THE MINIMUM THEOREM FOR THE RELATIVE ROOT NIELSEN NUMBER.

KI-YEOL YANG

ABSTRACT. In [8], we introduce the relative root Nielsen number N(f;X,A,c) for maps of pairs of spaces $f:(X,A)\to (Y,B)$. From it, we obtain some immediate consequences of the definition and illustrate it by some examples. We consider the question whether there exists a map $g:(X,A)\to (Y,B)$ homotopic to a given map $f:(X,A)\to (Y,B)$ which has precisely N(f;X,A,c) roots, that is, the minimum theorem for N(f;X,A,c).

1. Introduction

Topological coincidence theory about the study of the equation f(x) = g(x) for maps $f, g: X \to Y$ specializes in two important ways. One such specialization arises when X = Y and $g: X \to X$ is the identity map. So the equation becomes the fixed point equation f(x) = x. Then, when Brooks investigated coincidence theory in [2], he identified an interesting special case, that in which $g: X \to Y$ is the constant map g(x) = a for some $a \in Y$. The coincidence equation becomes in this setting the root equation f(x) = a, so-called because it generalizes the equation P(x) = 0 for a polynomial P, the solution to which are the roots of the polynomial.

A very clear presentation of many of the results in root theory can be found in Kiang's book [4] and we refer to [4] whenever possible. The minimum theorem 2.3 is a main goal of this paper. So we assume that the reader is familiar with the theorems for maps of Lin Xiaosong [7]. I would like to thank X.Zhao for his helpful comments about this paper.

Let $f: X \to Y$ be a map (continuous function) and $c \in Y$. Two solutions (roots) x_0 and x_1 to f(x) = c are equivalent iff there is a path p in X from x_0 to x_1 such that $[f \circ p] = [c]$. (Here $[f \circ p]$ denotes the

Received June 13, 1996. Revised April 29, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 55M20.

Key words and phrases: roots, relative root Nielsen numbers.

fixed-end-point homotopy class containing $f \circ p$ and c is used both to denote the point $c \in Y$ as well as the constant path at $c \in Y$).

This equivalence is induced an equivalence relation; an equivalence class of roots is calleded *root class*. The set of roots of f(x) = c is denoted by $\Gamma(f, c)$, the set of root classes by $\Gamma'(f, c)$.

Let $H: f_0 \simeq f_1: X \to Y$ be a homotopy between f_0 and f_1, c a given point in Y, and x_i a root of the equation

$$f_i(x) = c, \quad i = 0, 1$$

and R_i a root class in $\Gamma'(f_i, c)$ containing x_i . If there exists in X a path p from x_0 to x_1 such that

$$[\triangle(H,p)] = [c],$$

then x_0 and x_1 are said to be in correspondence under H and denoted by x_0Hx_1 , where $\triangle(H,p)$ is a diagonal path defined by $\triangle(H,p)(t) = H(p(t),t), 0 \le t \le 1$. This relati on x_0Hx_1 induces a correspondence from R_0 to R_1 under H, which is denoted by R_0HR_1 .

Let $f: X \to Y$ be a mapping under $H: f \simeq H(\cdot, 1): X \to Y$ a homotopy. Let the root class in $\Gamma'(f, c)$ be denoted by R. If the root class R of the equation f(x) = c corresponds to a root class $\in \Gamma'(H(\cdot, 1), c)$ under any such H, then R is called an *essential root class*. Denote the set of essential root classes of the equation f(x) = c by $\Gamma^*(f, c)$. The number $\#\Gamma^*(f, c)$ of elements in $\Gamma^*(f, c)$ is called the *Nielsen number* of f(x) = c and is denoted by N(f, c).

N(f,c) is clearly a lower bound for the number of solutions of f(x) = c. If g is homotopic to f, then N(f,c) = N(g,c).

Let $f:(X,A)\to (Y,B)$ be a map of pair of compact connected ANR's. We shall write $\bar f:A\to B$ be a restriction of f to A, and $\Gamma(\bar f,c)=\Gamma(f,c)\cap A$ if $c\in B$. Throughout this paper c will be a point lies in $B(\subset Y)$.

DEFINITION 1.1. Let $f:(X,A) \to (Y,B)$ be a map of pair of spaces. A root class $R \in \Gamma'(f,c)$ of $f:X \to Y$ is a common root class of f and \bar{f} if $R \cap \Gamma_e(\bar{f},c) \neq \emptyset$ where $\Gamma_e(\bar{f},c)$ is the essential root set of $\bar{f}:A \to B$. It is an essential common root class of f and \bar{f} if it is an essential root class of $f:X \to Y$ and a common root class of f and \bar{f} .

DEFINITION 1.2. Let (X, A), (Y, B) be pairs of compact connected ANR's. If $f: (X, A) \to (Y, B)$ is a map, the relative root Nielsen number N(f; X, A, c) is defined as

$$N(f; X, A, c) = N(f, c) + N(\bar{f}, c) - N(f, \bar{f}, c),$$

where $N(f, \bar{f}, c)$ is the number of essential common root classes of f and \bar{f} .

Hence N(f; X, A, c) is a finite integer ≥ 0 and equals N(f, c) if X = A or $A = \emptyset$.

The number N(f; X, A, c) defined above satisfies the usual basic two properties (lower bound property and homotopy invariance) and we show in some examples that it can be easy to find N(f; X, A, c) in [8].

2. The Minimum Theorem

In this section, we consider the whether there exists a map $g:(X,A)\to (Y,B)$ homotopic to given map $f:(X,A)\to (Y,B)$ which has precisely N(f;X,A,c) roots.

To prove the Minimum Theorem we shall need additional properties of (X, A) which is introduced in the next definitions.

DEFINITION 2.1. A subspace A of a space X can be by-passed if every path in X with end points in X - A is homotopic to a path in X - A keeping end point fixed.

The subspace A in Examples 1-4 of [8] can be by-passed.

DEFINITION 2.2. Suppose $P,Q\subset X$ are subpolyhedra of the unbounded n-manifold X and that p+q=n, where $p=\dim P,q=\dim Q$. We say P is transverse to Q in X if

- (1) $P \cap Q$ consists of a finite set of points,
- (2) for each $x \in P \cap Q$, there are neighborhoods U_1, U_2, U_3 of x in P, Q, X such that (U_1, U_2, U_3) is p.l. homeomorphic to a nbd of 0 in $(\mathbb{R}^p \times 0, 0 \times \mathbb{R}^q, \mathbb{R}^p \times \mathbb{R}^q)$.

Suppose P and Q have opposite intersection number at x and y. With these assumptions, we have

WHITNEY'S LEMMA. Let $x,y \in P \cap Q$ be transverse intersection points and α a path from x to y. If dimP, dim $Q \geq 3$, then there exists an isotopy of the embedding $P \hookrightarrow X$, keeping the outside of an arbitrary neighborhood of α fixed, moving P to P', such that $P' \cap Q = P \cap Q - \{x,y\}$.

The Whitney's Lemma enables us to cancel double points. If each of P,Q and X are orientable, then we can attach a sign to an intersection point $x \in P \cap Q$, and the idea is to give conditions under which can cancel a pair of intersections of opposite sign; in other words find an ambiant isotopy of P which removes this pair from the set of intersections of P and Q.

Now we can prove the Minimum Theorem. (Compare with [3] Theorem 2.4).

THEOREM 2.3 (MINIMUM THEOREM). Let X and Y are connected closed orientable n-manifolds and let $f:(X,A)\to (Y,B)$ be a map of pairs such that

- (1) A and B are closed orientable submanifolds of X and Y resp.,
- (2) whenever the component A_j of A is mapped to the component B_c of B, which contains c, then $\dim A_j = \dim B_c \geq 3$,
- (3) A can be by-passed in X.

Then there is a map $g:(X,A)\to (Y,B)$ which is homotopic to f with exact N(f;X,A,c) roots

PROOF. The proof of Theorem can be done by following 3 steps. \Box

Step 1. With above assumption, we may assume that $\Gamma(\bar{f},c)$ contains exactly $N(\bar{f},c)$ points which lying in bdA and every map $f:X\to Y$ is $(\varepsilon-)$ homotopic to a map $f':X\to Y$ such that f' has finitely many roots.

PROOF. As Lin Xiaosong Theorem B, on each component A_j of A, use the Whitney's trick for the root class, we may eliminate a pair of points in any root class of $\Gamma(\bar{f},c)$ with opposite local degrees. Repeat such a procedure finitely many times, we may asume that there are exactly $N(\bar{f},c)$ point in $\Gamma(\bar{f},c)$. And by HEP and transversality theory, the graph f is homotopic to a graph f' of a map f' such that the graph

of f is transverse to $X \times \{c\}$ in $X \times Y$ Then f' has finitely many roots. \Box

Step 2. Let A can be by-passed in X. Then no two points in $\Gamma(f,c)$ – A are in the same class.

PROOF. From Step 1, we may assume that every root class R-A in $\Gamma(f,c)-A$ contains finitely many, say m(R) points and f has local degree sign in R at each point in $\Gamma(f,c)-A$. As Lin's proof of Theorem A and B, using the fact that A can be by-passed in X, Lin's construction can be carried out in X-A so that R-A contains only one point at last.

Step 3. If two points $y \in \Gamma(f,c) - A$ and $\bar{x} \in \Gamma(\bar{f},c)$ are Nielsen related, then there exists a homotopy $F: (X \times I, A \times I) \to (Y,B)$ constant on A and in a neighborhood of $\Gamma(f,c) - \{\bar{x},y\}$ from (f,\bar{f}) to (g,\bar{g}) such that $\Gamma(g,c) = \Gamma(f,c) - \{y\}$.

PROOF. Since \bar{x}, y are Nielsen related and $A \subset X$ can be by-passed, there is a path ω establishing the Nielsen relation between y and \bar{x} and satisfying $\omega[0,1) \subset X-A$, $\omega(t) \not\in \Gamma(f,c)$ for 0 < t < 1. Let us fix a subset $U \subset X$ homeomorphic to $\mathbb{R}^{n-1} \times (-\infty,1]$ such that under this homeomorphism $\omega(t) = (0,t) \in \mathbb{R}^{n-1} \times [0,1]$

$$U \cap A \subset \mathbb{R}^{n-1} \times 1, \quad U \cap \Gamma(f,c) = \{\bar{x},y\}.$$

On the other hand, the constant path c^* in Y is homotopic to $f\omega$. Choose an open neighborhood $V \subset Y$ of c. Since $f\omega$ and c^* are fixed end point homotopic, there exist homotopices $f|_t : \omega[0,1] \to Y$ from the restriction of f to V constant on $\omega[0,\varepsilon] \cup \omega[1-\varepsilon,1]$ for some $\varepsilon > 0$. Moreover, by the assumption $\dim B_c \geq 3$, we may assume that $\Gamma(f|_t,c) = \{\bar{x},y\}$ for each t.

Fix two closed balls K_0 and K_1 in $U \subset X$ centered at \bar{x} and y resp. such that

$$K_0 \cap \omega[0,1] \subset \omega[0,\varepsilon]$$

$$K_1 \cap \omega[0,1] \subset \omega[1-\varepsilon,1]$$

Define $F': X \times 0 \cup (K_0 \cup \omega[0,1] \cup K_1) \times I \to Y$ by

$$F'(x,t) = \begin{cases} f|_t(x), & \text{if } x \in \omega[\varepsilon, 1-\varepsilon] \\ f(x) & \text{otherwise.} \end{cases}$$

Fix a retraction $r: X \times [0,1] \to (X \times 0) \cup (K_0 \cup \omega[0,1] \cup K_1) \times [0,1]$ such that r(x,t) = (x,0) for x lying outside a neighborhood of $\omega[0,1], r(A \times [0,1]) \subset A$ and $r^{-1}(\{\bar{x},y\} \times [0,1]) = \{\bar{x},y\} \times [0,1]$. We put $F_1(x) = F'r(x,1)$. Now F_1 sent $\omega[0,1]$ into V hence $F_1(U_1) \subset V$ for some neighborhood U_1 of $\omega[0,1]$ in U. In U_1 we fix another Euclidean neighborhood U_2 such that $\omega[0,1) \subset U_2 \subset U_1 - A$ and any point $x \in (cl\ U_2 - \bar{x})$ is uniquely labelled as $x = t\bar{x} + (1-t)x_1$ where $x_1 \in ((bd\ U_2) - \bar{x})$. Finally we put

$$F(x,t) = \begin{cases} tF_1(\bar{x}) + (1-t)F_1(x_1) & \text{for } x = t\bar{x} + (1-t)x_1 \in cl \ U_2 \\ F_1(x) & \text{otherwise.} \end{cases}$$

Now, put g(x) = F(x,t), then g is homotopic to F_1 rel. $(X - U_2)$ hence

$$\Gamma(g,c) = \Gamma(F_1,c) - \{y\}.$$

REMARK. We have thought the number N(f;X,A,c) of a map $f:(X,A)\to (Y,B)$ and assume that $c\in B$. But if $c\not\in B$, then as we have shown in Example 3 of [8], above Minimum Theorem does not holds. That is, even though N(f;X,A,c)=0, there exist a map $g(\simeq f):(X,A)\to (Y,B)$ such that it must have a root.

So we leave it an open problem to find a sharp lower bound if $c \notin B$.

References

- [1] R. Brooks, Certain subgroups of the fundamental group and the number of roots of f(x) = a, Amer. J. Math. 95 (1973), 720-728.
- [2] _____, Coincidences, roots and fixed points, Doctoral Dissertation, Univ. of Calfornia, Los Angeles (1967).
- [3] J. Jezierski, A relative coincidence Nielsen numbers, preprint.
- [4] T. Kiang, The theory of fixed point classes, Springer-Verlag, Heidelberg (1989).

- [5] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Spr- inger-Verlag, Berlin, Heidelberg, New York (1972).
- [6] H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473.
- [7] L. Xiaosong, On the root classes of mapping, Acta math. Sinica, New Series 2 (1986), 199-206.
- [8] K. Y. Yang, A relative root Nielsen number, Comm. Korean Math. Soc. 11 (1996), 245-252.

Department of Mathematics Education Sunchon National University Sunchon 540-742, Korea