expl-5 E
“’32] - fa(r1 + —“(hl, z)™, .. (hn,2)™) exp[—= Zrz]dwdr
5 ¢ 2 2

j=1
A & 1
RARY fo(7) exp[—~ rj — —=(h;,2)~)]dr
5" Jou TI00=5 3oty = 52"
=R B )

By analytic continuation in A, (3.6) holds through C,.

THEOREM 3.4. Let (H,B,m) be an abstract Wiener space and let
Fy € F(n;1)and F; € F(n;p) for 1 < p < 2. Then the analytic Wiener
integral (T (Fy * F2)\)(y) belongs to F(n;o00) for p = 1 and it belongs
to F(n;p’) for 1 < p < 2, where 1 p T o L =1landxeC,.

Moreover, for p =1,

A
. o0 g — " 3
(3.7 TN
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and, for 1 < p < 2,

Az
(3.8) Ol < 117 1L fillall fallz
where K is given by

(3.9) Ko ((h1,2)™ ooy (b, 2)™) = (Th(FL * F2)3)(2).

PROOF. In the case of p = 1, (Fy x F2)x(y) belongs to F(n;1) by
Theorem 3.1 , and so by Corollary 2.2, (T\(F; *x F3)x)(y) belongs to
F(n;00). And also, using Theorem 2.1 and 3.3, we have

K ((hl,Z)N,--- (hn,2)™)

/f1 exp[——Z h,,z) )2|dw

(—” / f2(7) eXp[__Z - ';%(hj,z)'v)z]df'

i=1

=(Grf1) ——(hl,z)N (hny2)™)

V2 x/§

' (ka2)(%(h'1’ z)N’ ceey '57—'2- (hn’ Z)N)'

Thus from Corollary 2.2, it follows that

K ()] = |<GAf1><%w)n<fo2)(%zv)|
< LA Rl = 1P Al el

Let 1 < p < 2. Using Theorem 3.1 and Corollary 2.2, we know that
(F1 * F2)a(y) belongs to F(n;p) and so (Th(F) * Fz),\)(y) belongs to
F(n;p"). And also by Theorem 3.3, we have
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1EAI = /R KA (PP dF

,F‘

:/n 1<fo1)(ﬁ),pf,(GAfz)(%)lp/dF

<G, [ 1Gr )T a7

RIS NAANL

< 5 LA D )l (VB
u—izufln |—~| ) allp(VR) P P

= (21 IAlRlly -2 3 S HTANTAS

because é% —1= % — -23’1—) < —% for 1 < p<2and Gyf; € Co,(R™) and
Gif2 € Ly (R™). Taking the p’-th root in the both sides of the above
inequality, we establish our inequality (3.8). O

Next we show that the L, analytic Fourier Feynman transform of
the convolution product is a product of L, analytic Fourier-Feynman
transforms on an abstract Wiener space.

THEOREM 3.5. Let (H,B,m) be an abstract Wiener space and let
Fi € F(n; 1) and Fz € F(n;p) for 1 £ p < 2. Then for non-zero real q,

(3.10) (T3P (F1 * F2)g)(2) = (T Fl))(\/—)( o 2))(\/—)

ProOOF. From Theorem 3.1 and 2.4, it follows that all of the trans-
forms on both sides of (3.10) exist. And hence (3.10) holds immediately
by Theorem 3.4. O
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COROLLARY 3.6. Let (H,B,m) be an abstract Wiener space and let
Fy € F(n;1) and F; € F(n;1)NF(n;p) for 1 < p < 2. Then for non-zero
real q,

(3.11) <ﬁwﬂ*&muwwﬁWmm§§m@wwg%»

REMARK 3.7. Let C,[0,T] be the Banach space of continuous func-
tions x on [0, T} which vanish at 0 with the uniform norm. Let (C,[0, T],
B(C,[0,T1), m,) denote the classical Wiener space where m,, is the Wien-
er measure on the Borel g-algebra B(C,[0,T]) of C,[0,T], and let H, be
the space of absolutely continuous functions 4 which vanish at 0 and
whose derivative Dy is in L3[0,T]. The inner product on H, is given by

T
<%ﬁ>=A(DM@wm@MS

Then H, is a real separable Hilbert space and (H,, C,[0,T],m,) is an
example of an abstract Wiener space.
(a) Let 0 = s, < 81 < -+ < s, =T be a partition of [0,7] and let
fo Xo,t;(t)dt for j = 1,---,n. Then {hy,- - -, hn} is clearly a
hnearly mdependent set in H, and for z € C,[0,T], (h;,x)™ = z(t;) for
j =1,---,n. In this case, Theorem 1.1, 1.2 and 1.3 in [11] are corollarles
of our results in Section 2.
) Let {h;} be a C.O.N. set in Hc. Then {Dh;} is also a C.O.N. set
in L2[0 T] and (h;,z)~ = f )(s)dz(s) for s-a.e. z € C,[0,T)]. In
this case, most results in [9] are corollarles of ours in Section 2 and 3.

Throughout this paper, we assume that {hy,---, h,} is an orthonormal
set in H. However, all of our results hold provided that {hq, - -, h,} is
a linearly independent set in H .
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