SOME PROPERTIES ON SPACES WITH NONCOMPACT GROUP ACTION

HYANG-SOOK LEE AND DONG-SUN SHIN

ABSTRACT. The compact transformation group theory has been developed with lots of properties. Many properties which are satisfied on G-space for compact group G do not hold for noncompact case. To recover some theory on spaces with noncompact group action we give some restriction on G-spaces. Hence we introduce Cartan G-spaces and proper G-spaces for our goal and we prove some properties on these G-spaces with noncompact G.

0. Introduction

Let G be a locally compact Lie group if there is no special note. We consider a completely regular space X with a fixed action on G. If G is a compact Lie group then a lot of general theory of G-spaces has been developed. For the noncompact case we need to give some condition on G-space for which theory can be applied reasonably. For our purpose, first we define Cartan G-space. Then many of the statements which hold when G is compact are valid in this case. Also we are interested in some properties of orbit space X/G which has induced properties from X. If G is a compact Lie group, then the orbit space has more properties. For instance, if X is a G-space with compact Lie group G, then

- (i) X/G is Hausdorff.
- (ii) $\pi: X \to X/G$ is closed.

For the noncompact group G, any of the above properties do not hold in general. However the first case (i) holds if we give more restriction on Cartan G-space which satisfies the condition that given x, y in X there exist relatively thin neighborhoods U and V of x and y. This is called

Received April 20, 1997. Revised June 5, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 54H15, 57S99, 22D05.

Key words and phrases: Cartan G-spaces, proper G-spaces, locally compact.

The authors were supported by Ewha Women's University Research fund.

proper G-space. In case (ii) if the space has Cartan G-action, the orbit map is closed.

In this paper, we prove some properties on the Cartan G-spaces and more restrictive proper G-spaces and of course those properties are satisfied on G-spaces for compact G. In Section One, we give some preliminaries which include basic notations and definitions as background. In the second section, we extend some theory of G-spaces where G is a compact Lie group to theory of Cartan(or proper) G-spaces for G a locally compact Lie group. In Section Three, we study some porperty of ENR (Euclidean Neighborhood Retract) with the G-action for locally compact Lie group G.

1. Preliminaries

We denote G a locally compact Lie group with identity e which acts on completely regular space X. If X is a G-space then we write G_x for the isotropy group at x. We mean Gx for the orbit of x and if $S \subset X$ we write GS for the saturation of S, i.e. $GS = \{gs \mid g \in G, s \in S\}$. We let X/G denote the set of orbits Gx of G on X. Let $\pi: X \to X/G$ be a natural map by taking $\pi(x) = Gx$. Then X/G endowed with the quotient topology and X/G is called orbit space of X. The quotient map $\pi: X \to X/G$ is continuous open map. For the subgroup H of G, $X^H = \{x \in X \mid hx = x \ \forall \ h \in H\}$ is a fixed set under H. We define subsets of G

$$((U,V)) = \{ g \in G \mid gU \cap V \neq \emptyset \}$$

where U and V are subsets of G-space X.

DEFINITION 1.1. If U and V are subsets of a G-space X then we say that U is thin relative to V if ((U,V)) has compact closure in G. If U is thin relative to itself then we say that U is thin.

If U is thin relative to V then V is thin relative to U since $(gU \cap V) = g(U \cap g^{-1}V)$, hence U and V are relatively thin. If U and V are relatively thin then any translates g_1U and g_2V are also relatively thin and for $U' \subset U$, $V' \subset V$, U' and V' are relatively thin.

DEFINITION 1.2. A G-space X is Cartan G-space if every point of X has a thin neighborhood.

DEFINITION 1.3. A subset S of a G-space X is a small subset of X if each point of X has a neighborhood which is thin relative to S. A G-space X is proper if each point of X has a small neighborhood.

If X is a G-space and A is an invariant subspace then a small subset of A is not necessarily a small subset of X. Small is relative notion unlike absolute concept of thin.

We state some important relation between Cartan G-space and proper G-space.

PROPOSITION 1.4. [6] A G-space X is proper if and only if X is a Cartan G-space and X/G is regular.

THEOREM 1.5. [6] If X is a locally compact G-space then the following are equivalent.

- (a) Given x, y in X there exist relatively thin neighborhoods U and V of x and y.
- (b) X is a Cartan G-space and X/G is Hausdorff.
- (c) X is a proper G-space.
- (d) Every compact subset of X is small.
- (e) Every compact subset of X is thin.

2. Some Properties on G-space for Locally Compact Lie Group G

Now we prove some properties on Cartan G-space.

PROPOSITION 2.1. Let X be a Cartan G-space. Then the orbit map $\pi: X \to X/G$ is closed.

PROOF. Let A be closed in X. Then $\pi^{-1}(\pi(A)) = \{ga \mid g \in G, a \in A\} = G(A)$, saturation of A. Since π is a quotient map, it is enough to show G(A) is closed in X. For any $a \in A$, there exists a net of points of A converging to a, say the net $\{a_{\alpha}\}$. Let y be adherent to G(A) and let U be a thin neighborhood of y. We choose a net $\{g_{\alpha}a_{\alpha}\}$ in U converging to y. For fixed α_0 , $(g_{\alpha}g_{\alpha_0}^{-1})(g_{\alpha_0}a_{\alpha}) = g_{\alpha}a_{\alpha}$ and hence $g_{\alpha}g_{\alpha_0}^{-1} \in ((U,U))$. By passing to a subnet, we can suppose that $g_{\alpha}g_{\alpha_0}^{-1}$ converges and hence

that g_{α} converges, say to g. Then $y = \varinjlim g_{\alpha} a_{\alpha} = ga \in G(A)$. Therefore G(A) is closed.

PROPOSITION 2.2. If X is a locally compact space then X/G is locally compact.

PROOF. Let $\pi: X \to X/G$ be an orbit map. For $x \in U \subset X$, let \overline{U} be a compact closure of U then $\pi(x) \in \pi(U) \subset \pi(\overline{U})$ where $\pi(\overline{U})$ is a compact closure containing $\pi(x)$.

PROPOSITION 2.3. If X is a proper G-space and N is a closed normal subgroup of G, then X^N is a proper G/N-space.

PROOF. Since X is a proper G-space, X/G is regular by Proposition 1.4. For every $x \in X$, x has a thin neighborhood U such that ((U,U)) is relatively compact in G. Recall G/N acts on X^N by (gN)(x) = gNx = gx. Then G/N action on X^N is equivalent to G-action on X^N and every subspace of a regular space is regular, and hence $X^N/(G/N)$ is regular. To show for every $x \in X^N$, x has a thin neighborhood U^* such that $((U^*,U^*))$ is relatively compact in G/N, we take $U^* = \{x \in U \mid nx = x \text{ for every } n \in N\} = U \cap X^N$ which is open in X^N . Moreover if p is the canonical map of G onto G/N it can be easily checked $p((U,U)) = ((U^*,U^*))$ since

$$\begin{split} ((U^*, U^*)) &= \{gN \mid gNU^* \cap U^* \neq \emptyset\} \\ &= \{gN \mid gN(U \cap X^N) \cap (U \cap X^N) \neq \emptyset\}. \end{split}$$

DEFINITION 2.4. X is a Hilbert G-space if X is a real Hilbert space and each operation of G on X is an orthogonal linear transformation.

DEFINITION 2.5. If d is a metric for a G-space X then d is called invariant if d(gx, gy) = d(x, y) for all $g \in G$ and $x, y \in X$, i.e. if each operation of G is an isometry.

Theorem 2.6. [6] If G is a Lie group and X is a separable, metrizable, proper G-space, then X admits an equivariant imbedding in a Hilbert G-space.

П

COROLLARY 2.7. Every separable, metrizable, proper G-space X admits an invariant metric.

PROOF. This is an easy consequence of Theorem 2.6.

LEMMA 2.8. In a metric space X, X is separable if and only if X is a Lindelöf space.

PROOF. Refer to point set topology.

PROPOSITION 2.9. Let X be a proper G-space. If X is separable metric then X/G is also separable metric.

PROOF. By Corollary 2.7, let ρ be an invariant metric defined on X. We define

$$\bar{\rho}(\bar{x}, \bar{y}) = \inf\{\rho(x', y') \mid x' \in \bar{x}, \ y' \in \bar{y} \ \text{for } \bar{x}, \ \bar{y} \in X/G\}.$$

Then since ρ is a metric, $\bar{\rho}(\bar{x},\bar{y})\geq 0$ and $\bar{x}=\bar{y}$ if and only if $\bar{\rho}(\bar{x},\bar{y})=0$. Now

$$\begin{split} \bar{\rho}(\bar{x},\bar{y}) &= \inf\{\rho(gx,g'y) \mid g,g' \in G\} \\ &\leq \inf\{\rho(gx,g'y) + \rho(g'y,g''z) \mid g,g',g'' \in G\} \\ &= \inf\{\rho(gx,g'y) \mid g,g' \in G\} + \inf\{\rho(g'y,g''z) \mid g',g'' \in G\} \\ &= \bar{\rho}(\bar{x},\bar{y}) + \bar{\rho}(\bar{y},\bar{z}). \end{split}$$

Therefore $\bar{\rho}$ is a metric on X/G. $\bar{\rho}$ is induced from ρ and $\pi: X \to X/G$ is a continuous open map, hence $\bar{\rho}$ is consistent with the topology of X/G. Since X is a metric space, X is separable implies X is a Lindelöf space. The Lindelöf property is invariant under continuous surjections. Hence X/G is Lindelöf and also separable since X/G is a metric space. \Box

3. Application to G-ENR

Let G be a locally compact Lie group. We define a G-ENR(Euclidean Neighborhood Retract) to be a G-space X which is (G-homeomorphic to) a G-retract of some open G-subset in a G-module V. If we have no group G acting we simply talk about ENR's. We recall some local property of ENR. A space X is called locally contractible if every neighborhood V

of every point $x \in X$ contains a neighborhood W of x such that $W \subset V$ is null homotopic fixing x. We can see ENR is locally contractible [3]. A space is locally n-connected if every neighborhood V of every point x contains a neighborhood W such that any map $S^j \to W$, $j \leq n$ is null homotopic in V.

PROPOSITION 3.1. [3] If $X \subset \mathbb{R}^n$ is locally (n-1) connected and locally compact then X is an ENR.

REMARK. A separable metric space of dimension $\leq n$ can be embedded in R^{2n+1} [5]. Hence a space is an ENR if and only if it is locally compact, separable metric, finite dimensional and locally contractible.

PROPOSITION 3.2. Let X be a proper G-ENR. Then the orbit space X/G is an ENR.

PROOF. Since X is G-ENR, X is a retract of some open G subset in a G-module, i.e. $X \xrightarrow{i} U \xrightarrow{r} X$ and $r \circ i = id$. A retract of an ENR is an ENR. Hence we prove the proposition for X a differential G-manifold and then apply it to the manifold U. Let $\pi: X \to X/G$ be the quotient map. Then X/G is locally compact by Proposition 2.2 and separable metric by Proposition 2.9. By dimension theory [5] $dim X/G \le dim X$. Hence X/G is finite dimensional. Let $x \in U \subset X/G$, U open. Then $\pi^{-1}(U)$ contains tubular neighborhood W of $\pi^{-1}(x)$. Hence $\pi(W)$ is contractible in X/G. Therefore X/G is locally contractible. By the above remark, we complete the proof.

References

- [1] Glen E. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.
- [2] Tammo tom Dieck, Transformation Groups and Representation Theory, Lecture Notes in Mathematics, 766, Springer-Verlag, 1979.
- [3] A. Dold, Lectures on Algebraic Topology, Heidelberg-New York, Springer, 1972.
- [4] James Dugundji, Topology, Allen and Bacon, inc., 1966.
- [5] W. Hurewicz and H. Wallman, *Dimension Theory*, Princeton Princeton Univ. Press, 1948.
- [6] Richard S. Palais, On the existence of slices for actions of non-compact Lie groups, Annals of Math. 73 (1961), 295-323.

[7] Richard S. Palais, *The Classification of G-spaces*, Mem. Amer. Math. Soc. **36** (1960).

Department of Mathematics Ewha Women's University Seoul 120-750, Korea