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CENTRALLY SYMMETRIC ORTHOGONAL
POLYNOMIALS IN TWO VARIABLES

JEONG KEUN LEE

ABSTRACT. We study centrally symmetric orthogonal polynomials
satisfying an admissible partial differential equation of the form

Atzz + 2Buzy + Cuyy + Dug + Euy = Anu,

where A, B,--- , E are polynomials independent of n and A, is the
eigenvalue parameter depending on n. We show that they are either
the product of Hermite polynomials or the circle polynomials up to a
complex linear change of variables. Also we give some properties of
them.

1. Introduction

Classical orthogonal polynomials are the only orthogonal polynomials
which satisfy a second order ordinary differential equation

(L1)  a()y’ +B@)y = (az” + bz + )y’ + (dz + e}y’ = Any,

where A, = an(n — 1) + dn. They are Jacobi(including Gegenbauer),
Laguerre, Hermite and Bessel polynomials. Among these polynomials,
Gegenbauer and Hermite polynomials have the specific properties. For
example, a(—z) = a(z), 8(—z) = —B(z) and all the moments of odd
order are zero.

As a natural generalization, we consider the problem of characteriz-
ing all centrally symmetric orthogonal polynomials(see Definition 2.3)
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satisfying a second order partial differential equation of the form
(1.2) Llu] := Augzy + 2Bug, + Cuyy + Dug + Euy = A,u,

where A(z,y),-- -, E(z,y) are polynomials and \,, is the eigenvalue pa-
rameter. The differential equation (1.2) was first investigated by Krall
and Sheffer [2]. They identified all weak orthogonal polynomials(See
Definition 2.1) satifying the differential equation (1.1) but partially suc-
ceeded in showing that the polynomial solutions are orthogonal.

In this work, we characterize centrally symmetric orthogonal polyno-
mials satisfying the differential equation (1.2) and show that they are
either the product of Hermite polynomials or the circle polynomials.
Also we give several properties of them.

2. Preliminaries

The set of all polynomials in two variables is denoted by P. By a poly-
nomial system(PS), we mean a sequence of polynomials {mn(z, y)};ﬁ’nzo
such that deg ¢y, = m + n for m and n > 0 and {¢n_;,;}7, is lin-
early independent modulo polynomials of degree < n — 1. For brevity,
we denote (¢no, fn-1,1,"*+, don)” by @, and a PS {Gmn(z,y)}32 0 by
(8}

A PS {P,}{° is called to be monic if

Pn(z,y) = 2™y" + lower degree terms.

Any linear functional on the space of polynomials is called a moment
functional. The action of a moment functional ¢ on a polynomial ¢ is
denoted by (o, ¢). Similarly, the action of o on matrix Q with each entry
Qi; being a polynomial is the matrix defined by

(0,Q) = ({0,Qi3)) -
For any moment functional ¢ on P, we define partial derivatives of o by
the formula

<6I07 ¢> = _<U’ 61‘¢>a and <8y0'a (b) = “(0-7 ay¢>7

and define the multiplication by a polynomial 1 on o through the formnla

(Yo, ¢) = (0,94),

where ¢ in a polynomial.
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DEFINITION 2.1. A PS {®,}§° is a weak orthogonal polynomial sys-
tem(WOPS) if there is a nonzero moment functional ¢ such that

<O‘, ¢mn¢kl> =0 m4+n#k+1L

If (0, pmndrt) = KmnOmidn where K,,, are nonzero(resp. positive)
constants, we call {®,,}¢° an orthogonal polynomial system(OPS)(resp.
a positive-definite OPS). In this case, we say that {®,}5° is a WOPS or
an OPS(resp. positive-definte OPS) relative to o.

DEFINITION 2.2. A moment functional o is quasi-definite(resp. posit-
ive-definite) if there is an OPS(resp. positive-definite OPS) relative to
0.

From Definition 2.1 and 2.2, we see that a PS {®,}$° is an OPS(resp.
a positive-definite OPS) relative to ¢ if and only if (o, ®,,®1) = H,,0,,.n,
and H, := (0,®,®L) is a nonsingular(resp. positive-definite) diagonal
matrix. Also, it is easy to see that for any PS {¥,}5°, (0, ®,¥7) is
nonsingular.

For any PS {®,}5°, there is a unique moment functional ¢, which
is called the canonical moment functional of {®,}3°, defined by the
conditions

(2.1) (0,1) =1, {(0,¢mn) =0,m+n > 1.

Note that if a PS {®,}§° is a WOPS relative to o, then o is a constant
multiple of the canonical moment functional of {®,,}$°.

DEFINITION 2.3. [6] A moment functional ¢ is centrally symmetric
if {g,2™y™) = 0 for m + n = odd integer. We say that a PS {$,}5° is a
centrally symmetric OPS if there is a centrally symmetric quasi-definite
moment functional o such that {®,}5° is an OPS relative to o.

THEOREM 2.1. [1] For a nonzero moment functional o, the followings
are equivalent.
(i) o is quasi-definite.
(ii) There is a unique monic WOPS {®,}$° relative to o.
(iii) There is a monic WOPS {®,}5° such that H,, := (0, ®,®T),n >

0 is nonsingular.
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The following algebraic characterization of orthogonality for polyno-
mials in two variables is fundamental in the study of orthogonal polyno-
mials in two variables.

THEOREM 2.2. [5, 6] Let {®,,}§° be any PS. The followings are equiv-
alent.

(i) {®n}o° is a WOPS relative to a quasi-definite moment functional
.

(i) Forn > 0 and i = 1,2 there are matrices A,;, B,n; and C,.; such
that
(@) 2,9, = Api®ni1 + Bri®, + Cri®n_1,
(b) rank C,, =n + 1, where C,, = (Cyp1, Cp2).

Furthermore, o is centrally symmetric if and only if B,; = 0 for all
n > 0.

3. Main contents

We can see (2] that if the differential equation (1.2) has a PS {P,}$°
as solutions, then it must be of the form
Lu] = Auge + 2Bugy + Cuyy + Du, + Eu,
= (az® + d1z + e1y + f1)ugs + (2azy + dax + e2y + f2)uqy

+ (ay2 +dzr + esy + f3)uyy + (gac + hl)uz + (gy + h2)uy
= Anua

(3.1)

where A, = an(n — 1) + gn.
DEFINITION 3.1. The differential equation (3.1) is admissible if \,,, #
An for m # n or equivalently an + g # 0 for n > 0.

We know that the differential equation (3.1) is admissible if and only
if the differential equation (3.1) has a unique monic PS as solutions.
Generally, the admissibility of (3.1) does not guarantee the existence of
an OPS satisfying the differential equation (3.1).

PROPOSITION 3.1. [1] If the differential equation (3.1) has a PS {®,,}&
as solutions, the canonical moment functional o of {®,}5° must satisfy

(3.2) L*[o] =0,
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(33) (6,D) ={0,E) = (0,A+zD) = (0,C + yE)
. = (0,B+yD) = {0,B+zE) =0.
PROPOSITION 3.2. If the differential equation (3.1) has a WOPS
{®,}§° as solutions, then the canonical moment functional o of {®,}§°
satisfies

(3.4) M o] := (Ao); + (Bo)y — Do = 0,
(3.5) Mso) := (Bo)z + (Co)y — Eo = 0.
PROOF. See [1] for the proof. O

THEOREM 3.3. For any OPS {®,,}§° relative to o, the following state-
ments are equivalent.

(1) {®n}§° satisfy the differential equation (3.1).
(ii) o satisfies the moment equations M;[o] = Ms[o] = 0.

PRroOF. See [1] for the proof. O

Still, Theorem 3.3 holds for any WOPS {®,,}§° relative to a quasi-
definite moment functional o.

Krall and Sheffer made an important observation, which was used in
classifying all WOPS satisfying the differential equation (3.1) ([2]).

LEMMA 3.4. If the differential equation (3.1) has an OPS as solutions,
then we have

(3.6) f2—4fifs #0.

Now we are ready to state our main results.

THEOREM 3.5. Let {®,}5° be a WOPS relative to a centrally sym-
metric quasi-definite moment functional o. If {®,,}§° satisfies the differ-
ential equation (3.1),then the differential equation (3.1) must be of the
form

(3.7) (az®+ f1)uzz +(2azy+ f2)ugy +(ay®+ f3)uyy +grus +gyuy, = Ayu.



650 J. K. Lee

Proor. By Proposition 3.1, we have

<0’,D> =h1000:O, (CT,E) :h2000:0
(o,A+zD) = (a+ g)o + fiogo = 0
(0,C +yE) = (a + g)ooo + fzo00 = 0

1
(0, B+yD) = (a+g)on + §f2000 =0
Then we have hy = hy = 0 and oy = —E_;Lga'o()“ o11 = ——7({—2_57000,
g02 = — 322000
On the other hand, M;[o] = M;[o] = 0 implies that (M;[o],z™y") =

0(i = 1,2) for m +n = 2. Thus we have the following equations for
di,ei(i = 1) 21 3)

d1o20 + €101 =0

d2020 + (2d1 + e2)o11 + 2e1002 = 0

dyoq1 +e20020 =0

dooag + €a011 = 0

2dzoog + (dQ + 263)0’11 + eg0p92 = 0

d3o11 + ezoge = 0.

Since f2 — 4f1f3 # 0 by Lemma 3.4, we can conclude that
di=e=0 (i=1,2,3).
Thus the proof is complete. O
Krall and Sheffer showed that if d; = d; = 0 for i = 1,2, 3, then we

may take f; = f3 = 0 in the differential equation (3.7) and considered
the differential equation

(3:8)  az’uss + 20Ty + f2)uoy + Ay uyy + 9TUL + gyuy = Ayu

with fa # 0. They used a complex change of variables to transform (3.8)
to show the following:
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If a = 0, then (3.8) can be written as
Ugy + Uyy — TUz — YUy = —NU,

which has the product of Hermite polynomials as solutions.
If a # 0, then (3.8) can be transformed as

(3.9) (2% — D)ugy +22yuzy + (¥ — Dy, + gz, +gyu, = n(n+g—1)u,

whose solutions are called the circle polynomials.

It is known that (3.9) has a positive-definite OPS as solutions if
g > 1. Furthermore, (3.9) has an OPS as solutions if and only if
g#1,0,—1,--- . (See [3] for details.)

We can summarize these results into the following:

THEOREM 3.6. Let {®,}5° be an OPS relative to a centrally symmet-
ric quasi-definite moment functional o. If {®,}° satisfies the differential
equation (3.1), then they are either the product of Hermite polynomials
or the circle polynomials with g # 1,0, -1, ---

In the following, we investigate some properties of centrally symmetric
OPS satisfying the differential equation (3.1) or (3.8).

THEOREM 3.7. Let {P,}§° be a monic WOPS relative to a centrally
symmetric quasi-definite moment functional o. If {P,}§° satisfies the
differential equation (3.8), then we have

Pn(_x’ _y) = Pn(wv y)'

Proor. Let P,(z,y) = }:?:0 A;-’xj be the monic polynomial of de-
gree n, where A7, = 0, A} = I,41, A} is an (n + 1) x (j + 1) matrix
and x/ = (z7, 271y, --- ,y)?. Then the coefficients A7(0<j<n-1)
satisfy the recursive equation

(An = Aj)AT = AT ,Cj 42,
where C; = foD;D? | (See [3] for the definition of D}.) Thus we have
m 1 =Ar g=..--=0and
n—1 n—3
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Pr(~2,~y) = 3 (-1 A7%) = (~1)" A" + (-1 2AT_px 2
j=0

= (_l)nPn(‘rv y)'

This is the desired result. g

We say ([4]) that the differential operator L[] in (3.1) belongs to the
basic class if A, = C, =0, that is,

Az,y) =az’ +diz + fi, C(z,y) = ay® +esy + fs.

If L[-] belongs to the basic class and L[u] = Au, then v = 33;0;%( 7,k >0)
satisfies
(3.10)

Avzgz + 2Bvgy + Cuyy + (D + j Az + 2kBy)ve + (E + 25 B, + kC,)v,

1 1
= (A= Dz = kBy = 35(j — 1)Aea — 2jkBay — s k(k = 1)Cyy)u.

Then we see that the differential equation (3.8) belongs to the basic class.

THEOREM 3.8. Let {IP,}§° be the monic WOPS relative to a centrally
symmetric quasi-definite moment functional o. If {P,}$° satisfies the
differential equation (3.8) with g # 1,0, —1,---, then

(i) Pno(z,y) = Pno(z)(n > 0) and {Pno(z)}$° is a classical OPS.
(ii) Pon (:1: y) = Pon(y)(n > 0) and {Po,(y)}$° is a classical OPS.

(iii) Set Py, = 5t 0, P ji1y and PY), = Lo P s 1(0<
j<n).

Then {P,(Lz)J jtneo7=0 and {P(y_)J j}neo0,j=0 are monic WOPS rel-

ative to a centrally symmetric quasi- deﬁmte moment functional.

PROOF. If {P,}§° is the product of Hermite polynomials, it is trivial.
See [3] for the case {IP,,}$° is the circle polynomials. O
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