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SOME PROPERTIES ON SPACES WITH
NONCOMPACT GROUP ACTION

HYANG-So0K LEE AND DONG-SUN SHIN

ABSTRACT. The compact transformation group theory has been de-
veloped with lots of properties. Many properties which are satisfied
on G-space for compact group G do not hold for noncompact case. To
recover some theory on spaces with noncompact group action we give
some restriction on G-spaces. Hence we introduce Cartan G-spaces
and proper G-spaces for our goal and we prove some properties on
these G-spaces with noncompact G.

0. Introduction

Let G be a locally compact Lie group if there is no special note. We
consider a completely regular space X with a fixed action on G. If C is
a compact Lie group then a lot of general theory of G-spaces has been
developed. For the noncompact case we need to give some condition on
G-space for which theory can be applied reasonably. For our purpose,
first we define Cartan G-space. Then many of the statements which hold
when G is compact are valid in this case. Also we are interested in some
properties of orbit space X/G which has induced properties from X. If
G is a compact Lie group, then the orbit space has more properties. For
instance, if X is a G-space with compact Lie group G, then

(i) X/G is Hausdorff.

(ii) 7 : X — X/G is closed.

For the noncompact group G, any of the above properties do not hold
in general. However the first case (i) holds if we give more restriction on
Cartan G-space which satisfies the condition that given z,y in X there
exist relatively thin neighborhoods U and V of 2 and y. This is called
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proper G-space. In case (ii) if the space has Cartan G-action, the orbit
map is closed.

In this paper, we prove some properties on the Cartan G-spaces and
more restrictive proper G-spaces and of course those properties are sat-
isfied on G-spaces for compact G. In Section One, we give some pre-
liminaries which include basic notations and definitions as background.
In the second section, we extend some theory of (G-spaces where G is
a compact Lie group to theory of Cartan(or proper) G-spaces for G a
locally compact Lie group. In Section Three, we study some porperty
of ENR (Euclidean Neighborhood Retract) with the G-action for locally
compact Lie group G.

1. Preliminaries

We denote G a locally compact Lie group with identity e which acts
on completely regular space X. If X is a G-space then we write G, for
the isotropy group at z. We mean Gz for the orbit of z and if S C X
we write GS for the saturation of S, i.e. GS = {gs | g € G,s € S}.
We let X/G denote the set of orbits Gz of G on X. Let 7 : X — X/G
be a natural map by taking w(z) = Gz. Then X/G endowed with the
quotient topology and X/G is called orbit space of X. The quotient
map 7 : X — X/G is continuous open map. For the subgroup H of G,
XH ={z e X |hxt=2zVhe H} is a fixed set under H. We define
subsets of G

(U, V) ={geG|gUnV #0}
where U and V are subsets of G-space X.

DEFINITION 1.1. If U and V are subsets of a G-space X then we say

that U is thin relative to V if ((U, V)) has compact closure in G. If U is
thin relative to itself then we say that U is thin.

If U is thin relative to V then V is thin relative to U since (gUNV) =
g(UNg=1V), hence U and V are relatively thin. If U and V are relatively

thin then any translates g;U and g,V are also relatively thin and for
U'cU, V'cV, U and V' are relatively thin.

DEFINITION 1.2. A G-space X is Cartan G-space if every point of X
has a thin neighborhood.
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DEFINITION 1.3. A subset S of a G-space X is a small subset of X
if each point of X has a neighborhood which is thin relative to S. A
G-space X is proper if each point of X has a small neighborhood.

If X is a G-space and A is an invariant subspace then a small subset
of A is not necessarily a small subset of X. Small is relative notion unlike
absolute concept of thin.

We state some important relation between Cartan G-space and proper
G-space.

PROPOSITION 1.4. [6] A G-space X is proper if and only if X is a
Cartan G-space and X/G is regular.

PROOF. See [6] (1.2.3, 1.2.8, and 1.2.5). O

THEOREM 1.5. [6] If X is a locally compact G-space then the fol-
lowing are equivalent.

(a) Given x,y in X there exist relatively thin neighborhoods U and
V of x and y.

(b) X is a Cartan G-space and X /G is Hausdorf.

(c) X is a proper G-space.

(d) Every compact subset of X is small.

(e) Every compact subset of X is thin.

2. Some Properties on G-space for Locally Compact Lie
Group G

Now we prove some properties on Cartan G-space.

PROPOSITION 2.1. Let X be a Cartan G-space. Then the orbit map
m: X — X/G is closed.

PROOF. Let A be closed in X. Then 7 !(w(A)) = {ga | g € G,a €
A} = G(A), saturation of A. Since 7 is a quotient map, it is enough to
show G(A) is closed in X. For any a € A, there exists a net of points of
A converging to a, say the net {a,}. Let y be adherent to G(A) and let
U be a thin neighborhood of y. We choose a net {goa,} in U converging
to y. For fixed ag, (9295))(9ac@a) = gaa and hence 9agsl € (U 1)).
By passing to a subnet, we can suppose that g,g; 01 converges and hence
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that g, converges, say to g. Then y = lim goa, = ga € G(A). Therefore
G(A) is closed. O

PROPOSITION 2.2. If X is a locally compact space then X/G is
locally compact.

PROOF. Let m : X — X/G be an orbit map. Forz € U C X, let U
be a compact closure of U then n(z) € n(U) C w(U) where #n(U) is a
compact closure containing 7 (z). O

PROPOSITION 2.3. If X is a proper G-space and N is a closed normal
subgroup of G, then X" is a proper G/N-space.

PROOF. Since X is a proper G-space, X/G is regular by Proposition
1.4. For every z € X, = has a thin neighborhood U such that ((U,U)) is
relatively compact in G. Recall G/N acts on XV by (gN)(z) = gNz =
gz. Then G/N action on XV is equivalent to G-action on X~ and every
subspace of a regular space is regular, and hence X~ /(G/N) is regular.
To show for every € X, z has a thin neighborhood U/* such that
((U*,U*)) is relatively compact in G/N, we take U* = {z € U | nz =z
for every n € N} = U N X" which is open in XV. Moreover if p is
the canonical map of G onto G/N it can be easily checked p((U,U)) =
((U*,U™)) since

(U, U")) = {gN |gNU* nU" # 0}
={gN | gN({UnXM)n (U N XN) #p}.

O

DEFINITION 2.4. X is a Hilbert G-space if X is a real Hilbert space
and each operation of G on X is an orthogonal linear transformation.

DEFINITION 2.5. If d is a metric for a G-space X then d is called
invariant if d(gz, gy) = d(z,y) for all g € G and z,y € X, i.e. if each
operation of G is an isometry.

THEOREM 2.6. [6] If G is a Lie group and X is a separable, metriz-
able, proper G-space, then X admits an equivariant imbedding in a
Hilbert G-space.
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COROLLARY 2.7. Every separable, metrizable, proper G-space X ad-
mits an invariant metric.

Proor. This is an easy consequence of Theorem 2.6. ]

LEMMA 2.8. In a metric space X, X is separable if and only if X is
a Lindel6f space.

PrOOF. Refer to point set topology. ]

PRrRoOPOSITION 2.9. Let X be a proper G-space. If X is separable
metric then X/G is also separable metric.

ProOF. By Corollary 2.7, let p be an invariant metric defined on X.
We define
p(E,g) =inf{p(z’.y') |z’ €%, y €7 forz, € X/G}.
Then since p is a metric, p(Z,5) > 0 and Z = 7 if and only if
p(Z,7) = 0. Now ‘

S I

p(&,3) = inf{p(9z,9'y) | 9.4 € G}

<inf{p(gz,9'y) + p(9'y,9"2) | 9,9',9" € G}
=1inf{p(9z,9'y) | 9,9' € G} +inf{p(d'v.9"2) | ¢, 4" € G}
= p(z,7) + (9, 2).

Therefore p is a metric on X/G. p is induced from p and 7 : X — X/G is
a continuous open map, hence p is consistent with the topology of X/G.
Since X is a metric space, X is separable implies X is a Lindelof space.
The Lindel6f property is invariant under continuous surjections. Hence
X/G is Lindeldf and also separable since X/G is a metric space. O

3. Application to G-ENR

Let G be a locally compact Lie group. We define a G-ENR(Euclidean
Neighborhood Retract) to be a G-space X which is (G-homeomorphic to)
a G-retract of some open G-subset in a G-module V. If we have no group
G acting we simply talk about ENR’s. We recall some local property of
ENR. A space X is called locally contractible if every neighborhood V
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of every point z € X contains a neighborhood W of z such that W c V
is null homotopic fixing x. We can see ENR is locally contractible [3].
A space is locally n-connected if every neighborhood V of every point z
contains a neighborhood W such that any map §7 — W, j < n is null
homotopic in V.

PRropPoOSITION 3.1. [3] If X C R™ is locally (n — 1) connected and
locally compact then X is an ENR.

REMARK. A separable metric space of dimension < n can be embed-
ded in R?™*! [5]. Hence a space is an ENR if and only if it is locally
compact, separable metric, finite dimensional and locally contractible.

PROPOSITION 3.2. Let X be a proper G-ENR. Then the orbit space
X/G is an ENR.

PROOF. Since X is G-ENR, X is a retract of some open G subset in

a G-module, i.e. X 5 U -5 X and roi = id. A retract of an ENR is
an ENR. Hence we prove the proposition for X a differential G-manifold
and then apply it to the manifold U. Let 7 : X — X/G be the quotient
map. Then X/G is locally compact by Proposition 2.2 and separable
metric by Proposition 2.9. By dimension theory [5] dimX/G < dimX.
Hence X/G is finite dimensional. Let z € U C X/G, U open. Then
7~ }(U) contains tubular neighborhood W of 7~1(z). Hence m(W) is
contractible in X/G. Therefore X/G is locally contractible. By the
above remark, we complete the proof. O
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