Comm. Korean Math. Soc. 12 (1997), No. 3, pp- 665-678

MINIMAL CR SUBMANIFOLDS OF A COMPLEX
PROJECTIVE SPACE WITH PARALLEL
SECTION IN THE NORMAL BUNDLE

U-HaNG Ki* AND MASAHIRO KON

ABSTRACT. In this paper we prove that if the minimum of the sec-
tional curvatures of a compact n-dimensional minimal generic sub-
manifold M of a complex projective space is 1/n, then M is the
geodesic minimal hypersphere.

Introduction

In [2] we proved that if the minimum of the sectional curvatures of a
compact real minimal hypersurface of a complex m-dimensional projec-
tive space CP™ is 1/(2m —1), then M is the geodesic hypersphere. This
result was generalized in [9] to the case of M is a generic submanifold
with flat normal connection.

The purpose of the present paper is to study minimal C R subman-
ifolds of CP™ with parallel normal section in the normal bundle and
prove a generalization of theorems in [2] and [9] (see also [3]).

In §1 we state general formulas on CR submanifolds of a Kaehlerian
manifold, especially those of a complex space form. §2 is devoted to
the study C'R submanifolds with nonvanishing parallel normal section of
the normal bundle of M, and compute the restricted Laplacian for the
second fundamental form in the direction of the parallel normal section.
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As applications of this, in §3, we prove an integral formula. In the last
§4, we prove our main theorem by the integral formula given in §3.

1. Preliminaries

Let M be a complex m-dimensional Kaehlerian manifold with almost
complex structure J and with Kaehlerian metric g. Let M be a real
n-dimensional Riemannian manifold isometrically immersed in M. We
denote by the same g the Riemannian metric tensor field induced on M
from that of M. We denote by V the operator of covariant differentiation
with respect to the metric g on M and by V the one in M. Then the
Gauss and Weingarten formulas are given respectively by

VxY =VxY +B(X,Y) and VxV = ~Ay X + DxV

for any vector fields X and Y tangent to M and any vector field V normal
to M, where D denotes the operator of covariant differentiation with
respect to the linear connection induced in the normal bundle T'(M)+
of M. A and B appearing here are both called the second fundamental
forms of M and are related by

9(B(X,Y),V) =g(AvX,Y).

The second fundamental form Ay in the direction of the normal vector
V can be considered as a symmetric (n,n)-matrix.
The covariant derivative V x A of A is defined to be

(VxA)wY = Vx(AvY) — Ap, vY — Ay VY.

If (VxA)yY =0 for any vector fields X and Y tangent to M, then the
second fundamental form of M is said to be parallel in the direction of
V. If the second fundamental form is parallel in any direction, it is said
to be parallel.

The mean curvature vector v of M is defined to be v = (TrB)/n,
where TrB denoting the trace of B. If v = 0, then M is said to be
minimal. If the second fundamental form A vanishes identically, then
M is said to be totally geodesic. A vector field V normal to M is said to
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be parallel if DxV = 0 for any vector field X tangent to M. A parallel
normal vector field V(3 0) is called an isoperimetric section if TrAy is
constant, and is called a minimal section if TrAy is zero.

For any vector field X tangent to M, we put

JX =PX +FX,

where PX is the tangential part and F'X the normal part of JX. Then
P is an endomorphism on the tangent bundle T(M) and F is a normal
bundle valued 1-form on the tangent bundle T'(M). Similarly, for any
vector field V normal to M, we put

JV =tV + fV,

where tV is the tangential part and fV the normal part of JV. We then
have [10]

9(PX,Y)+g(X,PY) =0, g(fV,U)+g(V,fU)=0
g(FX,V)+g(X,tV)=0.

Moreover, we see
P?=_J—tF, FP+fF=0, Pt+tf=0, f? =_—-I—Ft.
We define the covariant derivatives of P, F|t and f by

(VxP)Y =Vx(PY)—PVyxY, (VxF)Y = Dx(FY)- FVyY,
(Vxt)V = Vx(tV) — tDxV, (Vxf)V = Dx(fV) — fDxV,

respectively. We then have [10]

(1.1) (VxP)Y = Apy X +tB(X,Y),
(1.2) (VxF)Y = —B(X,PY) + fB(X,Y),

(1.3) (th)V = Ava — PAy X,
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(1.4) (Vxf)V = —FAyX — B(X,tV).

A submanifold M of a Kaehlerian manifold M is called a CR sub-
manifold of M if there exists a differentiable distribution H : x — H, C
T.(M) on M satisfying the following conditions:

(1) H is invariant with respect to J, namely, JH, C H, for each
point x in M, and

(2) the complementary orthogonal distribution H* : z — H} C
T (M) is anti-invariant with respect to J, namely, JH. C T, (M)+
for each point x in M.

We put dimH = h, dimH*+ = q and codimM =2m—n =p. If g =0,
then a CR submanifold M is called an invariant submanifold of M, and
if h =0, then M is called an anti-invariant submanifold of M. If p = q,
then a CR submanifold M is called a generic submanifold of M (see
[10]).

In the following, we suppose that M is a C R submanifold of a Kaehle-
rian manifold M. Then

(1.5) FP=0,fF =0,tf =0, Pt =0,

(1.6) PPyP=0,f3+f=0.

Equations in (1.6) show that P is an f-structure in M and f is an
f-structure in the normal bundle of M (see [8]). From (1.1) we obtain

(1.7) ApxY —Apy X =0 for X, Y € I{L

We have the following decomposition of the tangent space T,.(M) at
each point z of M:

T.(M) = H(M) + Hy- (M),

where H,(M) = JH,(M) and H;- (M) is the orthogonal complement of
H (M) in T,(M). Then JH} (M) = FH}(M) C To(M)*. Similarly,
we have

To(M)" = FHy (M) + No (M),
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where Ny (M) is the orthogonal complement of FHZ in T, (M)+. Then
JNg (M) = fNo(M) = N, (M).

We take an orthonormal basis e, - - , es,, of M such that, restricted
to M,ey,--- e, are tangent to M. Then e, - ,e, form an orthonor-
mal basis of M. We can take ey, - ,e, such that eg,--- ,€q form
an orthonormal basis of H} (M) and €g+1, " ,€n form an orthonor-
mal basis of H,(M). Moreover, we can take €n+1," " ,€2m Of an or-
thonormal basis of T;(M)~ such that e, ;,--- , €ntq form an orthonor-
mal basis of FH; (M) and €4, - , €2, form an orthonormal basis of
Ny (M). In case of need, we can take €n+1," " ,€niq Such that e, ; =
Fey,- - ,enyq = Feq. Unless otherwise stated, we use the conventions
that the ranges of indices are respectively:

i?j’kzlv"'7n; x,y,2=1,"',fI§
a,byc=n+1,---.2m; M\p,v=n+qg+1,---, 2m.

We denote by M™(c) an m-dimensional complex space form of con-
stant holomorphic sectional curvature c. Then equations of Gauss and
Codazzi of M are given respectively by

R(X,Y)Z =3c{9(Y, Z)X — g(X,Z)Y + g(PY, Z)PX
(1.8) - 9(PX,Z)PY +29(X,PY)PZ}
+ Apy,2)X — Ap(x,z)Y,

where R being the Riemannian curvature tensor of M,
I(VxAWY,Z) - g((Vy A)v X, Z)

= ;{9(PY, Z)g(FX,V) — g(PX, Z)g(FY,V)
+29(X, PY)g(FZ,V)},

(1.9)

where VB is defined to be

(VxB)Y,Z) = Dx(B(Y, Z)) - B(VxY, 2) — B(Y,VxZ).
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We define the curvature tensor R+ of the normal bundle of M by
RY(X,Y)V =DxDyV — DyDxV — Dix yV.

Then we have the equation of Ricci
9(RH(X, Y)V,U) + ¢([Av, Av]X,Y)

(1.10) = ic{g(FY, V)g(FX,U) - g(FX,V)g(FY,U)
+29(X, PY)g(fV,U)}.

From the equation of Gauss (1.8), the Ricci tensor S of M is given by
S(X,Y) = ze{(n - 1)g(X,Y) + 3¢(PX, PY)}

a1 £ TrAag(AaX, Y) = 3 642X, Y),

A, being the second fundamental form in the direction of e,.

2. Lemmas

First of all, we prepare some lemmas for later use. For any vector
field X on a Riemannian manifold M we have generally (see [6])
div(Vx X) — div({divX)X) = S(X, X) + |L(X)g]|?

— |VX? — (divX)?,
where L(X)g denotes the Lie derivative of g with respect to the vector
field X, and |Y| denotes the length of a vector field Y on M with respect
to g.

Let M be an n-dimensional minimal CR submanifold of a complex

space form M™(c). Suppose that U is a parallel section of the normal
bundle of M. Then (1.3) implies

Vx(tU)=AqX — PAyX
for any vector field X tangent to M. Thus we have

div(tU) = Y g(VitU,e;) = TrAgy — TrPAy = 0.
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From this and (2.1) we obtain
(2.2) div(VtU) = S(tU,tU) + $|L(tU)g|* — |VtU|2.
On the other hand, by (1.11), we have
S(tU,tU) =3c(n — 1)g(tU, tU)
(2.3) — ,
+ > g(AatU, tU)TrA, — Y g(AatU, AatU).

We also have
|VtU|? =TrA%, + TrA,
— 2TrAUAfUP — Zg(AUtea, Autea).
Substituting (2.3) and (2.4) into (2.2), we have
div(VtU) =1c(n — 1)g(tU, tU) + | L(tU)g)?
+ Y 9(AatU, tU)TrA, = > g(AatU, AgtU)
— TrA%, — TrA
+2TrAy Agu P+ ) g(Auteq, Aytes).

(2.4)

(2.5)

Since we have
(L(tU)G)(X,Y) = g(VxtU,Y) + g(VytU, X)
= g((AUP -_— PAU)X, Y'),
we obtain
IL(tU)g|* = |[P, Av]|? = 2{Tr(Ay P)* — Tr A} P*}.
Therefore, we have

LEMMA 2.1. Let M be an n-dimensional minimal CR submanifold

of a complex space form M™(c). If U is a parallel section of the normal
bundle of M, then

div(VoytU) =1c(n — 1)g(tU, tU) + 3|[P, Au]|?
(2.6) = " 9(AatU, AgtU) — Tr A%, — TrA
+2TrAyA;u P+ g(Autea, Autea).
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LEMMA 2.2. Let M be an n-dimensional minimal CR submanifold

of a complex space form M™ (¢). If U is a parallel section of the normal
bundle of M, then

(VPA)uX =) (R(es, X)A)ve;
+ 3c{—ApxtU —tB(tU, X) + 3PAy PX

— 9(X,tU) Y " Aatea — 2 g(Aateq, X)tU
+ PAqu — 2AfUpX}.

(2.7)

PrROOF. From the assumption we see

Z(V,’A)Ue,; =0.
Thus, from (1.9), we have
(VAU X =) (ViVid)u X
=Y (R(ei, X)A)vei + fe T{g((ViF)e;, U)PX
+ g(Fe;, U)V;P)X — g((ViF)X,U)Pe;
— g(FX, U)(va)(B,, -+ 29((V1-P)ei, X)tU
-+ Qg(Pei, X)(Vzt)U}

Using (1.1), (1.2) and (1.3), we have our equation. O

3. Integral formulas

Let M be an n-dimensional minimal C'R submanifold of a complex
projective space CP™ with constant holomorphic sectional curvature 4.
We suppose that there is a parallel unit normal section g in the normal
bundle of M. Then we have
(3.1)

Q(VQA;“A#) = Zg((R(eiaej)A)#ei’Auej)
+3{Tr(A,P)* — " g(Aates, Auty) — TrPA,Ap,}.
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Since p is parallel, (1.10) implies

> {9(Aatp, Autes) — g(Aatea, Autu)} = g — 1,

Zg([Afua Au]ei, Pez) = 2,TrAp.AfMP = "—th(fﬂﬂ f,lL)
Therefore, we have
Tr(A,P)? =) " g(Aateq, Autp) — TrPA, Ay,

= %][P, A2 - TrAi + > g(Auteq, Autes) — 3 g(Aatu, Aute,)
+(g—1)— TrPA”Af#.

Substituting this equation into (3.1), we have
9(V2Au Au) =Y g((Rles, e5) A)ues, Aues) + 3{31[P, A2
(3.2) —TrA2 +> g(Auteq, Ayte,)
=Y g(Aatp, Aytes) + (g — 1) — TrPA, Ap,}.
By Lemma 2.1, (3.2) becomes
~9(V2Au, AL) = 2(n— @) + (g — 1) + 3I[P, ALl
— TIxPA, Agy, + 2Tr A%,
= TrAZ — ) g((R(ei, ;) A) i, Aues) — 2div(Ve,tp)
+ z{3g(Aat,u, Ayteq) — 2g(Aatu, Agtu) — g(Aute,, Autes)}.

THEOREM 3.1. Let M be a compact n-dimensional minimal C R sub-

manifold of C P™ with parallel unit normal section p in the normal bun-
dle of M. If fu = 0, then

(3.3)

05/ (VAL =20 — )+ (g - 1)
M
(3.4) + 31[P, AL)I? + 2g(Axtp, Axtp)} + 1

= /M{TrAi - Zg(R(eq;, ej)Au)ei, Ape;)} + 1.
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Proor. We have
%A’I‘rAi = g(V2Au, AL+ |VA“|2.

Thus we have

—/ g(V2A,A)*1:/ VA2 x1.
M M

Let us put T(X,Y) = (VxA,)Y — g(PX,Y)tu — g(Y,tu)PX. Then we
have |T|? = [VA,|? — 2(n — q) > 0 by (1.9). Thus we have

VAL —2(n—q) >0,
and the equality holds if and only if
(VALY = g(PX, Y )tu + g(¥, tu)PX.

Here, we can take €541, ,enrqsuchthat e,y = Fey, - ,ep4q = Feg.
Then, we obtain
Z{3g(Aatu, Auteqa)—2g(Agtp, Agtp) — g(Auteq, Auteq)}
=~2) _g(Axtu, Axtu)

by (1.7), where A\=n+ g +1,---,2m. Therefore, we have (3.4). O

4. Main theorems

THEOREM 4.1. Let M be a compact n-dimensional minimal CR sub-
manifold of C P™ with parallel unit normal section p in the normal bun-
dle such that fu = 0. If the minimum of the sectional curvatrues of M
is1/n, then ¢ =1,|VA,*> =2(n — 1) and PA, = A,P.
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PRrROOF. We choose an orthonormal frame {ei} of M such that A u€i =

Aie; (1 = 1,---,n). We denote by K;; the sectional curvature of M
spanned by e; and e;- Then we have

Zg (R ei,ej A )ei,A”ej)

= Z{g (eie5)Apei, Aue;) — g(AuR(es, e5)ei, Aue;)}
=5 (A = Aj)2Ky;

> (1/20) Y (A — Aj)% = TrA2.

Consequently, we see
TrA} - ) g((R(ei, e5) Ay )ei, Ayes) < 0.
From this and Theorem 3.1 we have our assertion.
EXAMPLE. We consider the standard fibration
St gt _, opn
where S* denotes the Euclidean sphere of curvature 1. In $2*t1 we have

the family of generalized clifford surfaces whose spheres lie in complex
subspaces (cf. [4]):

Mopi1,2941 = SPFH(((2p + 1)/20)%) x S22 (((2g + 1) /2n)}),
where p+ ¢ = n — 1. Then we have a fibration
S'— Mapy12041 — MS

compatible with the standard fibration. In the special case p = 0 Mo 1
is called a geodesic minimal hypersphere (see [6]), and is a homogeneous
positively curved manifold diffeomorphic to the sphere (see [4], [6]).

The minimum of the sectional curvature of M§, _; is 1/n, and that
of MC ¢(P,q < 1) is zero.



676 U-Hang Ki and Masahiro Kon

If M is a compact n-dimensional generic minimal submanifold of C P™
with nonvanishing parallel section in the normal bundle . We can as-
sume that |u| = 1. Since we have f = 0, if the minimum of the sectional
curvatures of M is 1/n, then, by Theorem 4.1, we see that M is a real
hypersurface of CP™. We also have PA,, = A, P. Thus, from a theorem
of [5] we see that M is M. Since the minimum of the sectional curva-
ture of M is 1/n, we see that M is the geodesic minimal hypersphere.
Consequently, we obtain

THEOREM 4.2. Let M be a compact n-dimensional minimal generic
submanifold of CP™ with nonvanishing parallel section y in the normal
bundle. If the minimum of the sectional curvatures of M is 1/n, then

2m =n+1 and M is the geodesic minimal hypersphere M()C(n—l)/Z‘

If the normal connection of M is flat, then we can choose an orthonor-
mal frame {e,} of the normal bundle such that De, = 0 for all a (cf.
(1]). Then we have

COROLLARY 4.1([9]). Let M be a compact n-dimensional minimal
generic submanifold of CP™ with flat normal connection. If the mini-
mum of the sectional curvatures of M is 1/n, then 2m = n 41 and M
is the geodesic minimal hypersphere Moc,r(n—n ra-

COROLLARY 4.2([2]). Let M be a compact real minimal hypersur-
face. If the minimum of the sectional curvatures of M is 1/(2m — 1),
then M is the geodesic minimal hypersphere M(fm-—l'

THEOREM 4.3. Let M be a compact n-dimensional minimal C R sub-
manifold of CP™ with nonvanishing parallel unit normal section y in the
normal bundle such that fu = 0. If the minimum of the sectional curva-
tures of M is (n—gq)/n(n—1), then we have |VA[? = 2(n—q). Moreover,
we haven =qor ¢ =1 and PA, = A,P.

PROOF. From Lemma 2.1 and Theorem 3.1 we have
—9(V?A, A) — 2(n — q) — 5TrA,As, P + 3Tr A3,
== g(Rlei, e)A)es, Aues) + (0 — q) — 3div(V 5 JU)
+3 ) {9(Aatu, Autea) = g(Aatp, Aatp)}.
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Therefore, we have

0< /M{IVAI C2n— @}l
= /M{(” -q) - ZQ(R(ei,ej)Ap)ei, Auej) — 3Zg(AAtp, Axtu)} * 1.

On the other hand, by the similar method in the proof of Theorem 4.1,
we see

Zg e’h e] eh e]) — 3 Z( j Kij
> (n— q)/(n - 1)TrAﬁ-
Hence we have

(n—0) = Y a(Rleses)Aues, Ages)

<(n-q)/(n—1){(n~1) - TrA2}.
From this and Lemma 2.1 we have

0< [ {IV4P - 2(n - 9} 1
< /M (7 = a)/(n— 1){(n — 1) = TeA2} — 33" g(Antys, Axtps)] # 1

< -in—g)/(n- 1>/M [P, A2+ 1.

Thus, we have |[VA[> = 2(n —q), and n =g or PA, = A,P.
We suppose that n # g and ¢ > 2. Then, we can take a unit normal
vector field V' orthogonal to x. Hence we have

Vivitp = —PA“tV = -A“PtV =0.
Thus the sectional curvature spanned by t;: and tV is zero. This contra-

dicts the assumption K;; > (n — ¢)/n(n — 1) > 0. Therefore, we must
have ¢ = 1. O

THEOREM 4.4. Let M be a compact n-dimensional minimal generic
submanifold of CP™ with nonvanishing parallel unit normal section p
in the normal bundle such that fu = 0. If the minimum of the sectional
curvatures of M is (n—p)/n(n—1), then M is a totally real submanifold
of CPm, or 2m = n+ 1 and M is the geodesic minimal hypersphere

Mo (n—1)/2"
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