G(f)-SEQUENCES AND FIBRATIONS

Moo Ha Woo

ABSTRACT. For a fibration (E, B, p) with fiber F and a fiber map f, we show that if the inclusion $i:F\longrightarrow E$ has a left homotopy inverse, then $G_n^f(E,F)$ is isomorphic to $G_n^f(F,F) \oplus \pi_n(B)$. In particular, by taking f as the identity map on E we have $G_n(E,F)$ is isomorphic to $G_n(F) \oplus \pi_n(B)$.

1. Introduction

D. H. Gottlieb [1, 2] introduced the subgroup $G_n(X)$ of $\pi_n(X)$. In [5, 13], the authors and J. Kim introduced subgroups $G_n(X,A)$ and $G_n^{Rel}(X,A)$ of $\pi_n(X)$ and $\pi_n(X,A)$ respectively and showed that they fit together into a G-sequence

$$\cdots \xrightarrow{j_{\sharp}} G_{n+1}^{Rel}(X,A) \xrightarrow{\partial} G_n(A) \xrightarrow{i_{\sharp}} G_n(X,A) \xrightarrow{} \cdots \xrightarrow{\partial} G_1(A) \xrightarrow{i_{\sharp}} G_1(X,A)$$

where i_{\sharp}, j_{\sharp} and ∂ are restrictions of the usual homomorphisms of the homotopy sequence

$$\cdots \xrightarrow{j_{\sharp}} \pi_{n+1}(X,A) \xrightarrow{\partial} \pi_n(A) \xrightarrow{i_{\sharp}} \pi_n(X) \longrightarrow \cdots \xrightarrow{\partial} \pi_1(A) \xrightarrow{i_{\sharp}} \pi_1(X).$$

Here we extend the concept of the above G-sequence into the G(f)sequence for any self-map $f:(X,A)\to (X,A)$. In [7, 12], S. H. Lee and the second author showed that it is still exact in the extended concept when $i:A \to X$ has a left homotopy inverse or is null homotopic . In this paper, we will show that for a fibration (E,B,p) with fiber F and a fiber map f, if the inclusion $i: F \longrightarrow E$ has a left homotopy inverse, then $G_n^f(E,F)$ is isomorphic to $G_n^f(F,F) \oplus \pi_n(B)$. Especially if we take f to be the identity, then we have $G_n(E, F)$ is isomorphic to $G_n(F) \oplus \pi_n(B)$.

Received January 11, 1997. Revised June 16, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 55P45.

Key words and phrases: G(f)-sequence, evaluation subgroup, relative homotopy Jiang subgroup.

This paper was supported by BSRI 96-1409 and TGRC-KOSEF 96.

710 Moo Ha Woo

2. Definitions

In this paper, all spaces are finite connected CW-complexes, all topolgical pairs are CW-pairs with base point and all subspaces mentioned contain the same base point as their total spaces. We denote by A^A the subspace of the function space X^A consisting of $f \in X^A$ such that $f(A) \subset A$. Let us take x_0 as the base point of X and its subspaces. Let I^n be the n-dimensional cube, let ∂I^n be its boundary and let J^{n-1} be the union of all (n-1) faces of I^n except for the initial face. We use the same notation ω for the evaluation maps of X^X and X^A into X at the base point x_0 and use i as the inclusion map.

The Gottlieb groups $G_n(X)$ are defined by $G_n(X) = \{[h] \in \pi_n(X) | \exists \max H : X \times I^n \longrightarrow X \text{ such that } [H|_{x_0 \times I^n}] = [h] \text{ and } H|_{X \times u} = 1_X \text{ for } u \in \partial I^n\}$. In [2], Gottlieb showed that the Gottlieb groups (or evaluation subgroups of the homotopy groups) $G_n(X)$ is the image of $\omega_{\sharp} : \pi_n(X^X, 1_X) \longrightarrow \pi_n(X, x_0)$. He used these groups to obtain some results about the identifications of topological spaces and to study a fixed point theory and a fibration theory. Since then, many authors [4, 8, 9, 11, 15] have studied and generalized $G_n(X)$.

In [13], the second author and J. Kim introduced $G_n^f(X,A)$ for any map $f:(A,x_0)\to (X,x_0)$. The subgroup is defined by $G_n^f(X,A)=\{[h]\in\pi_n(X)|\ \exists\ \mathrm{map}\ H:A\times I^n\longrightarrow X\ \mathrm{such\ that}\ [H|_{x_0\times I^n}]=[h]\ \mathrm{and}\ H|_{A\times u}=f\ \mathrm{for}\ u\in\partial I^n\}$. These groups are called the generalized evaluation subgroups of the homotopy groups. We also show that the generalized evaluation subgroup $G_n^f(X,A)$ is the image of $\omega_\sharp:\pi_n(X^A,f)\to\pi_n(X,x_0)$. Especially, if $i:A\to X$ is the inclusion, we denote $G_n^i(X,A)$ by $G_n(X,A)$. $G_n(X,A)$ has always contained $G_n(X)$ and

$$G_n(X, A) = \begin{cases} G_n(X) & \text{for } A = X \\ \pi_n(X) & \text{for } A = \{x_0\}. \end{cases}$$

In [5], the authors introduced the subgroup $G_n^{Rel}(X,A)$ of the relative homotopy group $\pi_n(X,A)$ which is defined by $G_n^{Rel}(X,A) = \{[h] \in \pi_n(X,A) | \exists \text{ map } H : (X \times I^n, A \times \partial I^n) \longrightarrow (X,A) \text{ such that } [H|_{x_0 \times I^n}] = [h] \text{ and } H|_{X \times u} = 1_X \text{ for } u \in J^{n-1}\}$. Equivalently, $G_n^{Rel}(X,A)$ is the image $\omega_{\sharp} : \pi_n(X^A,A^A,i) \to \pi_n(X,A,x_0)$, where A^A is the subspace of X^A which consists of maps from A into itself. In [7], the relative homotopy Jiang group $G_n^{Rel}(f)$ is defined by $G_n^{Rel}(f) = \{[h] \in \pi_n(X,A) | \exists m \in A^n \in A^n \}$

map $H: (X \times I^n, A \times \partial I^n) \longrightarrow (X, A)$ such that $[H|_{x_0 \times I^n}] = [h]$ and $H|_{X \times u} = f$ for $u \in J^{n-1}$ for $n \geq 2$ for a self-map f of a pair (X, A).

3. G(f)-sequences and fiber space

Let f be a self-map of (X, A). The inclusion map i and the evaluation map ω induce the following commutative diagram

$$\rightarrow \quad \pi_n(A^A, \bar{f}) \quad \stackrel{i_{\sharp}}{\longrightarrow} \quad \pi_n(X^A, f_A) \quad \stackrel{j_{\sharp}}{\longrightarrow} \quad \pi_n(X^A, A^A, \bar{f}) \quad \stackrel{\partial}{\longrightarrow} \quad \pi_{n-1}(A^A, \bar{f}) \quad \rightarrow \\ \downarrow \omega_{\sharp} \qquad \qquad \downarrow \omega_{\sharp} \qquad \qquad \downarrow \omega_{\sharp} \qquad \qquad \downarrow \omega_{\sharp} \qquad \qquad \downarrow \omega_{\sharp}$$

$$\rightarrow \quad G_n^f(A, A) \quad \stackrel{i_{\sharp}}{\longrightarrow} \quad G_n^f(X, A) \quad \stackrel{j_{\sharp}}{\longrightarrow} \qquad G_n^{Rel}(f) \qquad \stackrel{\partial}{\longrightarrow} \quad G_{n-1}^f(A, A) \quad \rightarrow \\ \downarrow \cap \qquad \qquad \downarrow \cap \qquad \qquad \downarrow \cap \qquad \qquad \downarrow \cap \qquad \qquad \downarrow \cap$$

$$\rightarrow \quad \pi_n(A) \quad \stackrel{i_{\sharp}}{\longrightarrow} \quad \pi_n(X) \qquad \stackrel{j_{\sharp}}{\longrightarrow} \qquad \pi(X, A) \qquad \stackrel{\partial}{\longrightarrow} \quad \pi_{n-1}(A) \quad \rightarrow$$

where the top and bottom rows are exact and the middle sequence form a chain complex. We call the middle sequence the G(f)-sequence of (X,A) for the self-map f. Especially if we take f to be the identity, then the G(f)-sequence of (X,A) for the self-map f is just the G-sequence. This sequence is not necessarily exact(see Theorem 3.4 [5]) and there are theorems (see [7], [12]) describing under what conditions the G(f)-sequence of (X,A) becomes an exact sequence as follows.

THEOREM 3.1. Let f be a self-map of (X, A). If the inclusion $i : A \to X$ has a left homotopy inverse or is homotopic to the constant map, then the G(f)-sequence of (X, A) is exact.

Let $p: E \to B$ be a fibration with the fiber $F = p^{-1}(b_0)$, where b_0 is a base point of B. Then p induces a homomorphism $p_{\sharp}: \pi_n(E, F) \to \pi_n(B, b_0)$ which is one-to-one and onto.

LEMMA 3.2. Let $p: E \to B$ be a fibration with the fiber F and $f: E \to E$ be a fiber map. The restriction $p_{\sharp}|_{G_n^{Rel}(f)}: G_n^{Rel}(f) \to \pi_n(B)$ is one to one and onto.

PROOF. It is sufficient to show that $p_{\sharp}|_{G_n^{Rel}(f)}$ is onto. Let $[h] \in \pi_n(B)$. Then $h: (I^n, \partial I^n) \to (B, b_0)$ is a pair map. Define

$$H: E \times I^{n-1} \times 0 \cup F \times I^{n-1} \times I \rightarrow B$$

by

$$H|_{E\times I^{n-1}\times 0} = pf|_E$$
 and $H|_{F\times I^{n-1}\times I} = hk|_{I^n}$,

where $k:(I^n,\partial I^n)\to (I^n,\partial I^n)$ is a homeomorphism such that kk=1 and $k(J^{n-1})=I^{n-1}\times 0$ from [3, 11.6]. The map H is well-defined and continuous. Since $(E\times I^{n-1},F\times I^{n-1})$ is a CW-pair, there is an extension $\bar{H}:E\times I^n\to B$ of H by the absolute homotopy extension property. Consider the following diagram

$$E \times I^{n-1} \times 0 \xrightarrow{f\pi_1} E$$

$$\downarrow \qquad \qquad \downarrow p \downarrow$$

$$E \times I^{n-1} \times I \xrightarrow{\bar{H}} B$$

where $\pi_1: E \times I^{n-1} \times 0 \to E$ is the projection, there is a map $\theta: E \times I^n \to E$ such that $\theta|_{E \times I^{n-1} \times 0} = f\pi_1$ and $p\theta = \bar{H}$ since $p: E \to B$ is a fibration. Define $\bar{\theta}: E \times I^n \to E$ by $\bar{\theta} = \theta(1 \times k)$. Then

$$\bar{\theta}|_{E\times J^{n-1}} = \theta(1\times k)|_{E\times J^{n-1}} = \theta|_{E\times I^{n-1}\times 0} = f \text{ and } \bar{\theta}(F\times \partial I^n) \subset F.$$

Let $\alpha = \bar{\theta}|_{e_0 \times I^n} : (I^n, \partial I^n, J^{n-1}) \to (E, F, e_0)$, where $e_0 \in F$ is the base point of E. Then $[\alpha] = [\bar{\theta}|_{e_0 \times I^n}] \in G_n^{Rel}(f)$ because $\bar{\theta}$ is an affiliated map of α . Since

$$p_{\sharp}[\alpha] = [p\alpha] = [p\bar{\theta}|_{e_0 \times I^n}] = [p\theta(1 \times k)|_{e_0 \times I^n}]$$

= $[\bar{H}(1 \times k)|_{e_0 \times I^n}] = [hkk] = [h],$

so we show $[h] \in p_{\sharp}(G_n^{Rel}(f))$.

COROLLARY 3.3. For any fibration $F \xrightarrow{i} E \xrightarrow{p} B$ and a fiber map $f: E \to E$, we have $d(\pi_{n+1}(B)) \subseteq G_n^f(F, F)$ for all n, where d arises the homotopy sequence of the fibration.

PROOF. Consider the following commutative diagram

$$\begin{array}{ccc} G_{n+1}^{Rel}(f) & \stackrel{\partial}{\longrightarrow} & G_n^f(F,F) \\ & & \downarrow i & & \downarrow i \\ & & \pi_{n+1}(B) & \stackrel{d}{\longrightarrow} & \pi_n(F) \end{array}$$

where ∂ is the boundary homomorphism and i is the inclusion. Since p_{\sharp} is a bijective map, we have

$$d(\pi_{n+1}(B)) = i\partial p_{\sharp}^{-1}(\pi_{n+1}(B)) = i\partial (G_{n+1}^{Rel}(f)) \subseteq i(G_n^f(F,F)) = G_n^f(F,F).$$

The pair (X, A) is a relative G-pair if $\pi_n(X, A) = G_n^{Rel}(X, A)$ for all n [14].

COROLLARY 3.4. If $p:E\to B$ is a fibration with fiber F, then the CW-pair (E,F) is a relative G-pair .

By Corollary 3.3, we have $d(\pi_n(B)) \subset G_n^f(F, F)$ and hence the following sequence form a chain complex.

$$\cdots \to G_n^f(F,F) \xrightarrow{i_{\sharp}} G_n^f(E,F) \xrightarrow{p_{\sharp}} \pi_n(B) \xrightarrow{d} \cdots \to G_1^f(F,F) \to G_1^f(E,F) \to \pi_1(B).$$

This sequence is called the G(f)- sequence of the fibration for the fiber map f. When does the G(f)- sequence of a fibration to be exact? The following lemma gives us an answer for this question.

LEMMA 3.5. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration and f be a fiber map. If the inclusion map i is null-homotopic or has a left homotopy inverse, then the G(f)-sequence of the fibration is exact.

PROOF. Consider the following commutative diagram

where $\bar{p}_{\sharp} = p_{\sharp} \circ j_{\sharp}$ and $d = \partial \circ p_{\sharp}^{-1}$. Since the G(f)-sequence of the pair (E, F) is exact by Theorem 3.1 and p_{\sharp} is an isomorphism by Lemma 3.2, the G(f)-sequence of the fibration is also exact.

THEOREM 3.6. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration and f be a fiber map. If the inclusion map i has a left homotopy inverse. Then we have $G_n^f(E,F) \cong \pi_n(B) \oplus G_n^f(F,F)$.

PROOF. Let $r: E \to F$ be a left homotopy inverse of i. By the above lemma, we have the following exact G(f)-sequence of fibration

$$\cdots \to G_n^f(F,F) \xrightarrow{i_{\sharp}} G_n^f(E,F) \xrightarrow{p_{\sharp}} \pi_n(B) \xrightarrow{d} G_{n-1}^f(F,F) \to \cdots$$

Since i_{\sharp} is a monomorphism, we have $d(\pi_n(B)) = 0$ and p_{\sharp} is an epimorphism. Now we will show the homomorphism $r_{\sharp} : \pi_n(E) \to \pi_n(F)$ induces a homomorphism $r_{\sharp} : G_n^f(E,F) \to G_n^f(F,F)$. Let $[\alpha]$ be an element of $G_n^f(E,F)$. Then there exists a homotopy $H: F \times I^n \longrightarrow E$ such that

$$[H|_{x_0 \times I^n}] = [\alpha]$$
 and $H|_{F \times u} = f_F$ for $u \in \partial I^n$.

If we define $\bar{H} = rH : F \times I^n \longrightarrow F$, then we have

$$[\bar{H}|_{x_0\times I^n}]=[r\alpha]=r_{\sharp}[\alpha] \text{ and } \bar{H}|_{F\times u}=rf_F=\bar{f} \text{ for } u\in\partial I^n.$$

Therefore $r_{\sharp}([\alpha])$ belongs to $G_n^f(F,F)$ and hence r_{\sharp} induces a homomorphism $r_{\sharp}: G_n^f(E,F) \to G_n^f(F,F)$. If we define a homomorphism $\phi: G_n^f(E,F) \to \pi_n(B) \oplus G_n^f(F,F)$ by $\phi(\alpha) = (p_{\sharp}(\alpha), r_{\sharp}(\alpha))$, it is easy to show that ϕ is an isomorphism.

COROLLARY 3.6. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration. If the inclusion map i has a left homotopy inverse, then we have $G_n(E,F) \cong \pi_n(B) \oplus G_n(F)$.

References

- D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- [2] _____, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
- [3] B. Gray, Homotopy theory, Academic Press, New York (1975).
- [4] G. E. Lang, Jr., Evaluation subgroups of factor spaces, Pacific J. Math. 42 (1972), 701-709.

- [5] K. Y. Lee and M. H. Woo, The G-sequence and the ω-homology of a CW-pair, Top. Appl. 52 (1993), 221-236.
- [6] _____, Generalized evaluation subgroups of product spaces relative to a factor, Proc. Amer. Math. Soc. 124 (1996), 2255-2260.
- [7] S. H. Lee, On the relative homotopy Jiang subgroups, Comm. Korean Math. Soc. 7 (1992), 15-24.
- [8] K. L. Lim, On cyclic maps, J. Austral. Math. Soc. Ser. A 32 (1982), 349-357.
- [9] N. Oda, The homotopy set of the axes of pairings, Canad. J. Math. 42 (1990), 856-868.
- [10] J. Siegel, G-spaces W-spaces H-spaces, Pacific J. Math. 31 (1969), 209-214.
- [11] K. Varadarajan, Generalized Gottlieb Groups, J. Indian Math. Soc. 33 (1969), 141-164.
- [12] M. H. Woo, A sequence of homotopy subgroups of a CW-pair, Comm. Korean Math. Soc. 11 (1996), 235-244.
- [13] M. H. Woo and J. R. Kim, Certain subgroups of homotopy groups, J. Korean Math. Soc. 21 (1984), 109-120.
- [14] M. H. Woo and K. Y. Lee, Exact G-sequences and relative G-pairs, J. Korean Math. Soc. 27 (1990), 177-184.
- [15] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and its duality, J. Austral. Math. Soc. (Series A) 58 (1995), 1-11.

Department of Mathematics Education Korea University Seoul 136-701, Korea