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PROBABILITY INEQUALITIES FOR
PRODUCT OF SYMMETRIZED POISSON
PROCESSES AND THEIR APPLICATIONS

JOONG SunG KwonN

ABSTRACT. This paper considers the problem of deriving exponential
probability inequalities for product symmetric Poisson processes. As
an application they are used to show the existence of regular version
of some product process derived from Lévy process.

1. Introduction

Let (8,8, P) be a finite measure space. And let (2, P) denote an
underlying probability space. Let F be a set of S-measurable functions
on S. A process Y = {Y(f)|f € F} on S is said to be a Poisson process
with parameter X, where X = P(S) if it has independent increments,
in the sense that Y (A4;), Y(Az), ... Y(Ax) are independent whenever
Ay, Ay, ... A are disjoint subsets of S, and the marginal distributions
are Poisson with parameters P(Ax). We can represent such a Poisson
process as follows : Let {U;} be a sequence of independent identically
Q- dlstrlbuted S-valued random variables (the locations of points), where
Q= TS) and N = Y(S) (the number of points) be a Poisson random

variable with parameter A = P(S), independent of {U;}. Then, for a
function f on S, define

N
(1.1) Y()=> fUy.
=1
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When we replace (1.1) b,

N
= Zfif(Ui)

where {£;} is a sequence of identically distributed symmetric Bernoulli
random variables (P(e; = 1) =1/2 = P(¢g; = —1)) which is independent
of {U;} and N, we have a symmetrized Poisson process. Similarly replac-
ing {e;} by {X.}, a sequence of identically distributed random variables,
independent of {U;} and N, gives a compound Poisson process with
marginal distribution

N
Y(f)= ZXif(U
i=1

Let (S;,Si, P;), ¢t = 1,2 be finite measure spaces. Let {¢;} and {E;}
be independent sequences of identically distributed symmetric Bernoulli
random variables. And let {U;} and {V}} be sequences of identically Q;-
and Q2- distributed S;- and Ss- valued random variables respectively,
where Q; = Pfs 5, ¢ =1,2. Finally let {X;} and {X]} be independent
sequences of identically distributed random variables. Let Y7 and Y;
denote two independent Poisson processes on S; and S; respectively.
For a function f on S; x S3, we define

Ny N2
(1.2) YixYa(f) =D > f(UsV5),
i=1 j=1
N1 Ny
(1.3) Y1 xYa(f ZZS e:f (Ui, Vj)
i=1 j=1
and
N; Na
(1.4) NxYa(f) =D XX f(U, V),

=1 j=1
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where N; = P(S;), ¢ = 1,2. These product processes naturally arise as
building blocks of product of infinitely divisible(ID) processes when we
use series representation for ID processes. However they are not studied
enough to be understood. In this direction, some works for probability
bounds have been done in [6] for (1.2) and in [7] for product Poisson
processes in full generality. In section 2, in this paper, we will derive
probability inequalities for (1.3) and (1.4).

In section 3, we will consider a special process which we call the prod-
uct diagonal process. It arises in the study of product Lévy processes:

o0
E Zn X Z),
n=0

where Z,, x Z!, is of the type as in (1.4) with some constraints on {X;}
and {X}}. Clearly Zp X Z’ is a random measure on (S; x S2, 51 X S2) but

whether 3 >° Z, x Z!(-) is a random measure is quite far from clear.
Our study is to find the biggest possible sub-family of o-algebra defined
on S; X Sy as possible which satisfies some measure like properties. In
that section we will show the existence of regular version of product
diagonal process. For this we use metric entropy to measure the size of
the index families. In this context, a natural regularity on sample paths
of processes is measure-like “outer continuity and inner limits” property
that was used in [1] and [3].

2. Probability Inequalities

In this section we state and prove probability bounds for product of
symmetric Poisson processes. Assume throughout that generic constants
K, Ki, Ky etc. can be different, in which they appear in the context.
But it should not cause the problem

Let {e; :i=1,2,...}, {e; : 5 =1,2,...}, {U; : i = 1,2,...} and
{V; 17 =1,2,...} be deﬁned as in sectlon 1. For any o(S; x Sq)-
measurable function f with |f| < 1 and for m,n > 0, write

Smn =YY e f (U, Vi),

i=1 j=1
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and

Sunn = (mn) M2 f: zn:Eie;f(Ui, Vi).

i=1 j=1

in which empty sums are taken to be zero. Define F,,, to be the o-
algebra generated by E;, Uj;, and V;, i <m and j < n. And define ]—"ﬁ,llll
to be the o-algebra generated by U; and V;, i < m, and j < n. Finally
denote

n n m 2
A = (mn) ™2 Y (Z f(Uan)f(Ui,Vk)) :
=1

i=lk

1=

Under the developments, the first lemma is as follows.

LEMMA 2.1 ([7]). Under the above notations, for n > 0 and for some
constants K1 and K3, we have

P(Smn > nlfg;v)'z) < exp (—A—117§TI> + exp (‘;\%774/3) .

mn

LEMMA 2.2. Forn>0,0< f <1 and § = E(f(U;,V;)), we have

P(Smn > 1) < exp (_5—17%77) + exp < 51/23 774/3>

+ exp (—8 min(m,n)élfz) .

PROOF. By Hélder’s inequality we have A2, < T2 with
Tonn = (mn)~ Z Zf(Uz, Vi)
7=11i=1

Hence by Theorem 2.6 (6],

: 2
p(AmnMﬂ)Sexp{_@ML}

2(0% +7/3)
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where 0% = Var(f(U;, V;). Take v = 85/2. Then

min(m, n)y? 64 min(m, n)d
2(6% +/3) T 2(81/2 + 851/2/3)

> 8 min(m, n)§/?
and
P(Amn > 96/2) < exp (——Smin(m, n)61/2) .
Thus
P(Smn > 1) < EP ([§mn > 9]0 [Ama < 951/2]|f,9,2,) +P (Amn > 951/2)
K K
< exp (—3—6-13/71—17) + exp (——mnue‘) + exp (—8 min{(m, n)51/2) .
a

Now we are ready to state and prove our main probability bound of
the paper.

THEOREM 2.3. Let Y, and Y5 be independent symmetric Poisson
Processes on S, and S; with parameters A\ and p respectively. Let f
be a 0(S; x Sz)—measurable function with 0 < f < 1 such that § =
E(f(U;,V;)) < 1/64. Then, for alln > 0 and for some constant K,

4/3
- n n
P(Y1 xY2(f) > n) <exp (_K-C\—“_)lﬁgl/‘l) + exp ("K(,\N)z/a(;l/s)

+ 4 exp (——4 min{), u}é”z) )

ProOOF. By Lemma 2.2,

P x Yal(f) > ) = BP (v, > sz, Mol

E K n E (™"
< - _
<8 (o0 (~K g ) ) + & (o0 (X sy

+E (exp (—8 min{ Ny, N2}61/2))
=1 + I, +1s.
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If we take M = e?(Au)1/2, we have

— n X 1/2
I := E{exp <_K(N1N2)1/251/4) : (N1 N2) 2 < M}

< exp(—K——=—;) + P(N1 Ny > M?)

51/4
K n
< exp (—EEW) + exp(—€?)) + exp(—e?p)

where Lemma 2.2 (3] is used in the last inequality. Similarly,

K n*/4 2 2
(2.2) I, <exp 378 ()28 + exp(—e“A) + exp(—e“pu).

Finally, we have

I3<E (exp(—8N161/2)) = exp ()\ (exp (—8(51/2) - 1))

(2.3) < exp (_4)‘51/2)

and

(2.4) I3<FE (exp (-—8N251/2)) < exp (—4“51/2) .

Summing (2.1), (2.2), (2.3) and (2.4) up completes the proof. O

The above proof extends immediately to give bounds for the product
of symmetric compound Poisson processes having uniformly bounded
jumps. Without loss of generality assume that they are bounded by 1,
namely 0 < X;, X J’ < 1 and write

1 N2
Zyx 2o(F) =) e X X[ f (UL V5).

i=1 j=1
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THEOREM 2.4. Under the above setups, let f be a 0(S81%xS82)—measu-
rable function with 0 < f < 1 such that § = E(f(U;,V;)) < 1/64. Then
for n > 0 and for some constant K > 0,

3/4
. n ] n
P(Z1 x Za(f) > n) < exp (*K(—WW) +exp ("K(Au)z/a(p/s)

+ 4 exp (—4 min{\, u}él/z) .

3. Application

Let B(I%) be the Borel o—algebra defined on I¢ = [0,1]¢ and let 4
be a sub-family of B(I¢). Given a Borel set A C I¢, let A% be the
interior of A with respect to the relative topology on I¢, and let A% =
{t €I¢: the Euclidean distance from t to A is less than 4} be the open
6—neighborhood around A. Define the Hausdoff metric dg by

du(A,B) =inf{e: A C B® and B C A}.

DEFINITION 3.1. A sub-family A of B(I%) is called totally bounded
with inclusion with respect to dj if

(1) A is closed with respect to dj.
(2) for each é > 0, there is a finite subset 45 of A such that whenever
A € A there exists B € A5 with A C B® ¢ B C A°.

It is known that A is compact if A is totally bounded with inclusion.
If A is totally bounded, a restriction on the size of A will be given
through its log-entropy H, where H(4) is defined to be the logarithm of
the cardinality (6,4, dp) of the smallest §—net .4;. Define the exponent
of metric entropy of A as follows:

r:=inf{s > 0|H(8) = O(6~%) & — 0}.

When A is the family of closed convex sets of I¢, it is known that r =
(d—1)/2(ct. [3]).
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DEFINITION 3.2. A set function % : A — R is said to have outer
continuity and inner limits at A € A if

(1) ¥(A,) — ¥(A) for any sequence {A,} C A such that A, O A
for all n and lim, 00 dgy (An, A) = 0.

(2) limp_00 ¥(Ay) exists for any sequence {A,} C A such that A, C
AP for all n and lim,, o, dg (A,, A°) = 0, where A° is the interior
of A.

The space of all functions 3 : A — R that have outer continuity and
inner limits at each A € A is denoted by D(.A).

DEFINITION 3.3. A process Z = {Z(B) : B € B(I%)} is said to be
a Lévy process indexed by A and having Lévy measure v if it is an ID
process with Lévy measure v and if the sample paths are almost surely

in D(A).

In [9], Pyke proposed one problem as follows : Let {u,} and {v,,} be
sequences of signed measures on measurable spaces (R, R) and (T, 7)
respectively. Write (S, S) for the product measurable space (R x T, R x
T). Under what conditions on {ug, v} and for what domains A C S
does the series p = Y oo pk X vk converge with respect to || - || 4?7 where
|| - |4 denotes the sup-norm defined by ||¥||.4 = sup4c 4 |[¥(A4)] for a set
function ¥ : A — R.

In this section we will consider special random measures to give a
partial answer to a variant of the problem.

Let Z; and Z> be independent symmetric stable processes with the
same stable index a € (1,2) with Lévy(stable) measure v(dz) = |z|~*7!
dz, indexed by A; (C B(I™")) and A, (C B(1%)), respectively. Assume
that the drift and Gaussian parts of Z; and Z; are zero. Then these
Lévy processes have only jump discontinuities and have no fixed point of
discontinuities. The basic structure of the non-Gaussian part of an Lévy
processes is that of a convergent series of compound Poisson processes.
Let a, = 8%, 0 < B8 < 1, n > 1 be a sequence of real numbers with
ap = +oo. We will stratify the heights of jumps of Z;, i = 1,2 by the
sequence {a,} and we will refer to the sequence {a,} as a sequence of
stratifications. Then, following the notations of [3], we will be able to
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write
(3.1) Zi=3 2., and Zy=) Z',
n=0 =0

where the Zn 's and Z',,’s are independent symmetric compound Poisson

processes with ‘parameters’ f <] <an u(dx) which equals the average

number of jumps of Z,. Since Z; is symmetrlc we can represent Z, and
7', as follows;

N,
(32)  Zn=) en|Xnl0y,, and Zen | X7,16v.,.

where {e5,, } and {e;, } are families of independent; 1dent1cally distributed
signed Bernoulli random variables, and {Uy,} and {V,,,;} are families of
independent identically distributed uniform random variables on I?' and
| respectively, such that dy, (A) = 1 or 0 depending on Up, € Aor
not, similiary for éy,_. Notice that {en} {en,} {Un:}, {Va;} {X0n,} and
{X7,} are all muturally independent families of suitable random vari-

ables. Clearly Zn X 2! n, Product of compound Poisson process, is a ran-
dom measure. In this section we will study the problem of constructing
a version of infinite series Zn 1 Zn X Z of product compound Poisson
processes on as large a sub-family A of the o —field ¢(A; x A4;) as possible
which is also in D(A). For this we list assumptions on A C o(A4; x Aj)
that will be used.

For any positive sequence {b,} with b, — 0 as n — 0o, we have
(1) there exists a finite set 4, C A such that for any A € A, there
exist Ap,,, A;ﬂ € A, such that A,, C 4 C Ag: and Kb, <
|Ab+n \ A4y, | <b, and
(2) for any A € A, there exists a sequence of nets A,, € A,_ such that
|AAA,| < by and Keb, < |Ap_1AA,| < by, where K, is some
constant depending on the choice of {b,} and |- | is Lebesgue
measure.
Note that (1) and (2) are more than ‘totally bounded with inclusion’ in
the sense that: this assumption requires that approximating sets are not
too close(this concept also was used in [2]).
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THEOREM 3.4. Let Z; and Z, be independent symmetric stable pro-
cesses with the same stable index o € (1,2) indexed by A; (C BI™))
and A; (C B(I%)), respectively. Assume that Z; and Z, be repre-
sented as (3.1) with a geometric stratifying sequence {a,} and that
A(C o(A; x Az)) with entropy index r satisfies (1) and (2) listed above.
Finally assume that o and r satisfy r < % Then the infinite series
S Zn X ZA;; of product compound Poisson measures have the outer
continuity and inner limits at every A € A. (That is, 3 ., Zn X .Z;L €
D(A)).

First of all, we need a lemma.

LEMMA. For arbitrary events { E,}, we have

> P*(E,) < 00 = P*(E,, i.0) == 0.

n=1
where P* is the outer measure induced by P.

PRrROOF. Since P*(E,) = inf{P(B) : B D E,, B is measurable} for
all n, there exists B,, such that B, is measurable and P*(E,) + 1/n? >
P(B,). This implies ), P(B,) < oo. By the usual Borel-Cantelli
lemma, this means that P(B,, i.0.) = 0. Since B, D E,, we have
P*(E,, i.0.) = 0. O

SKETCH OF THE PROOF OF THEOREM 3.4. Let 0 < ﬁﬂ< 1 be such
that g7 = a; and 0; = (37 with j € N. Let T}, := Z, x Z!, and S, :=
> 5=1T;. Let {n.} be a sequence of numbers such that

o>
(3-3) Znn < 0.
n=1

We will show that 7,, may be selected so that 3 oo, P*(||T,.]la > 2n,) <
oco. It then follows that P*(||T,||.4 > 27, i.0.) = 0 by the Lemma stated
above. Given ¢ > 0, take N large enough so that Y > . 2n, < e,
and then, depending on w, choose N, > N so that if n > N, then
”Tn(w)“A S 277’!1 That iS, if n,m 2 Nuu

[Sn(w) = Sm(w)lla <€, or ||Sp—Smlla—0 as,
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as m,n — oo. Applying Lemma 2.1 (iii) of [3] will complete the proof
of the theorem. 0

DETAILS OF THE PROOF OF THEOREM 3.4. Note that Z, and Z,
are independent symmetric compound Poisson processes with parame-
ter(modulo some constant(< 1) times)3~*". Now consider nets As,, As, ,
Asyy -y As,,, of A satisfying assumptions (1) and (2) where k,, will be

chosen later to satisfy Z?;l Mn; = M- Then for any A € A, set 4, = §".
kn
Ta(A) = Y {Tu(4;) = Tn(A;-1)} + {Tn(A) — Tu(Ax,)},
j=1

where for 0 < K. <1, Ag=0, A4;¢€ As,, A:n € As,.,
Kby <|A;\Aj| <6; and K.§; <|A;-1\ 4] < 45,

A, CAC Az'n, and K., < IA,: \ Ag, | < Ok, -
(Here if |A;\ Aj_1] =0or |A;\4,_1| = 0, then without loss of generality

we may assume that this condition holds).
Since

T (A;) = Ta(Aj-1)] < |T0u(A5\ Aj-1)| + Tu(Aj-1 \ 45)],

if KC(SJ' _<_ IA] \ Aj—ll S 69', chj < IAj—l \Aﬂ < (Sj, then by Theorem
2.4 we have

P(|Tn(Aj) - Tn(Aj—l)' > 27]n3~) < 2pnja

1/2 ¢1/2
j 16(2-‘3‘)"6;/4 6(1"1

And if Ak,,y A;:n € A&kn with Kcékn < |A:n \Akn' < 5kn, then

where

P*(|Tn(A) —Tn(Ak,) >n, for some Aec A A;, CAC A,:rn) < ¢,
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where

gn = max P* sup To(B\ Ax,) >0 |,
Ak, CBCA{

in which the maximum runs over all Ay, and A,:rn in Aakn satisfying
Keby, < AL\ Ak, | < 6k,

Since ™! < |X,,,

X4, | < B7, we have

N, N, N, N,

. -

|2y x Z3| < E E X 1X7, 8, vy < E } B2n6(U,,i,an)-
i=1j=1 i=1 ji=1

Hence .
an < P(Y, x Y,:(A;jn \ Ag,) > EE%)v
where Y,, and Y,/ denote Poisson processes on I% and I with Yn(Idl) =
N, and Y. (I*2) = N/ respectively.
Consider P*(||T,||.4 > 2n,) using above development

kn
P*(|Tulla > 21) < 2 exp(2H(8;)) max P(IToa(A; \ Aj-1)| > 7a5)

j=1
+ exp(2H (0, )) max P*( sup |Tn(A) — T, (Ak,)| > 7n)
ACA Ay, CACAT
kn
<2 Zexp(?H(dj))pnj + 2exp(2H (0k,, ))qn := 2R, + 2R},
Jj=1

where the first maximum runs over all 4;\ A;_1, 4; € As, and A;_; €
As;_,, and the second maximum is over all A,“:n \Ax,, Ak, , A} € As, .
Remind that we need to show :

iR" < oo, iR,’; < o0, and inn < 00.
n=1 n=1 n=1 0

n
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Treatment of R,-terms : > -, R, < oc.
Suppose that for j =1,2,3,--- , k,,

4 HE) < — 5T my < KT
(3.4) (&) < 4p—amngi/a 2N (&;) < Blan=3/2)
K, !
(35) 2lnn+lnkn< W and 21nn+lnkn< W

(We will justify (3.4) and (3.5) in the latter part of the proof of theorem).
Then

exp(2H (8;))pn,

Knnj 4.Kg/2
W) + 4exp(2H(6j) - W)
K77nj 2K3/2
ap@—ampira) 4P~ ganm)

< 6exp(—2Inn — Inky,).

< 2exp(2H(4;) —

< 2exp(—

Hence .
Zexp(2H(5j))pnj < 6n2
Jj=1

which implies Y .. ; R, < oo.

Treatment of R}-term : > 7 R% < oo. For a bound of R},
write C = A:n \ Ak,. Then

gn = P(8"Y, x Y, '( A\ Ak,) > )

=P(Y, xY.(C) > 5271 , NoNL|IC| > V,,)) + P(Y, x Y,)(C)

(36) nn NnN/ |C| < Vn)

62
Y, x Y (C) Tn

< ' n

< P(N.N,|C| > Vi) + P ( NNl B
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where V,, > 0 is a constant which will be chosen later and |C| denotes
the Lebesgue measure of C. From the equality 2(a — 1) < -2 and

r+1
2(a — 1) < 22 take c such that
2-a

c
: 2o — e .
(3.7) (a 1)<c<r+1/\ .

Furthermore, it is possible to choose x > 0 to satisfy the following;

2—a >2—a—m
2(a—-1) c

2a-1)<c—k<c+rK<a and > T

Now we choose k, = [en] , V,, = l—o’g‘ﬁ, N = B and 7,, = il%
for j = 1,2,...,ky, where [z] denotes the greatest integer which is less
than or equal to z. Then trivially this choice of 1, satisfies (3.3) and
Z;;l Tn; = N Further, for sufficiently large n,

Mn 64K2
10ﬁ2nﬂkn > B2cm *

So that, by Lemma 2.2 [3],
e K
I@om

and since, without loss of generality, for large n it is possible to assume
|C| < 1/4, by Theorem 2.5 [6]

(3.8) P(N,N,[C| > —2 ) < 2exp(—

1042~ )

Y, x Y(C) 2K K.
' pl2_ __n\ /] 1 <4 - .
(39) (NnNAlCl 7 0) = ferl =)
Substitutions (3.8) and (3.9) into (3.6) gives gn < 6exp(—ais).
Therefore,
2K K,
R, < 6exp(2H(,) — Z=yn).
Suppose that
KK KK

(3.10) H(b,) < and 2lnn <

C
zﬁ(a—-c)n ﬂ(a~c)n )
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(We will justify (3.10) in the latter part of the proof of theorem). Then
R}, < 6n~2, which implies }>° | R}, < oo.

Finally to finish the proof of Theorem 3.4, what remains is that our
choice of ¢ and « satisfies (3.4), (3.5) and (3.10). Now since we eventually
concern about the summabilities of 3 | R, and Y oo | R}, it suffices

to show that (3.4), (3.5) and (3.10) are true when n is sufficiently large.
For the first inquality of (3.4), notice that

Kn,, 1. Kpg 1 i
N 2y Vi < Zy(2—a)n+i
H(4;) < 4B3@-a)ngs/4 (,3) — 4 [cn](ﬁ)
K 1 1 py;
YW@-a)=m)n Z (375 >
“ (3 (3) 2 [en].

Since (%)%j(%)‘”' > kn for j = 1,2, ..., ky, it suffices to show
K, 1 1

3.11 —(2)(Fme)=mIn(—)=rhn > [cp).

(3.11) (3 ()77 2 fen

But it follows from the choice of k that 2=2=% > r and (2 — a)n — kn —
rlen] — co. Therefore the left side of (3.11) grows geometrically and the
right side does polynomially. Hence we see that the first inequality of
(3.4) holds as n is large enough. The validity of the second inequality of
(3.4) can be shown in a similar way from the fact o — ¢ — r¢ > 0.

For the validity of the inequalities of (3.5), notice that

K"lnj

2nntInfen] < oo g7a

& [en)(2Inn + Infen]) < (é—)”ﬂ”(%)*ﬂ"(%)i

It suffices to show that

Ly-rn( 1y
5) ()

[cn](21lnn + In[en]) < (%)(2_0‘)"( 5

But our choice of k satisfies 2_‘;"‘ > r > 0. From this, we see that
the left side grows polynomially and the right side geometrically. The
second inequality can be shown to hold from o — ¢ > 0.
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Lastly, notice that, since =< > r

[

KK, 2 1 a—c)n 1 -7
< () )(5) Fon

H((skn) < 2/8(&—0)71- Aad KKC — (6

and

(a—c)n—rk, = (a—c)n—rlen] > (a—c—reJn—r - 00 as n — oo,

from which (3. 10) follows.

REMARK 3.5. Theorem 3.4 gives some partial answers for the ques-
tion raised in the beginning of the section, for conditions on A in terms
of entropy when {u,} and {v,} are sequences of some special random
signed measures.
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