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A NOTE ON BETTI NUMBERS AND RESOLUTIONS
SANGKI CHOI

ABSTRACT. We study the Betti numbers, the Bass numbers and the
resolution of modules under the change of rings. For modules of finite
homological dimension, we study the Euler characteristic of them.

1. Introduction

Throughout this paper, every ring is assumed to be commutative and
noetherian with identity.

Let (R, m) be a local ring with residue class field k and M be a finitely
generated R-module. Then the i-th Betti number bf*(M) is rank of the
tth-module in the minimal R-free resolution of M. Also the ith Bass
number puf(M) of M is the number of copies of the injective envelope
Egr(k) in the ith module of the minimal R -injective resolution of M.
Generally, for each prime ideal p of R, the ith Bass number ul(p, M)
is the number of copies of Er(R/p) in the ith module of the minimal
R-injective resolution of M. Thus

bE(M) = dimy Torf (M, k) = dimyEatF (M, k),

ll'zR(pv M) = dimn(p)Emt%p (K’(p)a Mp)a K‘(p) = Rp/pRp

This paper considers the problem of computing the Betti numbers and
the Bass numbers under the change of rings. There are two formulas of
change of rings introduced in the text [6, p140 Lemma 2]: Let R be a
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ring and the M, N be R-modules. Suppose that z € R is R-regular, and
M-regular with zN = 0. Put R= R/zR and M = M/xM, then

Torf(M, N) = Torf(M, N),

Eztii (N, M) = Extsy(N, M),

Some of the useful homological properties can be computed from the
above formulas. For example, let (R, m) be local and substitute R/m
for N in the formulas. Then the formulas can be rephrased as

bR(M) = bR(M) and ul, (M) = uf (7).

The spectral sequence of homological algebra can be used to prove the
above formulas and it gives more information concerning the structure
of resolution of modules. The purpose of this paper is to investigate the
Betti numbers, the Bass numbers and the resolutions using the spectral
sequence.

In section 2, we introduce the spectral sequence of a double complex
and prove the 5-term exact sequence in a general form(cf. (7, Theorem
11.2)).

In section 3, we focus on the Grothendieck spectral sequences([7, The-
orem 11.38, 11.39]) and adopt the tensor and hom functor to investigate
Tor and Ext modules. We are interested in modules of finite projective
dimension and compute the Euler characteristic of them.

2. Spectral Sequences

Let R be a commutative ring with identity. Then (X,d’,d") is called
a double complez of Rif X = (X% 9)fori,j € Z,dj ;: X7 — X'+ J
andd} ;: X" 7 — X% It satisfying djy jod; ; =0,d] ;4 0d] ;=0
and df,; ;od; ;+d; ;.,0d] ;=0. When X is a double complex, we
define the total compler X = @X™ by

X" = @H_j:nXi’ J

with the boundary map d = d’ + d”’. That is, for z; ; € X" 7 with
i+j=mn,d"(z; ;) =d; ;zi ;+d; ;(zi ;). Note that d"*1od"” = 0. So
(X, d) is a complex. Put H™(X) = ker d"/ im d™".
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NOTATION. We write d'(z;, ;) and d”(z; ;) for z; ; € X» 7 instead
of di ;(z;, ;) and df ;(z;, ;).

We define two more homologies H} 7 (= Hy 7 (X)) =ker d; ;/imd]_,;
and Hyp? (= Hp,? (X)) =kerd! /imd” j—1- Note that for cach i (Hp 7,
d") is a complex as well as (H 71’y d') is a complex for each 7, where
d:Hp? — H;tb 7 and d” Hp? — H},7*! are the induced maps
from the original ones. Then we define H”H (= HHH’ ]( )) =ker
d” j/im d} ;_y and HiHp’(= HiHp? (X)) =kerd] ;/im di_, ;. Let

= (X% 3) be a double comlex. We say that X is bounded if for each
n there are only finitely many nonzero X* 7 with i + j = n. [n this
case we say that the spectral sequence H; IH ' 7 as Well as H 1H con-
verges to H™. Denoted by H”H“ I == H™ and HIH )= H” And

if HiHy 7 =0 (or if HiH},? = 0) except for only one i (or j), then we
say that the spectral sequence collapes.
We denote the elements of X* 7 by x; ;, y;, jand z; ;.

DEFINITION 2.1. Let X = (X% 7) be a double complex. Define
VAR {(L'l Jldl.’L'z 3 =d" Titl, j—1 H:EH.]_ ] 1 E.XH_l §—1 andd”z:z j=
0} and B* jz{:c, Jlm, j=dz;_ 1,J+d x;, j—1 with d"z;_, ; = 0}.
Note that B* 7 C Z* 7 and we define H» / = Z% 7/B% 4,

Consider
Hp = {2 j =i j+d"(X; j_1)|d"z, j = 0}
Then
HiHp ={%i, ;=& ;+d(H;; " ))&, ; € Hy? ,d'5;, ;= 0}
={&, ;=2 ; + dH" )z, j = d"zig1, j_1,d"z;, ; = O}
Therefore,

HiHi /> H» 3= 753/B% 1,

Under the following five conditions we connect the total homology
and the spectral sequences.
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For a double complex X = (X* 7), name the following conditions (a)

to (e).

(a) X% ~¢ =0, i > k for some k > 0.
(b) H» 71 =0, 1<i<k-1

(c) H*L —1=0,1<i<k~-1

(d) H5i=0,4i>1.

() H7""4H =0, 4i>1.

If (a) and (c) are satisfied, then any element zp, ¢ € Z% © can be
extended to a 4th quadrant element 2 = 29 o + -+ + Zk—1, k41 € A
If (a) and (b) hold, and z = 29,0 + -+ 2k—1, -k+1 € Z° is a 4th
quadrant element such that zp ¢ € B% 0 Then z € BY. So if we
assume the conditions (a), (b) and (c). Then there is a homomorphism
ao, 0 : H» % — H® by ag, 0(Z0,0) = %, for 20 ¢ € Z% % and z € Z°
is a 4th quadrant element obtained from zg, ¢. Moreover, (a), (b), (c)
together with (d) guarantees that ag, ¢ is surjective and (e) implies that
ap, o is one-to-one. Conversely, if (d) and (e) hold, then there exists
a homomorphism By o : H® — H% © and (d), (e) together with (a),
(c) guarantees that (p o is onto and (a) and (b) imply that Gy ¢ is
one-to-one. ([7, Theorem 11.42] ).

DEFINITION 2.2. For each spot (¢, j) we assume the corresponding
conditions (a) ~ (c) and construct, o; ; : H 7 — H**J. Assume (d)
and (e) and construct 3;, ; : H**7 — H*% 7. Each homomorphism «;, ;
and (;, ; are called an edge homomorphism. We also define a homomor-
phism (called a knight homomorphism) 6 = §; ; : H» 7 — Ht2 -1
as follows. For z;, j € Z 9, d"2z; ;=0and d'z;, j +d 241, j-1 = 0 for
some 2;41, j—1 € X*T1 771 Define §(z;, ;) = d'ziz1, j-1.

It is a routine process to check that 4; ; is a well-defined homomor-
phism. Moreover, we construct edge homomorphisms between Hy; H;(X)
and H(X) and knight homomorphisms for H;yH;(X) under the sym-
metric conditions.

In the following theorems, we assume the appropriate conditions of
(a) ~ (e) for the maps a and 3 to be defined.

THEOREM 2.3. (5-term exact sequence [7,11.42,11.43,11.44]) Sup-
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pose that a; ¢, By, 1 and az ¢ are defined. Then

(o3 [a3
HLO °no 1 BO’I,HO’liHZO 20 2

is an exact squence.

PrROOF. Note that if H—1' 1 = 0, then ai, o is one-to-one and if
H% 1 =0, then oy, o is onto.

Due to the deﬁmtlon of B, Bo,1001,0=0.fz=20 1+21, 0+
Zk, —k+1 A and,@(z)—zo 1 EBO 1 Thenzo \+d'z 1, 1+d o, 0 =
0 and d"z_,, 1 = 0 for some z_;, 1and Zo, 0. Instead of z, z+d(x~1, 1+
xo,0) = (d'zo, 0+ 21,0) + -+ + 2k, ~k+1 € Im . This shows the
exactness at H!.

Let z € Z', and write z = 29, 1 + 21, 0+ -+ + 2k, _x41 € Z*. Then
Bo, 1(2) = 20,1, 6 0 Bo, 1(2) = 8(20, 1). Since d”’zp 1 = 0 and d'z 1+
d"z1,0 = 0, 6(20,1) = d'z1, 0. Note that d'z; ¢ = d'0 + d"(— 22, 1)
with d”0 = 0. Hence d’z1, o € B? °. Therefore, im Bo, 1 C ker 6.

Now let 29 1 € Z% ! such that 6(zo 1) € B?% 9 Then d"z9,1 =0 and
d'zg, 1+ d"21, o = 0 such that §(z1, o) = d’ z1 0 € B» 0, Hence d'z1, o+
d'y1, 0+ d"zy, -1 =0 and d"y;, ¢ = 0 for some Y1, 0 and Z2, 1.

Inductively, we have found y; 11, s, Zir2 —i—1{z > 0) satisfying

7 14 1
dzit1, s+ dYip1, i +d'Tigo, -1 =0

and d"yi.H, —; = 0. Note that d’.’I)i+2$ —i—1 € Zi.?_3’ g1 = Bi+3, i1~
Because d”(d'z; 0, —i—1) = d'(—=d"Tite, —i—1) = d'(d 2i41, —s+d'Ysr1, _s)
= O, and d'dlﬂ,‘H.g, ——1 = 0= d”O.

Now 0 = d'ziro, i 1+dYito, —i—1+d"Tiys —i—2 and d"yite, 41 =
0 for some y;12, —;—1 and z;43, —;—2. Let 23, o = 21, o and put

k

z2=20,1+ Z($i+1, i+ Yit1, i)
i=0

=20, 1+ (21, 0+ ¥1, 0) + (2, ~1 +¥2. —1) + -+ (Thy1, —k + Yrt1, —k)-
Then

dz=d"20, 14 (d'20,1+d"21, 0) + (d'21, 0 + dy1, 0 + 'y1. 0 + d’za 1)+ ---
=0
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Therefore, z € Z' and By, 1(2) = 21, o. Let 20,1 € Z% 1. Thend’z | =
0 and d'zp, 1 + d”z1, ¢ = 0 for some 21,0 € X1 % Hence 0(20, 1) =
d'(z1, 0) = d(20, 1 + 21, o). Trivially, a(8(z0, 1)) = a(d'z1, o) = d(z0 1 +
z1, 9) € B2. Therefore, im & C ker az o-

Suppose that z2 ¢ € Z% 0 such that a(z o) = 22,0+ 23 -1 +
o+ Zkto, -k = 2 € B2, Then z = dz for some r = T_j41,1 +
T 1+ T ot + Tetr, -k € XU Now d”z_y4; ; = 0 and
d'z_i1y1,1+d"2_y 11 = 0. Sothatz_;4; ; € Z71 L= B=l+1, | There
are y_;, ; and y,—H-l, j—ysuchthat z_; 1y ;+dy ; + d”y’_lﬂ, 11 =0.
Put

o=z +dy_ .+ Y11, 1-1)-

Finally, we have 2/ = xH 1 +T1, 04+ Tkt1, _x such that z = dz =
dz’. From the equation 2z = dz’, d'zy 1 =0, d'zy ; +d’z1, 0 =0 and
d'zy, 0+ d’zs, _1—22 0 =0. Thus Ty, 1 € 7% 1 and 6(zp, 1) =d'xy, o =
22,0 —d"zs _1 = 23, o (modulo B? 9). Therefore, ker oz o C im § and
this concludes the proof of the therem. (I

IfXisa bounded double complex and the spectral sequence collapses,
that is, HyH};7(X) = 0 except for one i (or one j), then the conditions
(a) ~ (e) are satisfied at each spot with z = i (or with y = j) and
a;, j: HYJ — H*tJ is an isomorphism. If HIH;}j = 0 except for 7
and 7 + 1, then conditions (a), (b), (c) and (e) are satified at each spot
with z = ¢+ 1 and (d) and (e) are satisfied at each spot with z = .
Hence we obtain following short exact sequences.

COROLLARY 2.4. Let X = (X% ) be a bounded complex. Suppose
that HtHp' = HY 7 = 0, for any ¢ and j except for two columns (say
¢ =0,1). Then we have an exact sequence

025, gt &un gl Bo, nt1 HO 1 4 g

If H IH;}J = 0 except for j and j + 1, then conditions (a), (b) and
(c) are satisfied at each spot with y = j and (d) and (e) are satisfied at
each spot with y = j + 1. Therefore, we have a long exact sequence as
follows.
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COROLLARY 2.5. Let X = (X* 7) be a bounded complex. Suppose
that HIH" I =0, for any i and j except for two rows (say 7 = 0,1).
Then there is a long exact sequence

H™O0 @ gn B, g1 9, gntt 0 o Ll

3. Betti Numbers and the Resolutions

There are several types of Grothendieck spectral sequences in the
text (see (7, 11.38 ~ 11.41]). If we substitute the tensor functor for the
right exact functor and the hom functor for the left exact (contravariant)
functor in the Grothendieck spectral sequences ([7, 11.38 ~ 11.40]), then
we have the spectral sequences in term of Tor and Ext modules. Let
¢ : R — S be a homomorphism of rings and M be an R-module. Give
an R-projective resolution P. of M. Let Q" be a proper projective
resolution (cf. [7]) of the complex (S ®g P). That is, That is , P~ 7 is
an R-projective resolution of (S®pg P;) and columns are complexes. Now
consider the double complex X~ = N ®g @ for an S-module N. Note
that if P is a projective R-module, then S® P is a projective S-module.
Hence Hp L3 (X) = 0 for ¢ # 0 and the spectral sequence collapes. Thus
Hi HY "(X ) = TorZ(N, M). However from the construction of proper
resolution @,

HiH},?(X) = Tor{ (N, Torf(S, M)).
Therefore, we have the spectral sequence
Tor? (N, Torf(S, M)) =>Torﬁ,j(N, M).
The following three Grothendieck spectral sequence will be used for

the purpose of us.

THEOREM 3.1. Let ¢ : R — S be a homomorphism of rings. M be
an R-module and N be an S-module. Then

(1) [7. 11.38) Ext(N, Ezt’ (S M)) = Ext'”(N M).

(2) [7, 11.39] Tor? (N, Tor (S, M)) = TorzH(N M).

Rotman gave a proof of (1) and we sketched a proof of (2).
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Let M be an R-module with a finite free resoulution F—M-—O0.
Then we define the Euler characteristic xg(M) of M by

Xr(M) := Z(-—l)irkF,-

where F; is the ith-module of F. This is well-defined ([4, sec 4.3)). For
an R-module M of finite injective dimension and a prime ideal pof R
define the Bass-FEuler characteristic xg(p, M) of M relative to p by

Xr(p, M) =) (-1)'ui(p, M).

This does not depend on the injective resolutions of M. If (R, m) is
local, then we write Xz(M) instead of Xz(m, M).

THEOREM 3.2. Let (R, m) be a local ring and M be an R-module.
Suppose that € m is R-regular and put R = R/zR, M = M/xzM and
M; = (0:, M). Then

(1) uf(M) < pf{(My) + pl (M), and pf(My) < pR(M).
(2) Assume that M is a finite R-module with depthpM = d and
injdimpM = n < oco. Then

Pl o (M) = uf(My) (i <d—1, n+2< i),

i o (M) < pB(My) and uB (M) > pk | (My).

(3) If both injdimpM and injdimgM are finite, then injdimpM, is
finite and

Xp(My) = Xp(M) + Xp(M).

PROOF. Substitute k¥ = R/m for N and R for S in the spectral
sequence of Theorem 3.1 (1), we obtain

Ezty(k, Exth(R, M)) == Eat:I(k, M).
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Since z is R-regular, pdrR = 1, Ext%(R,M) = (0 -, M) = M,
E:z:t};(R,M) = M and Extl(R,M) = 0, j > 2. Hence we obtain 5
term exact sequence (Corollary 2.5)

i (M) 2, pul () B ul (01) 8, Luf () @ LA (M)

(1) It follows from the above exact sequence.

(2) Note that depthpM = inf{i | Extiy(k, M) + 0} and injdimpM =
sup{i | Ezth(k, M) # 0}. Reviewing the exact sequence outside d and
n, we can conclude (2).

(3) From the exact sequence, take the alternating sum of the dimen-
sion of each k-vector space, we obtain Xz(M;) = Xp(M)+Xg(M). O

Using the Tor spectral sequence (Theorem 3.1 (2)) we obtain a result
parallel with Theorem 3.2

THEOREM 3.3. Let (R, I_n) be a local ring, * € m be R-regular. For
a finite R-module M, put M = M/xM and M, = (0 :pr z). Then
(1) b(M) < bf(M) +bf (M), i > 1, bE(M) < bR(M).
(2) If pdgM = n < oo, then b% (M) > bE (M) and bR(M,) =
bR o(M), i > n.
(3) If both pdpM and pdg(M) are finite, then so is pdgp(M;) and
Xr(M) = xr(M) + xz(M).

PROOF. Consider the Tor spectral sequence
Tor{*(k, Tor{(R, M)) = Tor® (M, k), k = R/m.

Note that Torg(R, M) = R®@r M = M, Tor®(R, M) = M, and
Torf(M , R) =0, j > 2. Hence we obtain 5-term exact sequence

L, RO 2, pbl(M) B, bl () 8 bR () e pbR ) B,

Note that pdp M = sup{i | b7(M) # 0} and a similar process for Bass
numbers as in the proof of Theorem 3.2 conclude the theorem. a
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It is due to Auslander and Buchsbaum [2] that for an R-module M
with a finite free resolution, if x(M) = 0, then annM contains a nonzero-
divisor and if x(M) # 0, then annM = 0. The converse is also true 4,
Theorem 196]. Howerever, we can hardly find any reference concering
the properties of Bass-Euler characteristic. In the corollary below we
determine when Xr(M) = 0.

COROLLARY 3.4. Ifan R-module M is annihilated by a nonzero divi-
sor z in R and if both injdimpM and injdimzM(R = R/xR) are finite.
Then for any prime ideal p of R containing

XRP (MP) =0.

PROOF. Note that /1 € R, is a nonzero-divisor. So we may assume
that (R, m) is a local ring and it is enough to show that Xr(M) = 0.
Since zM = 0, M = M/zM = M and M; = (0 :p; z) = M. From the
equation X#(M) = Xr(M) + X5(M) in Theorem 3.2, we conclude that
Xr(M)=0. O

If we replace the condition, injdimzM < oo by pZ(M) = pR(M).
For some m > injdim¥. Then Corollary 3.4 is true. Take the alternating

sum of the dimension of k-vector spaces up to kFn+1 M) Then this is
conceivable.

QUESTION 3.5. (1) Is it true that injdimgM < oo, then either ann
(M) =0 or ann(M) contains a nonzero-divisor?

(2) If ann(M) = 0, then Xp(M) > 07

(3) If ann(M) contains a nonzero-divisor, then X p(M) = 0?
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